• Keine Ergebnisse gefunden

Virtual Process Design for Coupled Quasi-Static and Electromagnetic Forming

N/A
N/A
Protected

Academic year: 2021

Aktie "Virtual Process Design for Coupled Quasi-Static and Electromagnetic Forming"

Copied!
63
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Theoretische Elektrotechnik

0

Virtual  Process  Design  for  Coupled  Quasi-­‐

Static  and  Electromagnetic  Forming

Marco  Rozgic̀  and  Marcus  Stiemer  

(2)

Theoretische Elektrotechnik

0 Quasi-­‐Static  Forming

• Quasi-­‐static  forming  is  restricted  by  the  forming  limit  

• Forming  beyond  limit  is  possible  by  high  speed  forming

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Minor strain ϵ

2

Ma jo r st ra in ϵ

1

F~ F~

F~ F~

(3)

Theoretische Elektrotechnik

0

Electromagnetic  Impulse  Forming

• Electromagnetic  impulse  forming  with   pulsed  currents  (e.g.  30kA  within  10µs)   


→  magnetic  flux  between  tool  coil  and   workpiece:    1-­‐10  Tesla    

• Induced  current  results  in  Lorentz  forces 


 →  forming

(4)

Theoretische Elektrotechnik

0 Combined  Forming

0.4 0.2 0 0.2 0.4

0 0.2 0.4 0.6

Minor Strain [-]

M a jor S tr ai n [- ]

(5)

Theoretische Elektrotechnik

0 Combined  Forming

0.4 0.2 0 0.2 0.4

0 0.2 0.4 0.6

Minor Strain [-]

M a jor S tr ai n [- ]

• Combination  of  both  technologies  yields  forming   beyond  quasi  static  forming  limits

• Reduction  of  wear  by  tool  integration

• Forming  of  high-­‐strength  materials

(6)

Theoretische Elektrotechnik

0 Combined  Forming

0.4 0.2 0 0.2 0.4

0 0.2 0.4 0.6

Minor Strain [-]

M a jor S tr ai n [- ]

• Combination  of  both  technologies  yields  forming   beyond  quasi  static  forming  limits

• Reduction  of  wear  by  tool  integration

• Forming  of  high-­‐strength  materials

• Process  is  subject  to  many  parameters

• Only  careful  adjustments  of  involved  parameters   yield  good  results

• Economic  process  design  necessary  

(7)

Theoretische Elektrotechnik

0 Combined  Forming

0.4 0.2 0 0.2 0.4

0 0.2 0.4 0.6

Minor Strain [-]

M a jor S tr ai n [- ]

• Combination  of  both  technologies  yields  forming   beyond  quasi  static  forming  limits

• Reduction  of  wear  by  tool  integration

• Forming  of  high-­‐strength  materials

• Process  is  subject  to  many  parameters

• Only  careful  adjustments  of  involved  parameters   yield  good  results

• Economic  process  design  necessary  

➡   Virtual  process  design  to  overcome  drawbacks!

(8)

Theoretische Elektrotechnik

0 Virtual  Process  Design

(9)

Theoretische Elektrotechnik

0 Virtual  Process  Design

Enhancement  by   virtual  process  

design

(10)

Theoretische Elektrotechnik

0 Virtual  Process  Design

Enhancement  by   virtual  process  

design

Adjustment  of  

parameters  defining  the  

process

(11)

Theoretische Elektrotechnik

0 Virtual  Process  Design

Enhancement  by   virtual  process  

design

Adjustment  of  

parameters  defining  the   process

Tune  material  model  for  

good  simulaXon

(12)

Theoretische Elektrotechnik

0 Virtual  Process  Design

Enhancement  by   virtual  process  

design

Adjustment  of  

parameters  defining  the   process

MathemaXcal   opXmizaXon Tune  material  model  for  

good  simulaXon

(13)

Theoretische Elektrotechnik

0 Virtual  Process  Design

Enhancement  by   virtual  process  

design

Adjustment  of  

parameters  defining  the   process

MathemaXcal   opXmizaXon Tune  material  model  for  

good  simulaXon

(14)

Theoretische Elektrotechnik

0 Constitutive  Material  Model

(15)

Theoretische Elektrotechnik

0 Constitutive  Material  Model

Ingredients:

• Equations  for  second  order  Piola-­‐Kirchhoff  stress  tensor  S,  

backstress  tensor  X  and  stress-­‐like  tensors  Y ,  Y kin

(16)

