• Keine Ergebnisse gefunden

2 . S te lla r s tr u c tu re e q u a ti o n s

N/A
N/A
Protected

Academic year: 2021

Aktie "2 . S te lla r s tr u c tu re e q u a ti o n s"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

2–1

2 . S te lla r s tr u c tu re e q u a ti o n s

2–2 Stellarstructureequations1

S te lla r s tr u c tu re e q u a ti o n s

dm dr=4πr2 ρ(r)(1)massconservation dP dr=−Gm(r)ρ(r) r2(2)hydrostaticequilibrium dL dr=4πr2 ǫ(r)(3)energyproduction dT dr=−3 4acκ(r)ρ(r) T3(r)L(r) 4πr2(a)radiative (4)energytransport dT dr=γad1 γadT PdP dr(b)convective +Evolutionofchemicalabundances Xi t=mi ρ P jrji−P krik i=1,...,I

2–3 Stellarstructureequations2

E q u a ti o n o f m a s s c o n s e rv a ti o n (o r m a s s c o n ti n u it y )

Generalassumptionsforthisandotherequations: 1.starsarestatic,i.e.wecanneglectvelocityandaccelerationterms 2.starsaresphericalsymmetric,i.e.sphericalcoordinates,variable

r m

=massinsidetheradius

r dm

=massintheshellofsize

dr dm =

4

π r

2

ρ dr

Indifferentialform dm dr

=

4

π r

2

ρ

2–4 Stellarstructureequations3

S te lla r s tr u c tu re e q u a ti o n s

dm dr

=

4

π r

2

ρ ( r )

(1)massconservation dP dr=−Gm(r)ρ(r) r2(2)hydrostaticequilibrium dL dr=4πr2 ǫ(r)(3)energyproduction dT dr=−3 4acκ(r)ρ(r) T3(r)L(r) 4πr2(a)radiative (4)energytransport dT dr=γad1 γadT PdP dr(b)convective +Evolutionofchemicalabundances Xi t=mi ρ P jrji−P krik i=1,...,I

(2)

2–5 Stellarstructureequations4

E q u a ti o n o f h y d ro s ta ti c e q u ili b ri u m

Gravitationalforceonthevolumeelement:

F

G

=

G m r

2

A ρ dr

Buoyantforce(”Auftrieb”:Pressuredifference) ontheelement:

F

P

= A [ P ( r + dr )

P ( r )] = A dP dr dr

Forcesmustbebalancedinequilibrium:

A dP dr dr =

G m r

2

A ρ dr

⇒dP dr

= − G

mρ r2 2–6 Stellarstructureequations5

E q u a ti o n o f m o ti o n

Considerthecasethatgravitationalandpressureforcearenotinequilibrium. Thisresultsinanetforceandacceleration

F = ¨r dm = ¨r A ρ dr

Resultingequation:

F = F

G

F

P

¨r A ρ dr =

G m r

2

A ρ dr

A dP dr dr

¨r ρ = − G

m r2

ρ −

dP dr

2–7 Stellarstructureequations6

F re e fa ll (= d y n a m ic a l) ti m e s c a le

Letusassumethatthepressure(gradient)is switchedoff.

¨r ρ =

G m ρ r

2−dP////////////////// dr///////////// Notsurprisinglythistellsusthatthematterfalls intothecentre. Thetimescaleforthisisthefreefalltime

t

ff

= r ˙ r

2–8 Stellarstructureequations7

F re e fa ll (= d y n a m ic a l) ti m e s c a le

Defineamassshellofmass

dm

initiallyatrest at

r

0enclosingamass

m

0.Thegravitational energyisconvertedintokineticenergy:

E

kin

= E

G 1 2

dm v

2

=

1 2

dm ˙ r

2

= G m

0

r dm

G m

0

r

0

dm

1 2dm///////////////////

˙ r

2

= G m

0

r

dm///////////////////−

G m

0

r

0dm/////////////////// ⇒

˙ r =

−s 2

G m

0

r

G m

0

r

0

(3)

2–9 Stellarstructureequations8

F re e fa ll (= d y n a m ic a l) ti m e s c a le

Nowwelookatthevelocityoftheshellat

r

assumingthatitstarteditsfallat

r

0

=

∞.Wecanassume

m = m

0.

