• Keine Ergebnisse gefunden

boulder New types accumulations of in the hyper-arid Atacama Desert Geomorphology

N/A
N/A
Protected

Academic year: 2022

Aktie "boulder New types accumulations of in the hyper-arid Atacama Desert Geomorphology"

Copied!
8
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ContentslistsavailableatScienceDirect

Geomorphology

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / g e o m o r p h

New types of boulder accumulations in the hyper-arid Atacama Desert

Christof Sager

a,∗

, Alessandro Airo

a

, Felix L. Arens

a

, Carolin Rabethge

b

, Dirk Schulze-Makuch

a,c,d,e

aZentrumfürAstronomieandAstrophysik,TechnischeUniversitätBerlin,Germany

bInstituteofGeologicalSciences,FreieUniversitätBerlin,Germany

cLeibniz-InstituteofFreshwaterEcologyandInlandFisheries(IGB),DepartmentofExperimentalLimnology,Stechlin,Germany

dGFZGermanResearchCentreforGeoscience,SectionGeomicrobiology,Potsdam,Germany

eSchooloftheEnvironment,WashingtonStateUniversity,Pullman,Washington,USA

a r t i c l e i n f o

Articlehistory:

Received30April2019

Receivedinrevisedform7October2019 Accepted7October2019

Availableonline28October2019

Keywords:

Hyper-aridAtacamaDesert Boulder

Seismic Mars

a b s t r a c t

Theaccumulationofthousandsofboulder-sizedclastsintoboulderfieldsintheAtacamaDeserthas beenlinkedtoseismic-drivendownslopetransport,araresedimentaryprocesscorroboratedbythis study.WesurveyedboulderarrangementsoccurringintheAtacamaDesertandidentifiedthreeaccu- mulationtypesforfurtherinvestigation:asmallcircularbouldercluster(BC),alongchannelizedboulder stream(BS),andawideconvex-shapedboulderfield(BF).Drone-basedphotogrammetrictechniques andfieldobservationswereusedtogeneratehigh-qualitydigitalelevationmodelsandorthophotosto determinebouldercount,size,coverage,orientation,lithologyandlocaltopography.Ourdatashows thatthearrangementofboulderaccumulationscorrespondswiththeshapeoftheaccommodationspace andtheboulderinput,whereBCsoccuratthecenterofcompletelyconfinedtopographicdepressions, BSsoccuralonglaterallyconfinedandincisedhillslopeswithbouldersstackedaboveeachother,and BFsoccuronlargelyunconfinedshallowandlow-reliefslopeswithadistinctboulderfront.Ageneral downslopeincreaseofaveragebouldersizeandcoveragewasmeasuredinallboulderaccumulationsand along-axisorientationofbouldersparalleltothetransportdirectionwasobservedfortheBS.Basedon theseresultsandthelackoffluvialtransportindicators,weconcludethattransportandarrangementof boulderaccumulationsarelargelycontrolledbytheinterplayoftopographyandseismic-drivenboulder transport,resultinginuniquelandscapefeaturespresentinthehyper-aridAtacamaDesert.Suchsedi- mentarytransportprocessesarerareonEarthbutpotentiallyplayagreaterroleonotheraridplanetary surfacesthatarecoveredbybouldersandsubjecttosufficientseismicactivity.

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Terrestrialboulderaccumulationsareknowntoformbymul- tipleprocessessuchasweatheringandfrostwedgingofbedrock forming autochthonous blockfields (Ballantyne, 2010), tsunami events(Maoucheetal.,2009;Biolchietal.,2016;Coxetal.,2018), largelandslides(Dai etal., 2018)or throughglacier movement (Rose, 1992). Extraterrestrial boulder accumulations have been observedonthehyper-aridandcoldMars,however,theirforma- tionprocesses,suchasbouldersortingalongthermalcontraction crackpolygons,remain highlydebated(Orloffetal., 2013).The little-studiedboulder accumulations in the hyper-arid Atacama Desert, are located in one of the driest and oldest deserts on

Correspondingauthor.

E-mailaddress:christof.sager@tu-berlin.de(C.Sager).

Earth (Quade et al.,2012; Matmon et al., 2015). Besidesinfre- quentrainfall,thehighabundancesofraresalts(e.g.,nitratesand perchlorates)andthehighseismicactivitybelongtothedesert’s characteristicfeatures.Previousworkhasshownthatlargeseis- miceventstriggerthedownslopetransportoflargeclastsaround theElBuitreareaandtheYungayarea(SocompaRoad)intheAta- camaDesert,alsoeffectingthelandscapeevolution,withregardsto bedrockweatheringanderosion(Quadeetal.,2012;Matmonetal., 2015).Granitoidbouldersemergeasresistantcorestonesfromthe bedrock oncrests or hillslopesand slide or bouncedownslope throughdiscretemovementeventsduringseismicshaking.Boul- dersaccumulateandbundleintheplainsandatthefootofthehills, formingfrequentlydistinctpolishedmidsectionsbymutualrub- bingduringseismicevents.Apartfromseismicrubbing,boulders seemtoexperienceonlyminorerosion,makingthemlong-exposed surfacefeatures,whichissupportedbyindividualboulderexpo- sureagesof>12Ma(Matmonetal.,2015).Previousstudiesalso

https://doi.org/10.1016/j.geomorph.2019.106897

0169-555X/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/

4.0/).

