• Keine Ergebnisse gefunden

Prof. Dr. Otto June 25, 2011

N/A
N/A
Protected

Academic year: 2022

Aktie "Prof. Dr. Otto June 25, 2011"

Copied!
5
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Linear Algebra II

Exercise Sheet no. 12

Summer term 2011

Prof. Dr. Otto June 25, 2011

Dr. Le Roux Dr. Linshaw

Exercise 1 (Warm-up: diagonalisability of bilinear forms)

Let the bilinear formsσ1andσ2onR3be defined by the matrices

A1=

1 0 1

0 0 0

1 0 1

, A2=

2 0 1

0 1 0

1 0 2

with respect to the standard basis ofR3.

(a) Determine an orthonormal basis ofR3with respect to which the matrix ofσ1is diagonal.

(b) Show that every eigenvector ofA2is also an eigenvector ofA1.

(c) Determine an orthonormal basis ofR3with respect to which the matrix ofσ2is diagonal, and deduce the eigenval- ues ofA2without computing the characteristic polynomial.

Solution:

a) We determine an orthonormal basisB1of eigenvectors for each of the matricesA1. These eigenvectors form the columns of a transformation matrixC1. Then¹σiº

B1=C1tA1C1is the matrix ofσ1in this basis and, by Proposition 3.2.9 (A1is symmetric),¹σ1º

B1

is diagonal.

The eigenvalues ofA1are given by

0=det(A1λE) =λ2(2−λ),

hence they are0, with algebraic and geometric multiplicity two, and2. We determine now the eigenvectors:

Forλ=0:

ker(A1) =span(v1,v2), wherev1=

1 p2 2 2

12

andv2=

1 2

p22

12

 .

Forλ=2:

ker(A1−2E) =span(v3),

wherev3=

p1 2

0

p1 2

.

ThenB1= (v1,v2,v3)and¹σ1º

B1=

0 0 0

0 0 0

0 0 2

.

b) Assume that(x,y,z)is an eigenvector ofA2with eigenvalueλ. Then2x+z=λxandx+2z=λz, so(3−λ)(x+ z) =0. Ifλ=3thenx=zsince2x+z=λx, and ifλ6=3then x=−z. In both cases(x,y,z)is an eigenvector ofA1.

(2)

c) The same basisB1= (v1,v2,v3)as in question (a) works due to question (b). So¹σ2º

B1 =C1tA2C1is diagonal and its entries are the eigenvalues, namely1(multiplicity two) and3.

Exercise 2 (Quadratic forms)

Which of the following are quadratic forms? Determine in each case the corresponding symmetric bilinear forms:

(a) Q1:R→R, x7→x.

(b) Q2:R→R, x7→0.

(c) Q3:R2→R, (x1,x2)7→ −3x12x22x2x1. (d) Q4:R2→R, (x1,x2)7→(px1+px2)4. (e) Q5:R2→R, (x1,x2)7→ ||xk2.

Solution:

a) This is not a quadratic form. For instance,Q1(2) =26=4=22Q1(1).

b) This is a quadratic form andσ2(x,y) =0

c) This is a quadratic form andσ3(x,y) =−3x1y1x2y2x1y2x2y1. d) Letσ4(x,y):=12 Q4(x+y)Q4(x)−Q4(y))

Soσ4((x1,x2),(y1,y2)) =12€ (p

x1+y1+p

x2+y2)24(px1+px2)4−(py1+py2)4Š .

By observation 3.3.2 in the notes, Q4 is a quadratic form iff this σ4 is bilinear. We next show that σ4 is not bilinear in order to show that Q4 is not a quadratic form. By definition we have 2σ4((1, 0),(0, 1)) =24−2 and2σ4((0, 1),(0, 1)) =2and 2σ4((1, 1),(0, 1)) = (1+p

2)4−22−1, the latter being irrational. (Recall that (a+b)4=a4+4a3b+6a2b2+4a b3+b4and thatp

2is irrational.) Thereforeσ4((1, 1),(0, 1))6=σ4((1, 0),(0, 1))+

σ4((0, 1),(0, 1)), andQ4is not a quadratic form.

e) This is a quadratic form since Q5(x1,x2) = x12+ x22 is induced by the standard scalar product. (That is, σ5((x1,x2),(y1,y2)) =x1y1+x2y2.)

Exercise 3 (Transformation of quadratic forms)

Letϕ:R2→R2be the endomorphism represented w.r.t. the standard basis ofR2by the matrix A=

1 1 0 1

.