˙ r =

−v u u u t2 

G m

0

r

−Gm0//////////////////////////// r0/////////// 

=

−r 2

G m r

Note:thisistheescapevelocity.

t

ff

= r ˙ r = r

q 2Gm r

=

r

r

3 2

G m

Orifwelookatcompletestars

t

ff

=

r

R

3 2

G M =

s 1 8 3

π G ρ w it h ρ = M

4 3

π R

3 2–10 Stellarstructureequations9

F re e fa ll (= d y n a m ic a l) ti m e s c a le t

ff

=

r

R

3 2

G M

ExampleSun:

R

=

698

,

900

km

,

M

=

1

.

989·1030

kg t

FF

=

1130

s

Redgiant

R =

200

R

:

t

FF

=

2003/2

t

FF

=

3

.

2·106

s =

37

d ay s

Whitedwarf

R =

10

,

000

km =

0

.

014

R

:

t

FF

=

0

.

0143/2

t

FF

=

1

.

9

s

Starsreactondeviationsfromthehydrodynamicalequilibriumonthedynamical timescale.Since

t

FF

t

evolforalmostallevolutionaryphases,itissufficientto assumehydrodynamicalequilibrium.

2–11 Stellarstructureequations10

C o lla p s e o f a n in te rs te lla r c lo u d

Considerthecollapseofaninterstellarcloud •gravitationalenergyisdissipatedintothermalen- ergy •butthecloudisopticallythintothermalradiation intheearlyphaseofthecollapse •⇒temperatureandpressureincreasenotvery much⇒approximatelyfreefall •inlaterphasesthecentralregionbecomesopti- callythick •⇒temperatureinthecentreincreasestoveryhigh values 2–12 Stellarstructureequations11

V ir ia l T h e o re m

HydrostaticEquilibrium:(Mr=m(r),massinsideradiusr)

dP dr =

G M

r

ρ r

2

dM

r

dr =

4

π r

2

ρ ∂ P ∂ M

r

=

G M

r 4

π r

4 Multiplicationwith4

π r

3 andintegration.Lefthandside: ZM 04

π r

3

∂ P ∂ M

r

dM

r

=

4

π r

3

P

M 0

ZM 012

π r

2∂r ∂Mr

P dM

r

=

0−ZM 012

π r

21 4πr2ρ

P dM

r

=

−ZM 03

P ρ dM

r

(4)

2–13 Stellarstructureequations12

V ir ia l T h e o re m

righthandside: −ZM 04

π r

3

G M

r 4

π r

4

dM

r

=

−ZM 0

G M

r

r dM

r Righthandside:Gravitationalpotentialenergy

dE

G=−GMr r.

E

Gincreases/decreases,asthestarexpands/contracts. 2–14 Stellarstructureequations13

V ir ia l T h e o re m

Lefthandside(assumingidealgas):

P ρ = R

g

µ T = ( c

p

c

v

) T = ( γ

−1

) c

v

T

cp,cv:specificheat(permass)

γ =

cp cv

=

5 3(monoatomicgas)

P ρ =

2 3

c

v

T =

2 3

u

u=cvT:internalenergy(permass) −ZM 03

P ρ dM

r

=

−ZM 02

u dM

r

=

−2

E

I EI:totalinternalenergyofthestar ⇒

E

G

=

−2

E

I istheconsequenceofhydrostaticequilibrium(foramonoatomic,idealgas.)

2–15 Stellarstructureequations14

V ir ia l T h e o re m

Totalenergy:

W = E

G

+ E

I

=

E

I

=

1 2

E

G

<

0 whenthestarslowlycontractsorexpands:

W

changesandthestarradiates energyaway. Energyconservation:dW dt

+ L =

0

L = dE

I

dt =

−1 2

dE

G

dt

idealgas:

L =

1 2

˙ E

G

= ˙ E

I Contraction:Halfofthefreedenergywillberadiated,theotherhalfwill beusedtoheatthestar(increasetheinternalenergy). 2–16 Stellarstructureequations15

K e lv in -H e lm h o lt z ti m e s c a le

VirialTheorem:

L

isofthesamemagnitudeas dEG dt and dEI dt Definition

τ

KH:

τ

KH

= E

G

L

E

I

L E

G

G M

r2

r

with

r =

1 2

R

and

M

r

=

1 2

M

E

G

G M

2 2

R

τ K H = G M

2 2

R L

(5)

2–17 Stellarstructureequations16

K e lv in -H e lm h o lt z ti m e s c a le

Sun:

L =

3

.