(2)

consideredaeolian,fluvial,glacialandsaltheaveprocessesbeing responsiblefor boulder movement and polishing (Quadeet al., 2012).However,wind asatransport mechanismwasexcluded, sincegustingwindsofatleast100–170m/sarenecessarytomove bouldersweighing0.5–0.8tons(Quadeetal.,2012).Takenintocon- siderationthescarcityofsurface water,thedesert’s millionsof yearsexistenceandboulderpolishingbeingrestrictedtotheirmid- sections,fluvialorglacialtransportappearsunlikely.Althoughsalt heaveasabouldertransportmechanismcannotbeexcluded,the occurrenceofsmoothandunbrokensoilsurfacesbetweenboulders contradictsactivesalterosion(Quadeetal.,2012).Weherepresent acharacterizationofavarietyofboulderaccumulationtypesinthe Yungayarea,∼90kmsouthwestoftheElBuitrearea,advancingour understandingoftheirformationprocesses,inthecontextofthe localtopographyandthus,landscapeevolutioninthehyper-arid AtacamaDesert.

2. Regionalsetting

Thestudysiteselectionwasprecededbyfieldreconnaissance andsatelliteimagerysurveyofboulderaccumulationsinthenorth- ernmountainsoftheYungayarea,∼60kmsoutheastofAntofagasta (Fig.1).TheYungayareareceiveslessthan1mm/yrprecipitation (Rundeletal.,1991;McKayetal.,2003),resultinginerosionrates thatareclosetozeroandbouldershavingexposureagesofmultiple millionsofyears(Placzeketal.,2014).Weidentifiedthreedistinct typesofboulderaccumulationsasstudysites:multiplesmallcircu- larboulderclusters(BCs),alongchannelizedboulderstream(BS), andabroadconvex-shapedboulderfield(BF).Amongtherangeof

boulderaccumulationmorphologiesobservedintheYungayarea, wechoseforthisstudythoseexamplesthatbestexemplifyapartic- ularmorphology,althoughadditionalboulderaccumulationtypes couldbedefined.Theareaischaracterizedbysmoothroundedhills withlocallyoutcroppingquartzmonzodioriticbedrock,intersected bypartlyexposeddioriticdikes,aswellasadjoiningalluvialfans passingoverintothevalleyfloors.Smallrillsandgulliesarevis- ibleonhillslopes,indicatingminimalsurfacerunoff.Theregion lacksvascularplantsbutiscoveredbyvarnishedpebbles,cobbles and boulders.Adenseand coherentdesertpavement islargely absent.Playasandsalarsdevelopedinthelowestpartsofthevalley containingfine-grainedsedimentsandsalts.

3. Methods

For depicting morphologic characteristics of five boulder accumulations (three BCs, BF and BS) we used the“Structure- from-Motion” photogrammetry technique to reconstruct the 3D-geometryofaterrainusingmatchingfeaturesonoverlapping drone-basedaerial2D-images(Westobyetal.,2012).Lowaltitude images(3–60mabovegroundlevel)wereacquiredusingthecam- eraofaDJIPhantom4withadown-facingcameraorientation(pitch 0)andparallelflightpathsfortheBFandtheBS,whileBCswere mappedin 360 flight patharound theobject withaninclined camera(pitch∼50).ForscalingtheBC1andtheBFcodedmark- erswereevenlydistributed withinthestudysite.Thedistances andrelativeheightdifferencesbetweenthemarkersweremea- suredusingalaserrangefinderwithlevelingfunctionmountedon atripod. Besidesthemarkers thatfunctionasscalebars for3D

Fig.1.Geomorphiclocationmapofthestudysites.TheyellowdotandframeoutlinethesurveyedareainwhichtheinvestigatedBC(bluedot),BF(reddot),BS(greendot) arelocated,includingtheadditionalBCs(lightbluedots)thatwereobserved.LocationmapisbasedonAsterdigitalelevationmodel(DEM)fromU.S.GeologicalSurveyand satelliteimagefromBingmaps,2019Microsoft.