Theoretische Elektrotechnik

0 Constitutive  Material  Model

Plastic  flow  rule

Ingredients:

• Equations  for  second  order  Piola-­‐Kirchhoff  stress  tensor  S,   backstress  tensor  X  and  stress-­‐like  tensors  Y ,  Y kin

• Plastic  flow  rule,  for  the  Cauchy-­‐Green  Tensor  C

(17)

Theoretische Elektrotechnik

0 Constitutive  Material  Model

Plastic  flow  rule

Kinematic  hardening

Ingredients:

• Equations  for  second  order  Piola-­‐Kirchhoff  stress  tensor  S,   backstress  tensor  X  and  stress-­‐like  tensors  Y ,  Y kin

• Plastic  flow  rule,  for  the  Cauchy-­‐Green  Tensor  C

(18)

Theoretische Elektrotechnik

0 Constitutive  Material  Model

Plastic  flow  rule

Kinematic  hardening

 Isotropic  hardening

Ingredients:

• Equations  for  second  order  Piola-­‐Kirchhoff  stress  tensor  S,   backstress  tensor  X  and  stress-­‐like  tensors  Y ,  Y kin

• Plastic  flow  rule,  for  the  Cauchy-­‐Green  Tensor  C

• Evolution  equations  for  kinematic  and  isotropic  hardening

(19)

Theoretische Elektrotechnik

0 Constitutive  Material  Model

Ingredients:

• Equations  for  second  order  Piola-­‐Kirchhoff  stress  tensor  S,   backstress  tensor  X  and  stress-­‐like  tensors  Y ,  Y kin

• Plastic  flow  rule,  for  the  Cauchy-­‐Green  Tensor  C

• Evolution  equations  for  kinematic  and  isotropic  hardening

• Yield  function  of  Hill-­‐type

(20)

Theoretische Elektrotechnik

0 Constitutive  Material  Model

Ingredients:

• Equations  for  second  order  Piola-­‐Kirchhoff  stress  tensor  S,   backstress  tensor  X  and  stress-­‐like  tensors  Y ,  Y kin

• Plastic  flow  rule,  for  the  Cauchy-­‐Green  Tensor  C

• Evolution  equations  for  kinematic  and  isotropic  hardening

• Yield  function  of  Hill-­‐type

• Rate  dependent  Perzyna  formulation  (high-­‐speed  part)

High-­‐speed  part

(21)

Theoretische Elektrotechnik

0 Constitutive  Material  Model

Ingredients:

• Equations  for  second  order  Piola-­‐Kirchhoff  stress  tensor  S,   backstress  tensor  X  and  stress-­‐like  tensors  Y ,  Y kin

• Plastic  flow  rule,  for  the  Cauchy-­‐Green  Tensor  C

• Evolution  equations  for  kinematic  and  isotropic  hardening

• Yield  function  of  Hill-­‐type

• Rate  dependent  Perzyna  formulation  (high-­‐speed  part)

• Kuhn-­‐Tucker  conditions  for  the  plastic  multipliers  (quasi-­‐static  part)

Quasi-­‐static  part

High-­‐speed  part

(22)

Theoretische Elektrotechnik

0 Constitutive  Material  Model

Ingredients:

• Equations  for  second  order  Piola-­‐Kirchhoff  stress  tensor  S,   backstress  tensor  X  and  stress-­‐like  tensors  Y ,  Y kin

• Plastic  flow  rule,  for  the  Cauchy-­‐Green  Tensor  C

• Evolution  equations  for  kinematic  and  isotropic  hardening

• Yield  function  of  Hill-­‐type

• Rate  dependent  Perzyna  formulation  (high-­‐speed  part)

• Kuhn-­‐Tucker  conditions  for  the  plastic  multipliers  (quasi-­‐static  part)

• Scalar  damage  variable  (Lamaitre  type)

(23)

Theoretische Elektrotechnik

0 Constitutive  Material  Model

Ingredients:

• Equations  for  second  order  Piola-­‐Kirchhoff  stress  tensor  S,   backstress  tensor  X  and  stress-­‐like  tensors  Y ,  Y kin

• Plastic  flow  rule,  for  the  Cauchy-­‐Green  Tensor  C

• Evolution  equations  for  kinematic  and  isotropic  hardening

• Yield  function  of  Hill-­‐type

• Rate  dependent  Perzyna  formulation  (high-­‐speed  part)

• Kuhn-­‐Tucker  conditions  for  the  plastic  multipliers  (quasi-­‐static  part)

• Scalar  damage  variable  (Lamaitre  type)