827·1033erg s ⇒τKH=1.6·107 years OnlyforafewmillionyearstheSuncansustainitsradiationenergylossby gravitationalenergy(contraction). ageoftheEarth(geology):4.5billionyears ⇒TheremustbeanothersourceofenergyfortheSun. 2–18 Stellarstructureequations17

S te lla r s tr u c tu re e q u a ti o n s

dm dr

=

4

π r

2

ρ ( r )

(1)massconservation dP dr

=

Gm(r)ρ(r) r2(2)hydrostaticequilibrium dL dr=4πr2 ǫ(r)(3)energyproduction dT dr=−3 4acκ(r)ρ(r) T3(r)L(r) 4πr2(a)radiative (4)energytransport dT dr=γad1 γadT PdP dr(b)convective +Evolutionofchemicalabundances Xi t=mi ρ P jrji−P krik i=1,...,I

2–19 Stellarstructureequations18

E q u a ti o n o f e n e rg y p ro d u c ti o n ℓ

=luminosityinsidetheradius

r dℓ

=luminosityproducedinshell

dℓ = dV ǫ =

4

π r

2

dr ǫ ǫ :

theenergygeneratedpervolumeand persecond

q :

theenergygeneratedpermassandper second

q dm = ǫ dV q

4

π r

2

ρ dr = ǫ

4

π r

2

dr q = ǫ/ ρ

centreofstar:

ℓ (

0

) =

0 surface:

ℓ ( R ) = L dℓ =

4

π r

2

dr ǫ

d dr

=

4

π r

2

ǫ =

4

π r

2

ρ q

2–20 Energytransport1

T ra n s p o rt o f E n e rg y : R a d ia ti o n

Afewestimates: Meanfreepathofaphoton:

l =

1

n σ σ :

atomicabsorptioncrosssection,

n :

particledensity Introducingtheabsorptioncrosssectionperunitmass

κ

.Units:

cm

2

g

1 .

l =

1

ρ κ

withthemassdensity

ρ

.

(6)

2–21 Energytransport2

T ra n s p o rt o f E n e rg y : R a d ia ti o n

Typicalvaluefor

κ

instellarmatter:

κ =

1

cm

2

g

1 . Lightscatteringatelectrons(Thomsonscattering)setsalowerlimitforionised matter.Valueforfullyionisedhydrogen:

κ =

0

.

4

cm

2

g

1 . MeandensityoftheSun:

ρ

= M

3 4

π R

3

=

1

.

4

g cm

3 TypicalmeanfreepathintheSun:

l <

1 0

.

4×1

.

4

cm

≈2

cm

⇒Propagationofphotonsintheinteriorofstarscanbetreatedas“randomwalk” withfrequentabsorptionsandre-emissions–analoguestodiffusionprocesses. 2–22 Energytransport3

T ra n s p o rt o f E n e rg y : R a d ia ti o n

TemperaturegradientwithintheSun:

∆ T ∆ R = T

core

T

surface

R

≈1

.

6·107

K

7·1010

cm

≈2·104

K cm

Temperaturechangeoverthemeanfreepathofaphoton:

∆ T = l

×

∆ T ∆ R =

2

cm

×2·104

K cm =

4·104

K

Veryminimaltemperaturedifference.(Local)radiationfield“sees”almost isothermallayer(exception→stellaratmosphere).

2–23 Energytransport4

A n a lo g y : T ra n s fe r o f H e a t b y R a n d o m M o ti o n s

Considerthetransferofenergyacrossan (imaginary)surface. •Ifthereisatemperaturegradient,thenpar- ticlescrossingfromabovewillhaveadiffer- entthermalenergy

u ( x )

,tothosebelow. •Assumethattheparticlesaremovingwith velocity

v

•Alsoassumethattheparticlestraveladis- tance

l

beforetheyinteract–

l

isthemean freepath •Andassumethatonaverage1

/

6ofthepar- ticlesinthegasaretravellingintheposi- tive/negative

x

direction Note:stricttreatmentgivesthesameresults 2–24 Energytransport5

A n a lo g y : T ra n s fe r o f H e a t b y R a n d o m M o ti o n s

Withtheseassumptionswecanwritetherateofenergytransfer(heatflux

j

) acrossthesurfaceas

j ( x ) =

1 6

v u ( x

l )