(3)

reconstruction,uptosix1mplastictubeshavebeenlaidoutfor theBC1andtheBFtransectascheckscalebars.TheBSandthe twoadditionalBCswerescaledbasedoncamerapositionsandno markerswereused.AgisoftMetashapewasusedforphotogrammet- ricreconstructionsand3D-spatialdatageneration(Agisoft,2019).

Atotalofseven3Dmodelsweregenerated.Onemodelwascre- atedforeach,theBC1andtheBS.FortheBF,threemodelswere generated,oneoverviewlarge-scalemodel,whiletheboulderfront andthetransectwerereconstructedatsmallerscales.Modelsfor twoadditionalBCs(BC10andBC11)weregenerated.Processing reportsoftherespective3Dmodels,containingrelevantparam- eters(numberof photos,resolutionsoforthophotosandDEMs) anderrors(e.g.,reprojectionerror)areavailableasSupplementary Data(seeSupplementarymaterial#2a-#2g).Inordertoconvert themeasuredrelativeheightdifferencesbetweenthemarkersinto absoluteheightsfortherespective3Dmodels,theestimatedele- vationofonemarkerwasdefinedtobecorrectandthemeasured heightdifferencesinthefield werethensubtractedoraddedto theremainingmarkersand thereby,improve thetiltandverti- calaccuracyofthemodel.Thealtitudeestimationisbasedonthe drone’sGPScoordinates,storedintheimagedataduringflightor inahandheldGPSdevicefortheBS.High-resolutiondigitalele- vationmodels(DEMs)andgeometricallycorrectedaerialimages (orthophotos)of theBCs, theBFand theBS weregenerated in AgisoftMetashape.The1mlongcheckscalebarsshowedlengths rangingfrom99 to101cmintherespectiveorthophotosofthe BC1andtheBFtransect.Theorthophotosexportedas.tiffileswere mappedbyhandinAdobePhotoshopCS5.1.Thereby,theentire visibleboulderareaintheorthographicviewwasmapped,which oftencontrastsdarkfromthebrightground.TheGISapplication QGISwasusedtocreatemapsinwhichtheDEMsandorthopho- tosaredisplayed(QGISDevelopmentTeam,2019).Hand-mapped orthophotoswereconverted tobinaryimagesofsimilarresolu- tionwiththeimageanalysissoftwareFIJIandbouldersize,count andcoverageweremeasuredwiththeBiovoxxelplugin(Schindelin etal.,2012;Brocher,2015).Theorientationwasmeasuredusing theEllipseSplitplugin,whichappliesafittingellipsetoeachpar- ticleandmeasuresitslong-axisorientation(WagnerandEglinger, 2017).Theorientationofboulderswithanaspectratiolargerthan 1.2wasplottedwithGeoRose(YongTechnologyInc.,2014).Detailed investigationswerecarriedoutfortheshownBC1,twoadditional BCsandmultiplesubareasoftheBFaswellastheBS.Onlyclasts withavisiblesurfacearealargerthan0.067m2(correspondingto a26×26cmsquare)wereconsideredforboulderanalysis.Boul- dercoverageisdefinedasthepercentageofboulderscoveringa certainsurfacearea.Bouldercountreferstothenumberofboul- derswithinaspecifiedarea.Forcoverageanalysis,theBCswere dividedintothreeconcentricringswiththeircenterbeingbasedon thepixel-weightedcenterofmassofthemappedorthophoto.The BC11wasdividedintofourrings.Boulderslocatedwithintworings wereassignedtotheringcontainingthelargerfractionoftheboul- dersurfacearea.A180×15mtransectoftheBFwasdividedinto 12subareas(15×15m)andtwoadditionalsub-areasweredefined forboulderorientationalongtheboulderfront,whilefivesubar- eas(15×15m)alongtheBSweredefinedforanalysis.Forboulder size,countandorientationanalysis,boulderslocatedwithintwo subareaswereassignedtotheringor15×15msquarecontain- ingthelargerfractionofthebouldersurfaceresultinginadjusted ringsandadjusted15×15msubareas(Fig.2a,b).Toestimatethe averageelevationofasamplingarea,theaverageofthefourcorner pointsofasamplingareafortheBSandBFwasused.Theelevation estimationfortheBC1isbasedontheheightofthreepointslocated onboulderfreeareainthemiddleofthethreerings.Ahandmap- pingerroroffourpixelswasassumedfortheBCsandBF,aswellas 2pixelsfortheBS.Therebyeachparticlewasdilatedanderodedby oneortwopixels.Themeasurementsforbouldersize,medianand

Fig.2. Mappingmethodology.a)BinaryimageoftheBC1dividedintoconcentric rings(blue)andadjustedrings(red)(A-outer,B-middle,C-innerring).b)TheBF andtheBSweredividedinto15×15msubareas(blue)forcoverageanalysisand adjustedsubareas(red)forgrainsizeandorientationanalysis.

coveragewererepeatedandsubtractedfromtheoriginalvaluesto calculatetheerrorbarsincludedintheresults.