• Effective  stress  contributions

(24)

Theoretische Elektrotechnik

0

Parameter  of  the  Constitutive  Material  Model

• Isotropic  hardening  parameters  in  the  yield  function

(25)

Theoretische Elektrotechnik

0

Parameter  of  the  Constitutive  Material  Model

• Isotropic  hardening  parameters  in  the  yield  function

y

Q

true strain [-]

true stress [MP a]

(26)

Theoretische Elektrotechnik

0

Parameter  of  the  Constitutive  Material  Model

• Isotropic  hardening  parameters  in  the  yield  function

• Kinematic  hardening  parameters

(27)

Theoretische Elektrotechnik

0

Parameter  of  the  Constitutive  Material  Model

• Isotropic  hardening  parameters  in  the  yield  function

• Kinematic  hardening  parameters

(28)

Theoretische Elektrotechnik

0

Parameter  of  the  Constitutive  Material  Model

• Isotropic  hardening  parameters  in  the  yield  function

• Kinematic  hardening  parameters

• Damage  rate  and  threshold  parameters

(29)

Theoretische Elektrotechnik

0

Parameter  of  the  Constitutive  Material  Model

• Isotropic  hardening  parameters  in  the  yield  function

• Kinematic  hardening  parameters

• Damage  rate  and  threshold  parameters

0 100 200 300 400 500 600 700 800 900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Cauchy stress σ11 [MPa]

Logarithmic strain lnV11 [-]

Flow curves - dependence on s (k=1, pd=0)

s=0.01 s=0.1 s=1 s=10 s=100 undamaged s

0 100 200 300 400 500 600 700 800 900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Cauchy stress σ11 [MPa]

Logarithmic strain lnV11 [-]

Flow curves - dependence on k (s=1, pd=0)

k=0.01 k=0.1 k=1 k=10 k=100 undamaged

k

(30)

Theoretische Elektrotechnik

0

Parameter  of  the  Constitutive  Material  Model

• Isotropic  hardening  parameters  in  the  yield  function

• Kinematic  hardening  parameters

• Damage  rate  and  threshold  parameters

• Challenge:  Also  identify  the  elastic  modulus  E  of  the  material  under  consideration

(31)

Theoretische Elektrotechnik

0

Parameter  of  the  Constitutive  Material  Model

• Isotropic  hardening  parameters  in  the  yield  function

• Kinematic  hardening  parameters

• Damage  rate  and  threshold  parameters

• Challenge:  Also  identify  the  elastic  modulus  E  of  the  material  under  consideration

→End  up  with  a  total  of  9  parameters  to  be  identified

(32)

Theoretische Elektrotechnik

0

Identification  by  Non-­‐Linear  Optimization

• Parameters  are  identified  by  fitting  the  model  to  experimental  force-­‐displacement  curves

(33)

Theoretische Elektrotechnik

0

Identification  by  Non-­‐Linear  Optimization

• Parameters  are  identified  by  fitting  the  model  to  experimental  force-­‐displacement  curves

(34)

Theoretische Elektrotechnik

0

Identification  by  Non-­‐Linear  Optimization

• Parameters  are  identified  by  fitting  the  model  to  experimental  force-­‐displacement  curves

0.5 0 0.5 1 1.5 2 2.5

0 500 1,000

u x [mm]

f tot [N ]

0.5 0 0.5 1 1.5 2 2.5

0 500 1,000

u x [mm]

f tot [N ]

(35)

Theoretische Elektrotechnik

0

Identification  by  Non-­‐Linear  Optimization

• Parameters  are  identified  by  fitting  the  model  to  experimental  force-­‐displacement  curves

(36)

Theoretische Elektrotechnik

0

Identification  by  Non-­‐Linear  Optimization

• Parameters  are  identified  by  fitting  the  model  to  experimental  force-­‐displacement  curves

• Non-­‐linear  objective  function  to  identify  optimal  parameter  vector  p

F (p) = 1

2 (u N u 1 )

N X 1

i =1

(u i +1 u i ) h

f i sim +1 (p) f i exp +1 2 + f i sim (p) f i exp 2 i

(37)

Theoretische Elektrotechnik

0

Identification  by  Non-­‐Linear  Optimization

• Parameters  are  identified  by  fitting  the  model  to  experimental  force-­‐displacement  curves

• Non-­‐linear  objective  function  to  identify  optimal  parameter  vector  p

F (p) = 1

2 (u N u 1 )

N X 1

i =1

(u i +1 u i ) h

f i sim +1 (p) f i exp +1 2 + f i sim (p) f i exp 2 i Initial parameter set

Simulation of tensile test with LS-DYNA

Evaluate F (p) with ⇣

f sim, u ⌘ from simulation

Scripts that process the LS-

DYNA output

Optimal solution?