−1 6

v u ( x + l ) =

−1 3

v l du dx

Theenergygradientcanbere-written

du dx = du dT dT dx = C

V

dT dx

withtheheatcapacityforconstantvolume

C

V

=

du dT Therateofenergytransport(=fluxdensity)acrossthesurfaceisproportionalto thetemperaturegradient.

j ( x ) =

K dT dx w it h K =

1 3

v lC

V

K

isthecoefficientofthermalconductivity(ofthegas)

(7)

2–25 Energytransport6

E n e rg y T ra n s fe r o f b y R a n d o m M o ti o n s o f P h o to n s j ( x ) =

K dT dx w it h K =

1 3

v lC

V Photonsmovewiththespeedoflight(

v = c

).Assumingablackbodyradiation fieldtheenergydensityfollowfromtheStefan–Boltzmannlaw

u

rad

= a T

4

C

V

= du dT =

4

a T

3

a =

4

σ /c

istheradiationconstant.

j ( x )

isthe(radiative)energyflux

F

. Thustheequationofenergytransportbyphotonstakestheform

F ( x ) =

K

rad

dT dx w it h K

rad

=

4 3

c la T

3 Movetosphericalsymmetry

F ( r ) =

K

rad

dT dr

2–26 Energytransport7

E n e rg y T ra n s fe r o f b y R a n d o m M o ti o n s o f P h o to n s

Themeanfreepathofphotonsis

l =

1 ρκ.

K

rad

=

4 3

c la T

3

=

4

a c

3

ρ κ T

3 Inequilibriumtheflux4

π r

2

F

streamingthroughashellistheluminosity

producedinsidetheshell.

F ( r ) = ℓ

4

π r

2

=

K

rad

dT dr =

−4

a c

3

ρ κ T

3

dT dr

⇒dT dr

= −

3κρ 16πacℓ r2T3 Notethatthisequationcanalsobeappliedtoenergytransportbyheat conduction.(Unimportantinmosttypesofstars,butimportantinwhitedwarfs.)

2–27 Energytransport8

S te lla r s tr u c tu re e q u a ti o n s

dm dr

=

4

π r

2

ρ ( r )

(1)massconservation dP dr

=

Gm(r)ρ(r) r2(2)hydrostaticequilibrium dL dr

=

4

π r

2

ǫ ( r )

(3)energyproduction dT dr

=

3 4acκ(r)ρ(r) T3(r)(r) 4πr2(a)radiative (4)energytransport dT dr=γad1 γadT PdP dr(b)convective +Evolutionofchemicalabundances Xi t=mi ρ P jrji−P krik i=1,...,I 2–28 Energytransport9

E n e rg y T ra n s fe r b y C o n v e c ti o n

Granulation

Schematicviewoftheconvectioncells attheSun’ssurface Convectionisthetransportofheatbybulkmotionofgas.Pocketsofhotgasrise intoacoolerenvironmentandreleasetheirexcessenergy.Fallingpocketsmove intoawarmerenvironmentandreleasetheircoolergasthere.

(8)

2–29 Energytransport10

E n e rg y T ra n s fe r b y C o n v e c ti o n

Whenisthethermalstratificationstable/unstableagainstconvection? GedankenexperimentbyKarlSchwarzschild: •Considerapocketofgasat

r

whichrisesa smalldistance

δr

•Weassumethatthisisanadiabaticprocess, i.e. rapidadjustmentofpressure.Thegasbub- bleisinpressureequilibriumwithitsenvi- ronment Noexchangeofthermalenergybetween bubbleandenvironment. 2–30 Energytransport11

E n e rg y T ra n s fe r b y C o n v e c ti o n

Whenisthethermalstratificationstable/unstableagainstconvection? GedankenexperimentbyKarlSchwarzschild: •Iftherisingpocketafteradiabaticexpansion hashigherdensitythenthesurroundingen- vironmentitwillsinkback–thestratification isstableagainstconvection •Iftherisingpocketafteradiabaticexpansionis lessdensethenthesurroundingenvironment itwillcontinuerising–thestratificationisun- stable