4. Results

Boulderslocatedwithinthestudyareaeitheroriginatefrom quartz monzodioriticbedrockorintersecting dioritic dikesout- croppingonslopesandhillcrests.Whilethequartzmonzodioritic bedrockcommonlyemergesasonion-weatheredsub-roundcore- stones, the dioritic dikes frequently protrude up to one meter abovethesoilsurfaceasangularblocks(Fig.3a,b).Outcropping rocksareintenselycoatedbydesertvarnishbutlackrubbingsur- faces(Fig.3a,b).Asageneraldownslopetrendforallinvestigated boulderaccumulationswemeasuredanincreaseofbouldercov- erageandaveragesizewhilethebouldershapesbecomeoverall moreroundedandsmoothened;frequentlyshowingmultiplegen- erationsofrubbingsurfacesalong theirmidsections(Fig.4and Supplementarymaterial#1).Similartothedownslopeincreaseof theaveragesize,thebouldermediansizeincreasesaswelldueto areductionofthesmallestbouldersandanincreaseoftherela- tiveamountofthelargestboulders.Additionally,incontrasttothe moreerosionresistantdiorites,thequartzmonzodioritesweather readilyintogrus.Withincreasingbouldercoveragethetopfewcen- timetersofsoilbecomedominatedbyloosesilttocoarsesandin whichthebouldersareembedded(Fig.3c,d).Wherebouldercov- erageislow(<4%),thesurfacesoilsurroundingscatteredboulders isidenticaltoboulder-freeareas.However,noneofthesurveyed boulders,rangingfromtheirsourcetotheboulderaccumulations, wereobservedtobeburiedandaregenerallyonlysubmergeda fewcentimeterswithinthesurfacesoil.Besidesoccasionalsmall rillsand gullies onhillslopes,nofurtherindications for fluvial transport,suchasrecentlyactiveriverbeds,scourmarksaround boulders,norboulderimbricationhavebeenobserved.Allthree studiedboulderaccumulationshaveshapesthatcorrespondtothe topographyoftheiraccommodationspace(Fig.5andSupplemen- tary material#1). The circular BC1,containing 125bouldersof mainlydioriticlithology,islocatedat∼1208melevationaround thecenterofaveryshallowbowl-shapedandcirculardepression withaslopeof∼0.9and∼12mindiameter(Fig.5a).Whileonly fewbouldersenterthisfullyconfinedaccommodationspacedue tothesmallcatchmentarea, theboulder coverageand average sizeincreaseabruptlytowardsthecenterofthedepressionreach- ing71.8%(Fig.4a).Thesedenselypackedbouldersshowmultiple extensivemidsectionrubbing-surfacesand frequentboulder-to- bouldercontactswithseveralbouldersthatimprintedthemselves intoeachother.ApreferredorientationofboulderswithinBC1is notobserved(Fig.5a’).Theloosegruslayerisbeddedhorizontally andpebble-to-cobble-sizedclastsarelargelyabsentbetweenthe

(4)

Fig.3.Photographsofboulderaccumulationsinthestudysites.a)AngulardioriticbouldersoriginatingupslopeoftheBC1fromanoutcroppingdioriticdike.b)Corestones weatheringoutofthequartzmonzodioriticbedrock.c)RoundedandpolishedbouldermidsectionsoftheBC1withgrusbetweenthem.d)Theconvex-shapedboulderfront oftheBFwiththevisiblegruslayerpresentbetweenbouldersbeingabsentoutsidetheboulderfront.e)StackedbouldersintheBSshowingrubbingsurfacesonallsides.

Fig.4. Boulderaccumulationdownslopetrendsshowingbouldercount,transectdistance,coverage(blue),averagesize(black),mediansize(grey)andelevation(yellow, thelowestelevationintheDepressionofBC1wassetto0mm).a)ThedownslopetrendofBC1.b)ThedownslopetrendofBS.c)ThedownslopetrendofBFwiththeboulder fieldmarginat150m(dottedline).

(5)

Fig.5.Boulderaccumulationsareshownincombinedcolor-codedDEMandorthophotoviewwithlabeledcontourlines(black).SubareasoftheBFandBS(blackframes) correspondtothelabeledrosediagrams.Thebouldersourceareasarenotwithinthedepictedarea,however,thedirectiontomainsourceareasandthetransportpathsare showninyellow.a)TheBC1islocatedwithinafullyconfinedtopographicdepressionat∼1208melevation,butthelowestpointoftheDEMissetto0mb)TheBFislocated onanunconfinedlow-reliefslope.Thetransect(largedottedframe)is180mlong.c)TheBSislocatedwithinaconfinedmorphologyofadryriverbed.a’)b’)c’)Rosediagrams showingboulderorientationindicatedbyblackbars(N=north).Alargerbarradiuscorrespondstoahighernumberofbouldersorientatedintherespectivedirection.The whitenumbershowstheamountofsurveyedboulders.