Let

S1={x= (x1,x2)∈R2:x12+x22=1}={x∈R2:xtx=1}.

be the unit circle inR2.

(a) Describe the image of the unit circleS1underϕ,ϕ[S1]⊆R2, by a corresponding equation.

(b) Determine a symmetric bilinear formσsuch that

ϕ[S1] ={x∈R2:σ(x,x) =1}. (c) Find the symmetry axes ofϕ[S1].

Hint: apply Theorem 3.2.5 toσ.

Solution:

Note thatAis regular andA−1=

1 −1

0 1

.

(3)

a) Letx= x1

x2

∈R2. It follows thatxϕ[S1]iffϕ−1(x)∈S1iff

1 = (ϕ−1(x))tϕ−1(x) = (A−1x)tA−1x=xt(A−1)tA−1x=xt

1 −1

0 1

t 1 −1

0 1

x

= xt

1 0

−1 1

1 −1

0 1

x=xt

1 −1

−1 2

x

= x21−2x1x2+2x22. Hence

ϕ[S1] = {x= (x1,x2)∈R2:x12−2x1x2+2x22=1}={x∈R2:xtBx=1}, whereC=

1 −1

−1 2

.

b) Letσbe the symmetric bilinear form represented byCw.r.t. the standard basis ofR2. Then ϕ(S1) ={x∈R2:σ(x,x) =1}.

c) The characteristic polynomial ofCis

pC=det(CX E) = (1−X)(2−X)−1=

‚

X−3+p 5 2

Œ ‚

X−3−p 5 2

Π,

The eigenvalues of C are thenλ1 = 3−2p5,λ2 = 3+2p5 and the signature ofσis(+,+). Thereforeϕ[S1] is an ellipse.

An orthonormal basis of eigenvectors isB= (v1,v2), where

v1 = 1

p1+ (1−λ1)2 1

1−λ1

= p2 p

5−p 5

‚ 1

−1+p 5 2

Πund

v2 = 1

p1+ (1−λ2)2 1

1−λ2

= p2 p5+p

5

‚ 1

−1−p 5 2

Œ

The symmetry axes of the ellipseϕ[S1]are the principal axes ofσ, hence the eigenspacesVλ

1 =span(v1)and Vλ

2=span(v2).

Exercise 4 (Quadratic forms)

Determine the principal axes and the signature of the following quadratic forms (a) Q1(x) =−11x21−16x1x2+x22,

(b) Q2(x) =9x21−4x1x2+6x22, (c) Q3(x) =4x21−12x1x2+9x22, wherex= (x1,x2)∈R2.

Solution:

a) A1:=¹Q1º

B=

−11 −8

−8 1

.

Characteristic polynomial:(X−5)(X+15) Eigenvalues:λ1=5,λ2=−15.

Eigenvectorsfor these eigenvalues:v1= 1

−2

,v2= 2

1

Signature:(+,−)

Principal axes:V5=span((1,−2)t)andV−15=span((2, 1)t).

(4)

b) A2:=¹Q2º

B=

9 2 2 6

.

Characteristic polynomial:(X−5)(X−10) Eigenvalues:λ1=5,λ2=10.

Eigenvectorsfor these eigenvalues:v1= 1

−2

,v2= 2

−1

Signature:(+,+)

Principal axes:V5=span((1,−2)t)andV10=span((2, 1)t). c) A3:=¹Q3º

B=

4 −6

−6 9

. Characteristic polynomial:X(X−3) Eigenvalues:λ1=0,λ2=3.

Eigenvectorsfor these eigenvalues:v1= 3

2

,v2= −2

3

Signature:(+, 0)

Principal axes:V0=span((3, 2)t)andV3=span((−2, 3)t).

Exercise 5 (Geometric properties of the ellipse in euclidean geometry)

Let0¶e<1and consider the points given by the vectorse= (e, 0)and−e= (−e, 0)in the real planeR2. Let the set Xe⊆R2be defined as the set of all thosex∈R2for whichd(x,e) +d(x,e) =2.

(a) Show that Xe is an ellipse defined by a quadratic equation of the form αx2+βy2 = 1 for suitableα,β > 0.

Determineαandβin terms ofe. DrawXefore=0, 1/2, 1, 1/p 2.