2–31 Energytransport12

E n e rg y T ra n s fe r b y C o n v e c ti o n

Whenisthethermalstratificationstable/unstableagainstconvection? GedankenexperimentbyKarlSchwarzschild: •Initialvaluesinthepocketofgas:

P

1

,T

1

1(= environmentvaluesat

r

) •Valuesafterriseby

δr

:

P

2

= P

1

+ δP

,

T

2

= T

1

+ δT

,

ρ

2

= ρ

1

+ δρ

•Environmentalvaluesat

r + dr

:

P

2

= P

1

+ ∆ P

,

T

2

= T

1

+ ∆ T

,

ρ

2

= ρ

1

+ ∆ ρ

•Stable:

ρ

2

< ρ

2i.e.

∆ ρ < δρ

Unstable:

ρ

2

> ρ

2i.e.

∆ ρ > δρ

2–32 Energytransport13

E n e rg y T ra n s fe r b y C o n v e c ti o n

Firstlawofthermodynamics

dU = dQ

P dV dU

=Changeofinternalenergyofamasselement

dQ

=heataddedtothatelement

dW

=workbythatelementonitssurrounding

dW = pdV

;

V =

1

=thespecificvolume Idealgas:

P V = k µ m

H

ρ T = n R T dU =

3 2

k µ m

H

T =

3 2

n R T C

P

=

dQ dT Pspecificheatatconstantpressure

C

V

=

dQ dT Vspecificheatatconstantvolume

C

P

= C

V

+ n R

(9)

2–33 Energytransport14

E n e rg y T ra n s fe r b y C o n v e c ti o n

Adiabaticprocess:Noexchangeofheatwithsurrounding:

dQ =

0

dU =

P dV P dV + V dP = n R dT

idealgasequation

dU = C

V

dT

thatis

dT = dU C

V

pdV + V dP = n R C

V

P dV γ = C

P

C

V

γ dV V =

dP P

P V

γ

= K

P = K ρ

γ

γ :

adiabaticexponent,thefactor

K

dependsonthethermodynamicstate (entropy)ofthesystem–butisconstantunderadiabaticconditions. 2–34 Energytransport15

E n e rg y T ra n s fe r b y C o n v e c ti o n

Adiabaticexpansion

P = K ρ

γ

dP dρ = K γ ρ

γ1

= K γ ρ

γ

ρ = γ P ρ

dρ ρ =

1

γ dP P

Thusfortheadiabaticallyexpandinggasbubble

δρ ρ =

1

γ δP P

Ontheotherhandwehavetheidealgaslaw:

P = ρ µ m

amu

k T

dP dr = k µ m

amu

T dρ dr + ρ dT dr

2–35 Energytransport16

E n e rg y T ra n s fe r b y C o n v e c ti o n dP dr = k µ m

amu

T dρ dr + ρ dT dr

Multiplyby

∆ r

∆ P , ∆ ρ , ∆ T

anddivideby

P =

ρ µmamu

k T

gives

∆ P P = ∆ ρ ρ + ∆ T T

∆ ρ ρ = ∆ P P

∆ T T

Fortheadiabaticallyexpandinggasbubblewederived

δρ ρ =

1

γ δP P

Theconditionforthelayerbeingunstableagainstconvectionwas

∆ ρ > δρ

,i.e

∆ P P

∆ T T >

1

γ δP P

2–36 Energytransport17

E n e rg y T ra n s fe r b y C o n v e c ti o n ∆ P P

∆ T T >

1

γ δP P

Weareassumingpressureequilibriumbetweenbubbleandenvironment,i.e.

∆ P = δP ∆ T T <

1−1

γ δP P = γ

−1

γ

δP P

uselogarithmicderivatives: ⇒

P T dT dP < γ

−1

γ

dl n T dl n P <

γ

−1

γ

Notethatboth,temperatureandpressuregradient,arenegativeinastar. ⇒

dT dr

> γ

−1

γ

T P

dP dr

(10)

2–37 Energytransport18

E n e rg y T ra n s fe r b y C o n v e c ti o n

Schwarzschildcriterionforconvectivestability: ⇒∇

=

dlnT dlnP

<

γ1 γ ∇willbeusedasabbreviationforthelogarithmicgradientdlnT dlnPthroughoutthe restofthelecture. •Iftheactualtemperaturegradientissteeperthanthecriticalvalueonthe righthandside,thenthestratificationisunstableandconvectionwill dominatetheenergytransfer •Otherwisethestratificationisstableandenergytransferisradiative 2–38 Energytransport19