EXIT Choose new parameter set

Numerical derivatives LBFGS update

for Hessian approximation

IPOPT

n

y

(38)

Theoretische Elektrotechnik

0

Identification  by  Non-­‐Linear  Optimization

0.5 0 0.5 1 1.5 2 2.5

0 500 1,000

u

x

[mm]

f

tot

[N ]

Experimental Data Optimized Simulation

0.5 0 0.5 1 1.5 2 2.5

0 500 1,000

u

x

[mm]

f

tot

[N ]

Experimental Data Optimized Simulation After 3 iteration steps After 12 iteration steps

0 10 20 30 40

45 50 55

Iteration No.

p F [N ]

(39)

Theoretische Elektrotechnik

0 Validation  and  Verification

(40)

Theoretische Elektrotechnik

0 Validation  and  Verification

• Comparison  to  stress-­‐strain  curves  

(with  evolution  model  for  damage  

threshold)

(41)

Theoretische Elektrotechnik

0 Validation  and  Verification

• Comparison  to  stress-­‐strain  curves   (with  evolution  model  for  damage   threshold)

• Application  to  complex  situation  

(cup  drawing)

(42)

Theoretische Elektrotechnik

0

Combined  Deep  Drawing  of    a  Cup  

(43)

Theoretische Elektrotechnik

0

Combined  Deep  Drawing  of    a  Cup  

0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0

0.1 0.2 0.3 0.4 0.5

Minor Strain [-]

Ma jo r St ra in [- ]

(44)

Theoretische Elektrotechnik

0 Virtual  Process  Design

Enhancement  by   virtual  process  

design

Adjustment  of  

parameters  defining  the   process

MathemaXcal   opXmizaXon Tune  material  model  for  

good  simulaXon

(45)

Theoretische Elektrotechnik

0

Process  Optimization  in  Cup  Forming

(46)

Theoretische Elektrotechnik

0

Process  Optimization  in  Cup  Forming

• Only  the  first  half  wave  is  relevant  for  forming  

(47)

Theoretische Elektrotechnik

0

Process  Optimization  in  Cup  Forming

• Only  the  first  half  wave  is  relevant  for  forming  

→  Remaining  energy  absorbed  by  coils

• Try  novel  approach  to  reduce  wear  and  energy  consumption

(48)

Theoretische Elektrotechnik

0

Process  Optimization  in  Cup  Forming

• Only  the  first  half  wave  is  relevant  for  forming  

→  Remaining  energy  absorbed  by  coils

• Try  novel  approach  to  reduce  wear  and  energy  consumption

→  Double  exponential  pulse

0 0.4 0.8 1.2

· 10

2

0

0.5 1

· 10

4

Time t in [s]

I ( t )i n[ A ]

(49)

Theoretische Elektrotechnik

0

Process  Optimization  in  Cup  Forming

(50)

Theoretische Elektrotechnik

0

Process  Optimization  in  Cup  Forming

• Maximize  the  radius  at  bottom  edge  

(51)

Theoretische Elektrotechnik

0

Process  Optimization  in  Cup  Forming

• Maximize  the  radius  at  bottom  edge  

→  Maximize  the  first  principle  strain

0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0

0.1 0.2 0.3 0.4 0.5

Minor Strain [-]

Ma jo r St ra in [- ]

(52)

Theoretische Elektrotechnik

0

Process  Optimization  in  Cup  Forming

• Maximize  the  radius  at  bottom  edge  

→  Maximize  the  first  principle  strain

• No  damage  occurs

→  Constrain  the  damage  variable  in  all  elements

(53)

Theoretische Elektrotechnik

0

Process  Optimization  in  Cup  Forming

• Maximize  the  radius  at  bottom  edge  

→  Maximize  the  first  principle  strain

• No  damage  occurs

→  Constrain  the  damage  variable  in  all  elements

• Current  must  be  technically  reasonable  

→  Constrain  the  current  at  each  time  step  (i.e.  125  000  A)

(54)

Theoretische Elektrotechnik

0

Process  Optimization  in  Cup  Forming

• Maximize  the  radius  at  bottom  edge  

→  Maximize  the  first  principle  strain

• No  damage  occurs

→  Constrain  the  damage  variable  in  all  elements

• Current  must  be  technically  reasonable  

→  Constrain  the  current  at  each  time  step  (i.e.  125  000  A)