boulders(Fig.3c).TheBF,containingtensofthousandsofboul- ders,originatingupslopefromextensiveoutcropsandterminating sharplywithaconvex-shapedfront,islocatedonanorthwest-to- southeastorientedlowgradientslopeof∼2.0withnodownslope topographicconfinement(Fig.5b).WhereastheBFdescribedin thisstudyexhibitsahighlydistinctfront(Fig.3d),otherBFsinthe Yungayareawereobservedtoshowarangeofmorphologies,upto highlydefuseboulderfrontsgradingintoscatteredboulderfields.

Thebouldercoveragealonga15×180mtransectshowsadowns- lopeincreasefrom8.9to31.0%anddroppingto1.6%beyondthe

boulderfront(Fig.4c).TheDEMshowsthattheBFislocatedona lowreliefmorphologywhiletheslopedecreasesto∼0.45atthe boulderfront.AlthoughtheBFislocatedonalargelyflatterrain,the centeroftheconvexboulderfrontwhichismostadvanceddownhill isslightlylowered(areabetweensubarea1and3inFig.5b)inrela- tiontothemarginalareasoftheboulderfront.Thus,theboulders thataremostadvancedarecurrentlyatthelowestpointwithinthe occupiedmigrationpath.Fewbouldersareindirectcontactwith eachotherandrubbingsurfacesarelessfrequentandobservedto bemorevarnishedcomparedtothoseinBCs.Elongatedbouldersof

(6)

thesubareas1and4showapreferredorientation,notobservedat subareas2and3(Fig.5b’).TheBS,containingthousandsofboulders, islocatedonawest-to-eastorientedslope,incisedbyanapparently inactivefluvialchannelwithaslopeof∼1.0inwhichthemajority ofbouldershaveaccumulated(Fig.5c).Theextensivesourcearea ofboulderstotheeastandnortheastcausingahighboulderinput incombinationwiththelaterallyconfinedaccommodationspace withchannelslopesgreaterthan5.0resultsinveryhighcoverage alongtheformerthalwegexceeding100%forsomesubareaswith bouldersbeingstackedontopofeachother(Fig.4b).Onlyboulders intheBSshowpolishedrubbingsurfacesonallsides,especially thosethatarestacked (Fig.3e).Boulderslocatedinthethalweg showaclearorientationoftheirlong-axisparalleltothethalweg (Fig.5c’).

5. Discussionandconclusion

Ourfieldobservationsandmeasurementsshownoindication for fluvially-driven boulder movement, supporting a seismic- drivendownslopetransportmechanismasproposedbyQuadeetal.

(2012);Matmonetal.(2012,2015).Besidesthelackofscourmarks aroundbouldersortheirimbrication,noneofthethousandsoflarge bouldersobserved wereeven partially submerged aswould be expectedforfluvialtransport,whereasseismic-inducedparticle- size segregationwould prevent boulder burial, as knownfrom kineticsievingmodelswherelargerparticlesareleveledupwards (Rosatoetal.,1987).Thecorrelationbetweentheincreaseofmid- sectionrubbingsurfacesandbouldercoveragesupportsaseismic shakingmechanisminwhichthebouldersrotatehorizontallyand shakelaterallywithoutrolling,asitwouldbeotherwisethecase for fluvialbed-load transport. Furthermore,thedownslope ori- entationoftheboulderlong-axissupports asliding mechanism andnotadownhillrollingmechanismwheretheboulder’slong- axiswouldbeexpectedtolargelyhaveaperpendicularorientation (Fig.5c’).Thesefindingsareinaccordancewithinsituexposuredat- ingresultsfromindividualbouldersoftheYungayarea(Socompa Road)andtheElBuitreboulderfieldindicatingnoboulderturnover formillionsofyears(Matmonetal.,2015).Furthermore,thedowns- lopeincreaseintheaverageboulderssizeandcoveragecorroborate previousfindingsbyQuadeetal.(2012),whichsuggestedthatthis trendisduetolargergranodioriticbouldersundergoingonlyminor erosionduringseismic-driventransport,whilethesmallergran- odioriticbouldersdisintegratedue tocollisionalspallationwith thelargerbouldersintogrus (Fig.4).We observesimilarboul- derdegradationforthequartzmonzodioriticboulderswhereaswe foundlittletonoindicationforthiserosionprocessforthedioritic boulders.Althoughwecannotexcludesuchaspallation-induced grain-sizesortingmechanism for thedioriticboulders, wepro- pose,that,inversetofluvialtransportbutanalogoustodrygrain flowincolluvialfans,largerboulderadvancemorerapidlydowns- lopeduringseismic-driventransport (Blikra and Nemec,1998).