E n e rg y T ra n s fe r b y C o n v e c ti o n

Adiabaticindex

γ

isrelatedtothenumberofdegreesoffreedom(d.o.f.

s

)

γ =

1

+

s 2 s 2

=

1

+

2

s

Classicalone-atomicgashashas3d.o.f.⇒

γ =

5 3 Ifgascanalsoabsorbenergythroughinternald.o.f.(rotationandvibrationin molecules)orbyionisation,dissociation ⇒

γ

decreasesandcanapproachvaluesclosetoone ⇒criticaltemperaturegradientbecomessmall Energytransportbyconvectionisveryefficient.Thetemperaturegradientin convectiveregionsisclosetotheadiabaticone–verycloseininterior convectionzones.Lessgoodinoutersurfaceconvectionzone→treatmentwith mixinglengththeory(chapter10.4inCarroll&Ostlie).

2–39 Energytransport20

E n e rg y T ra n s fe r in th e S u n

•Thesolarcoreisstable,energy transportbyradiation •Surfaceconvectionzone(→gran- ulationatsurface) •Thesurfaceconvectionzoneof theSunandothercoolmainse- quencestarsisdrivenbyionisa- tion/recombination •Matteratthebottomofthezoneisfullyionised,neutralatthetop.Infusionof thermalenergyispartlyusedforionisation→

γ

decreasesbelow5/3→ criticalT-gradientbecomessmall •Inadditionopacity

κ

intheionisationzoneislarge→radiativegradientis steep 2–40 Energytransport21

S te lla r s tr u c tu re e q u a ti o n s

dm dr

=

4

π r

2

ρ ( r )

(1)massconservation dP dr

=

Gm(r)ρ(r) r2(2)hydrostaticequilibrium dL dr

=

4

π r

2

ǫ ( r )

(3)energyproduction dT dr

=

3 4acκ(r)ρ(r) T3(r)(r) 4πr2(a)radiative (4)energytransport dT dr

=

γad1 γadT PdP dr(b)convective +Evolutionofchemicalabundances Xi t=mi ρ P jrji−P krik i=1,...,I

(11)

2–41 Energytransport22

C o n v e c ti v e te m p e ra tu re g ra d ie n t

Howtofindthetruetemperaturegradient∇? Inrealitythereisbothconvectiveandradiativetransport. ∇ad

=

adiabaticgradient ViolationoftheSchwarzschildcriterion:∇

>

e;∇e

=

gradientinsidetheeddie onlysomefractionofenergyistransportedbyradiation:∇

<

rad;∇rad

=

gradientifradiativetransferonly ascendingeddy:becauseof∇

>

ethetemperatureexceedsthatofthe environment⇒additionalradiativecooling:∇e

>

ad ⇒∇rad

>

>

e

>

ad limitingcases:

F

conv

F

rad∇→∇rad

F

conv

F

rad∇→∇ad 2–42 Energytransport23

C o n v e c ti v e e n e rg y

Ascendingeddieshaveheatexcessw.r.t.thesurroundingwhichwillbereleased atsometime. Energyexcesspervolume:

ρ c

P

∆ T

.

∆ T

resultsfromthethedifferenceofthe temperaturegradients:

∆ T = dT dr

e

dT dr ∆ r

(A)

∆ r

distancetravelled

v

meanvelocityofeddyenergyflux:

F

conv

= ρ c

P

v ∆ T

(B) Tofind

v ∆ T

isaseriousproblem.Noselfconsistenttheoryisavailable! Simpleapproach:mixinglengththeory (Prandtl,Biermann,Vitense):Alleddiestravelacertaindistance

l

m,dissolveand releasetheirenergy. Howlargeis

l

m?

2–43 Energytransport24

M ix in g le n g th th e o ry

Thepressurescaleheight:

H

P

:=

P

dr dP Inhydrostaticequilibrium:dP dr

=

ρ g T = co n st

and

µ = co n st

gives:

p ( r ) = p ( r

0

) e

rr0 HP Examples: Earthatmosphere9km solaratmosphere180km whitedwarfatmosphere250m Mixinglengthapproach:

l

m

= α

m

H

P 2–44 Energytransport25

C h e m ic a l c o m p o s it io n

Thechemicalcompositiondirectlyinfluences

κ ,ǫ ,µ .. .