(55)

Theoretische Elektrotechnik

0 Results

1 1.01 1.02

· 10

2

0

1 2 3 4

· 10

4

Time t in [s]

Cu rr en t I ( t )i n[ A ]

Optimized Pulse

Starting Pulse

(56)

Theoretische Elektrotechnik

0 Conclusion  &  Outlook

(57)

Theoretische Elektrotechnik

0 Conclusion  &  Outlook

• Introduction  of  a  framework  for  virtual  process  design  in  the  context  of  combined  quasi-­‐static  

and  electromagnetic  impulse  forming,  featuring:

(58)

Theoretische Elektrotechnik

0 Conclusion  &  Outlook

• Introduction  of  a  framework  for  virtual  process  design  in  the  context  of  combined  quasi-­‐static   and  electromagnetic  impulse  forming,  featuring:

✓  Automatic  scheme  for  parameter  identification  in  material  models  based  on  experimental  data

(59)

Theoretische Elektrotechnik

0 Conclusion  &  Outlook

• Introduction  of  a  framework  for  virtual  process  design  in  the  context  of  combined  quasi-­‐static   and  electromagnetic  impulse  forming,  featuring:

✓  Automatic  scheme  for  parameter  identification  in  material  models  based  on  experimental  data

✓  Linearization  based  scheme  for  process  parameter  identification

(60)

Theoretische Elektrotechnik

0 Conclusion  &  Outlook

• Introduction  of  a  framework  for  virtual  process  design  in  the  context  of  combined  quasi-­‐static   and  electromagnetic  impulse  forming,  featuring:

✓  Automatic  scheme  for  parameter  identification  in  material  models  based  on  experimental  data

✓  Linearization  based  scheme  for  process  parameter  identification

• First  steps  have  been  taken,  but:

(61)

Theoretische Elektrotechnik

0 Conclusion  &  Outlook

• Introduction  of  a  framework  for  virtual  process  design  in  the  context  of  combined  quasi-­‐static   and  electromagnetic  impulse  forming,  featuring:

✓  Automatic  scheme  for  parameter  identification  in  material  models  based  on  experimental  data

✓  Linearization  based  scheme  for  process  parameter  identification

• First  steps  have  been  taken,  but:

➡  Verification  of  computed  process  parameters  by  experiments

(62)

Theoretische Elektrotechnik

0 Conclusion  &  Outlook

• Introduction  of  a  framework  for  virtual  process  design  in  the  context  of  combined  quasi-­‐static   and  electromagnetic  impulse  forming,  featuring:

✓  Automatic  scheme  for  parameter  identification  in  material  models  based  on  experimental  data

✓  Linearization  based  scheme  for  process  parameter  identification

• First  steps  have  been  taken,  but:

➡  Verification  of  computed  process  parameters  by  experiments

➡  Taking  into  account  more  process  parameters  at  the  same  time,  control  of  quasi-­‐static  part  and  

electromagnetic  part  simultaneously  

(63)

Theoretische Elektrotechnik

0

Special  thanks  to:

Theoretische Elektrotechnik

0

Institute  for  Materials  Research     (Leibnitz  University  Hannover)

Institute  for  Applied  Mechanics     (RWTH  Aachen)

Institute  for  Forming  Technology  and   Lightweight  Construction  

 (Dortmund  University  of  Technology)

Department  of  the  Theory  of  Electrical  Engineering  

(Helmut  Schmidt  University  Hamburg)

Referenzen

ÄHNLICHE DOKUMENTE

So far this is not an intensive topic of research for filter cakes created by smearing, because only the influence on fluid loss performance was evaluated and not the

Figure 3: Optimal sampler location for estimation of dispersion parameters for various travel times... Experiments with the prescribed number

We find that the relative error of the diffusion coefficient can be minimized by taking an optimum number of points into account for fitting the MSD curves, and that this optimum does

Intense fighting centred in Anbar Province cities of Fallujah and Ramadi increases the number of IDPs to 380,000..

In these circumstances, a shear displacement at the end of seismic excitation exceeding the critical level s 0 is regarded as a “catastrophic failure” (Trandafir and Sassa 2005a)

The first approach (parameter approach) computed six texture parameters from the curves, which were supposed to be representative of skin hardness, fruit deformation before

We have developed an overall model for a pilot-scale silicomanganese furnace that simultaneously considers electrical and thermal conditions, process chemistry, and flow of solid

However, if we require