Basedonourresultsweconcludethatthedownslopetransport pathsand theshape of boulder accumulations is controlledby thetopographyoftheaccommodationspace,wherecircularBCs occuratthecenteroffully-confinedtopographicdepressions,BSs occuralongincisedhillslopeswithlateralconfinement,andBFs occuronlargelyunconfinedlow-reliefslopes(Fig.5).Inaddition totheaccommodationspace,thedegreeofboulderinputcontrols theextentoftheboulderaccumulationanditsbouldercoverage, sincealargenumberofbouldersislikelytoresultinhighercov- erageandalargerextentthanasmallnumberofboulderswithin aparticularaccommodationspace,suchasanincisedhillslope.

IncontrasttomostotherBFsweobservedinthearea,whichlack

adiscretefrontandtransitioningintoscatteredboulderfieldsof lowercoverage,theBFinvestigatedhereexhibitsa sharpfront, whichweproposetooriginatefromthehighboulderinputand theslopereduction resultingina reduced downslopetransport andthusboulderdamming.Theconvexshapeofthefrontpresum- ablyresultsfromtheslightlylowerelevationatthecenterofthe boulderfront.Althoughweobserveadammingofboulders,their coveragedoesnotexceed27%,whichcouldbelimitedbyboul- dercollision-induceddispersionduringearthquakeevents(Fig.4c).

Sucha collision-driventransportofboulderscouldresultinthe migrationofbouldersintohorizontalterrainifacontinuousinflux ofupslopebouldersisprovided.If,however,theboulderinputis highandtheaccommodationspaceislaterallyconfined,asthecase fortheBS,boulder coveragecanevenexceed100% resultingin stackedboulders(Figs.3e,4b).Duringseismiceventsthesestacked bouldersweighingseveraltonsareassumedtorotate,whichisindi- catedbyextensiverubbingsurfacesoccurringonallsides(Fig.3e).

TheherenewlydescribedBCsshowintheircenterbouldercov- eragesexceeding50% (Fig.4a and Supplementarymaterial#1).

Weinterpretthishighcoveragetoresultfromtheirfullyconfined topography,whileboulderstackingdoesnotoccurduetotheshal- lowslope.IncontrasttotheBFandBS,whichweassumetostill propagatedownslopeandchangetheirshape,wesuggesttheBCsto bemorestableinshapeandpositionsincetheyarealreadylocated atthelowestpointofacirculardepression.Anincreasedboulder inputtotheBC1wouldpresumablyresultinahigherbouldercov- erage,butonlyinaminorBC-sizeincrease,becauseanongoing increaseinsizewouldentailbouldersbeingtransportedfurther downslopeatthesouth-easternmarginofthedepression,where onlyashallowtopographicbarrierislocated.Thisiscorroborated bytheobservationofpolishedboulderslocatedfurtherdownslope oftheBC1.Boulderaccumulationswiththeirrelativelylowtrans- portrates,locatedinahyper-aridenvironmentrepresentarare settingonEarth,whileatvariouslocationsonMarsnumerousboul- deraccumulationshavebeendiscovered(e.g.,Grantetal.,2006;

Levyetal.,2008;Küppersetal.,2014).Multipleformationscenarios havebeenproposedfor thedifferenttypesof boulderaccumu- lationsfoundonMars,suchas(1)‘Boulderhalos’beingcircular boulderarrangementsthatareassumedtobecreatedbyimpact ejecta(Levyetal.,2018),(2)‘Rubblepiles’thatareregularlyspaced boulderaccumulations(20–35m)sittingonlocalhighgroundsfor whichtheirformationhasbeenlinkedtothermalcontractionand rocksortingonpolygonatedgrounds(Mellonetal.,2008),or(3)

‘Boulderclustering’alongpolygonmargins,whichhasbeenpro- posedtoresult froma boulder transport mechanism drivenby seasonalCO2frostformationandsublimationcycles(Orloffetal., 2013).SomeboulderfieldsonMarsshowmorphologicalsimilar- itiestotheherestudiedBF,suchasthedistincttransitionfrom thedenselycoveredterraintothesmoothterrain lackingboul- ders(Fig.6).However,fornoneoftheboulderaccumulationson Marsatopography-controlledandseismic-drivenformationmech- anismhasbeenproposedalthoughmanyanalogiesbetweenMars andtheAtacamaDesertexist,suchasthelong-termhyper-aridity (Hartleyetal.,2005;Amundsonetal.,2012).Hence,theAtacama DesertsoilsarefrequentlyusedasananalogtotheMartianregolith (Warren-Rhodesetal.,2019).Althoughasimilaritybetweensome morphologicalattributesofboulderaccumulationsintheAtacama DesertandonMarsexists,itcannotbeconcludedthattheyhave asimilarformationprocess.Hence,toourknowledge,theforma- tionofthestudiedboulderaccumulationsintheAtacamaDesert remainsuniquetoEarthbutcouldoccuronotherdryplanetary surfacesthatarecoveredbybouldersandaresubjecttosufficient seismicactivity.