.Materialishighlyionised inthestellarinterior.

X

i:massfractionofelementi P i

X

i

=

1 numberfraction

n

i

X

i

=

mini ρ oftenonlythreecomponentsareconsidered:hydrogen,heliumand“metals”:

X := X

H

Y := X

He

Z :=

1−

X

Y

typicalvaluesfrominterstellarclouds:

X =

0

.

70

Y =

0

.

28

Z =

0

.

02 elementalcompositionischangedbynuclearreactions

X

i

= X

i

( M

r

,t )

(12)

2–45 Energytransport26

C h e m ic a l c o m p o s it io n C h a n g e s w it h ti m e

a)radiativeregions: Noexchangeofmaterialbetweenneighbouringshells.reactionrate

r

lm: Frequencyofanuclearreactiontoconvertanucleus

l

intoanucleus

m

. Manydifferentreactionsarepossibleforasinglechemicalelement

i

,both destructiveones(

r

ikandconstructiveones(

r

ji) ni t

=

P j

r

ji−P k

r

ik Xi t

=

mi ρhP j

r

ji−P k

r

iki energyproduction,

e

pq:Energypernucleusconverted:

ǫ =

P p,q

ǫ

pq

=

1 ρP p,q

r

pq

e

pq energyproductionpermassofanelement:

q

pq

=

epq mp

r

pq

= ρ

ǫpq epq

= ρ

ǫpq qpqmp 2–46 Energytransport27

C h e m ic a l c o m p o s it io n

Xi t

=

P jǫji qji−P kǫik qik e.g.hydrogenburning:H→He X t

=

ǫH qHY t

=

X t b)convectiveregions: convectiveregionsarealwayshomogeneous:Xi Mr

=

0 forastationaryconvectionzone: Xi t

=

1 m2m1Rm2 m1Xi t

dm

2–47 Energytransport28

C h e m ic a l C o m p o s it io n

Boundariesofaconvectionzonemaychange:

∂ X

i

∂ t =

1

m

2

m

1Zm2 m1

∂ X

i

∂ t dm + ∂ m

2

∂ t X

i2

X

i

∂ m

1

∂ t X

i1

X

i chemicalcompositionofaconvectionzonemaychangewithoutnuclearburning! 2–48 Stellarstructureequations1

S te lla r s tr u c tu re e q u a ti o n s

dm dr

=

4

π r

2

ρ ( r )

(1)massconservation dP dr

=

Gm(r)ρ(r) r2(2)hydrostaticequilibrium dL dr

=

4

π r

2

ǫ ( r )

(3)energyproduction dT dr

=

3 4acκ(r)ρ(r) T3(r)(r) 4πr2(a)radiative (4)energytransport dT dr

=

γad1 γadT PdP dr(b)convective Xi t

=

mi ρP j

r

ji−P k

r

ik

i =

1

,. .. ,I

(5)evolutionofabundances

Referenzen

ÄHNLICHE DOKUMENTE

Festivals 2006: Max Ophüls Preis Festival / Diagonale 06 / Philadelphia IFF / European Cinema Festival Lecce / EuroCine25 Brüssel Spectrum Junger Film Köln / Film Festival Zlin

[r]

[r]

Schlüsselwörter Psychopathologie, posttraumatische Belastungsstörung, Repertoriumssprache Keywords psychopathology, post-traumatic stress disorder, repertory language ZUSA M M E N FA

Arbeiten und trachtete auch George nicht zu nahe zu kommen Sie hatte nicht damit gerechnet, dass er ihr an einem nächsten freien Tag auflauerte, an dem sie vor hatte

Trager wird in Österreich speziell in der Hotelerie noch wenig praktiziert und bietet Ihnen somit einen sicheren Wettbewerbs- vorteil, eine neue sehr interessante Körper-

Dieser praktische Abreißblock hat auf jeder Seite ein kniffliges Kreuzworträtsel und jeweils auf der Rückseite die dazugehörige Lösung. Das Raten macht nicht nur viel Spaß,

T oten sondern lassen. D en n in diese beiden Gruppen strömen au^ der Arbeiterschaft die beweglichen E lem ente ab.. Auch dieser ist ein Rückgriff auf U rftadien