(b) From (i) find a representation ofXe as the image of the unit circle under a rescaling in the y-direction. Use this rescaling and the fact that linear transformations preserve the property that a line is a tangent to a curve in order to determine the equation of the tangent to the ellipseXein a pointx= (x,y)∈Xe. Show that lines fromeand

ethroughxform the same angle with the tangent atx. [This explains the rôle of the pointseand−eas thefoci of the ellipse: light shining fromeis focussed in−eafter reflection inXe.]

(c) Show by elementary geometric means thatXealso has the following geometric property. Lettbe the tangent toXe

in a pointx∈Xeandlthe line througheperpendicular tot. Then the point of intersectionvbetweenland tlies on the unit circle.

Hint: Consider the triangles(x,v,w)and(x,v,e)in the sketch below, wherevmarks the point wherelintersectst, andwwhere it intersects the line through−eandx. Use (ii) to argue that these triangles are congruent.

−e• •

0

e x

XX XX XX XX XX XX XX XX XX XX XX XX X t

v w

l Solution:

a) Whenx= (x,y), then

d(x,−e) +d(x,e) =2

⇔ p

(x+e)2+y2+p

(xe)2+y2=2

⇔ (x+e)2+y2+ (xe)2+y2+2p

(x+e)2+y2p

(xe)2+y2=4

⇔ 2−x2y2e2=p

(x+e)2+y2p

(xe)2+y2

(2−x2y2e2)2= ((x+e)2+y2)((xe)2+y2)

⇔ (1−e2)x2+y2=1−e2

x2+1−e12y2=1.

(5)

(For the⇐-direction at (*), observe that(1−e2)x2+y2=1−e2implies that y2+e2¶1, andx2+1−1e2y2=1 implies thatx2¶1, so that2−x2y2e2¾0.)

b) The ellipseXeis the image of the unit circle under the linear mapϕe:(x,y)7→(x,p

(1−e2)y).

Letx= (x,y)be a point on the ellipseXe, and assume (without loss of generality) thatx,y>0, and letx0= (x,y0) be the point on the unit circle such thatϕe(x0) =x. The tangent to the unit circle inx0passes throughx0and the point (1/x, 0)(check!). Therefore the tangent through xto the ellipse Xe is the line throughx = ϕe(x0)and (1/x, 0) =ϕe(1/x, 0), which in parameter form is:

t={x+λ(x2−1,x y):λ∈R}.

Therefore the vectorb= (x y, 1x2)is orthogonal to the tangenttatx= (x,y).

Leta1anda2be the difference vectorsa1=x−(−e)anda2=xe. Equality of the angles ofa1anda2with the tangent is then equivalent to

b,a1

ka1k =〈b,a2〉 ka2k . As both scalar products are positive forx,y>0, this is equivalent to

〈b,a12

ka1k2 =〈b,a22 ka2k2 , which is equivalent to

(x y(x+e) + (1−x2)y)2

(x+e)2+y2 =(x y(xe) + (1−x2)y)2 (xe)2+y2 ,

which in turn, after some lengthy but standard calculations, can be seen to be equivalent to the defining equation x2(1−e2) +y2=1−e2.

c) Congruence of the triangles(x,v,w)and(x,v,e)follows from the fact that (a) they share the common sidexv, (b)tis perpendicular tol, so the angles∠xvwand∠xveare both straight, and (c) the angles∠vxwand∠vxeare equal by (ii).

Therefored(−e,w) =d(−e,x) +d(x,e) =2, from which it follows thatkvk=d(0,v) = 12d(−e,w) =1.

Referenzen

ÄHNLICHE DOKUMENTE

Shade the occupied energy regions.. in each case, assuming that the minimum energy

Die Kunst beim Sai- teninstrumentenspiel ist es jedoch, außer dem Grundton auch die niedrigen Obert¨one (sch¨atzungsweise bis n 6 20) mit recht hoher (nach oben hin

and the spae oordinates ~ x on an equal footing,. making Poinar e

Resultat dieser Interpolation waren die Konturlinien des Untergrundes (Abbildung 2.4) die zu einem Raster interpoliert wurden aus denen mit der Oberfläche aus dem Jahr 2006 die

That is the mouse... That is the

Karlsruher Institut f¨ ur Technologie Institut f¨ ur Theoretische Festk¨ orperphysik Ubungen zur Modernen Theoretischen Physik I (SS 14) ¨.. - English

[r]

W¨ ahrend sich das Differenzieren durch Anwendung einfacher Regeln (Produkt-, Quotienten-, Kettenregel) erledigen l¨ asst, ist das Integrieren mit gr¨ oßeren Schwierigkeiten