(7)

Fig.6. Contactbetweenaboulderfieldwithsmoothandflatterraininthe(a)AtacamaDesertandon(b)Mars,HiRISEimageESP0241171185(latitude:-61.339centered, longitude:100.730east)(NASA/JPL/UniversityofArizona,2011).c)EnlargedareaoftheBF(yellowframeina).d)EnlargedareaofaMartianboulderfield(yellowframein b).

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinan- cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

WethankJ.Meyer,J.Hulin,L.Jentzsch,M.HomannandA.Bern- hardtfortheirsupportanddiscussionsduringtheproject.Wealso acknowledgesupportbytheERCAdvancedGrantHabitabilityof MartianEnvironments:ExploringthePhysiologicalandEnviron- mentalLimitsofLife(#339231).

AppendixA. Supplementarydata

Supplementarymaterial relatedto thisarticle canbe found, intheonline version,atdoi:https://doi.org/10.1016/j.geomorph.

2019.106897.

References

Agisoft,2019.Metashape.

Amundson,R.,Dietrich,W.,Bellugi,D.,Ewing,S.,Nishiizumi,K.,Chong,G.,Owen,J., Finkel,R.,Heimsath,A.,Stewart,B.,Caffee,M.,2012.Geomorphologicevidence forthelatePlioceneonsetofhyperaridityintheAtacamaDesert.J.Geophys.

Res.124,1048–1070.

Ballantyne,C.K.,2010.Ageneralmodelofautochthonousblockfieldevolution.Per- mafr.Periglac.Process.21,289–300.

Biolchi,S.,Furlani,S.,Antonioli,F.,Baldassini,N.,CausonDeguara,J.,Devoto,S.,Di Stefano,A.,Evans,J.,Gambin,T.,Gauci,R.,Mastronuzzi,G.,Monaco,C.,Scicchi- tano,G.,2016.Boulderaccumulationsrelatedtoextremewaveeventsonthe easterncoastofMalta.Nat.HazardsEarthSyst.Sci.16,737–756.

Blikra,L.H.,Nemec,W.,1998.PostglacialcolluviuminwesternNorway:depositional processes,faciesandpalaeoclimaticrecord.Sedimentology45,909–959.

BrocherJ.,2015.TheBioVoxxelImageProcessingandAnalysisToolbox.

Cox,R.,Jahn,K.L.,Watkins,O.G.,Cox,P.,2018.Extraordinarybouldertransportby stormwaves(westofIreland,winter2013–2014),andcriteriaforanalysing coastalboulderdeposits.Earth.Rev.177,623–636.

Dai,Z.,Wang,F.,Cheng,Q.,2018.DepositmorphologyofLuanshibaoLandslidein TibetanPlateau.Q.J.Eng.Geol.Hydrogeol.51,13–16.

Grant,J.A.,Wilson,S.A.,Ruff,S.W.,Golombek,M.P.,Koestler,D.L.,2006.Distribution ofrocksontheGusevPlainsandonHusbandHill,Mars.Geophys.Res.Lett.33, 1258.

Hartley,A.J.,Chong,G.,Houston,J.,Mather,A.E.,2005.150millionyearsofclimatic stability:evidencefromtheAtacamaDesert,northernChile.J.Geol.Soc.162, 421–424.

Küppers,M.,Jolliff,B.L.,Nakamura,A.M.,2014.BoulderField.In:Hargitai,H.,Keresz- turi,Á(Eds.),EncyclopediaofPlanetaryLandforms.Springer,NewYork,New York,NY,pp.1–9.

Levy,J.S.,Head,J.W.,Marchant,D.R.,2008.OriginandArrangementofBoulders ontheMartianNorthernPlains:AssessmentofEmplacementandModification Environments.,pp.39.

Levy,J.S.,Fassett,C.I.,Rader,L.X.,King,I.R.,Chaffey,P.M.,Wagoner,C.M.,Hanlon, A.E.,Watters,J.L.,Kreslavsky,M.A.,Holt,J.W.,Russell,A.T.,Dyar,M.D.,2018.Dis- tributionandcharacteristicsofboulderhalosathighlatitudesonmars:ground iceandsurfaceprocessesdrivesurfacereworking.J.Geophys.Res.Planets123, 322–334.

Maouche,S.,Morhange,C.,Meghraoui,M.,2009.Largeboulderaccumulationon theAlgeriancoastevidencetsunamieventsinthewesternMediterranean.Mar.

Geol.262,96–104.

Matmon,A.,Quade,J.,Placzek,C.,Fink,D.,Copeland,A.,Neilson,J.W.,Arnold,M., Aumaître,G.,Bourlès,D.,Keddadouche,K.,2015.SeismicoriginoftheAtacama Desertboulderfields.Geomorphology231,28–39.

McKay,C.P.,Friedmann,E.I.,Gómez-Silva,B.,Cáceres-Villanueva,L.,Andersen,D.T., Landheim,R.,2003.Temperatureandmoistureconditionsforlifeintheextreme aridregionoftheAtacamadesert:fouryearsofobservationsincludingtheEl Ni ˜noof1997-1998.Astrobiology3,393–406.

Mellon,M.T.,Arvidson,R.E.,Marlow,J.J.,Phillips,R.J.,Asphaug,E.,2008.Periglacial landformsatthePhoenixlandingsiteandthenorthernplainsofMars.J.Geophys.

Res.113,8599.

NASA/JPL/UniversityofArizona,2011.ContactbetweenBoulderyandSmoothTer- rains.Image.https://www.uahirise.org/ESP0241171185.

Orloff,T.C.,Kreslavsky,M.A.,Asphaug,E.I.,2013.Possiblemechanismofboulder clusteringonMars.Icarus225,992–999.

Placzek,C.,Granger,D.E.,Matmon,A.,Quade,J.,Ryb,U.,2014.Geomorphicprocess ratesinthecentralAtacamaDesert,Chile:Insightsfromcosmogenicnuclides andimplicationsfortheonsetofhyperaridity.Am.J.Sci.314,1462–1512.

QGISDevelopmentTeam,2019.QGISGeographicInformationSystem.OpenSource GeospatialFoundationProject.

Quade,J.,Reiners,P.,Placzek,C.,Matmon,A.,Pepper,M.,Ojha,L.,Murray,K.,2012.

SeismicityandthestrangerubbingbouldersoftheAtacamaDesert,northern Chile.Geology40,851–854.

Rosato,A.,Strandburg,K.J.,Prinz,F.,Swendsen,R.,1987.WhytheBrazilnutsare ontop:Sizesegregationofparticulatematterbyshaking.Phys.Rev.Lett.58, 1038–1040.

Rose,J.,1992.Boulderclustersinglacialflutes.Geomorphology6,51–58.

Rundel,P.,Dillon,M.,Palma,B.,Mooney,H.,Gulmon,S.L.,Ehleringer,J.,1991.The phytogeographyandecologyofthecoastalAtacamaandPeruvianDeserts.Aliso, 13.

(8)

Schindelin, J., Arganda-Carreras,I., Frise, E., Kaynig, V., Longair,M., Pietzsch, T., Preibisch, S.,Rueden, C.,Saalfeld, S., Schmid, B., Tinevez,J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-sourceplatform forbiological-image analysis. Nat.Methods9, 676–

682.

Wagner,T.,Eglinger,J.,2017.Thorstenwagner/Ij-Ellipsesplit:Ellipsesplit0.6.0Snap- shot.Zenodo.

Warren-Rhodes,K.A.,Lee,K.C.,Archer,S.D.J.,Cabrol,N.,Ng-Boyle,L.,Wettergreen, D.,Zacny,K.,Pointing,S.B.,2019.SubsurfaceMicrobialHabitatsinanExtreme DesertMars-AnalogEnvironment.Front.Microbiol.10,69.

Westoby,M.J.,Brasington,J.,Glasser,N.F.,Hambrey,M.J.,Reynolds,J.M.,2012.

Structure-from-Motion’photogrammetry:Alow-cost,effectivetoolforgeo- scienceapplications.Geomorphology179,300–314.

YongTechnologyInc,2014.GeoRose,Edmonton,Canada.

Referenzen

ÄHNLICHE DOKUMENTE

Time-series for hourly net all-wave radiation, ground heat flux, latent heat flux, and sensible heat flux (a), surface resistance and volumetric soil water content at 0.05 m depth

The slow convection scheme also vertically mixes density, but it does not completely homogenize the water column until the surface cooling ceases, and it takes a finite

The point is that only the human sciences are entangled with normativity in a special and much more far-reaching way, namely simply because only the human sciences deal

The texts strategically selected in this study were the titles of presidential addresses (and annual meeting themes (see Appendix)) presented by sociological associations that

Coefficient of field water infiltration 0.284. Coefficient of rainfall infiltration

Hathor is linked with desert animals much more than any other ancient Egyptian deity, probably because her conceptualisation as the star Sirius (invisible for part of the year)

We use Erd¨ os’ probabilistic method: if one wants to prove that a structure with certain desired properties exists, one defines an appropriate probability space of structures and

The following theorem (also from Chapter 2 of slides) has an analogous formulation..