• Keine Ergebnisse gefunden

The CMEA Agricultural Model in the FAP/BLS System

N/A
N/A
Protected

Academic year: 2022

Aktie "The CMEA Agricultural Model in the FAP/BLS System"

Copied!
22
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

Csaba Csdki L&zlo Zedld

April

1986 WP-86-17

Working Fnpers are interim r e p o r t s o n work of t h e I n t e r n a t i o n a l I n s t i t u t e f o r Applied Systems Analysis a n d h a v e r e c e i v e d only lim- i t e d review. V i e w s or opinions e x p r e s s e d h e r e i n d o n o t n e c e s - s a r i l y r e p r e s e n t t h o s e of t h e I n s t i t u t e or of l t s National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg. Austrla

(2)

FOREWORD

Understanding t h e n a t u r e and dimensions of t h e world food problems and e x p l o r a t i o n of policies available to a l l e v i a t e them h a s been t h e f o c a l point of IIASA's Food a n d Agriculture P r o g r a m (FAP) s i n c e i t began in 1977.

Over t h e y e a r s FAP h a s , with t h e help of a network of collaborating institutions, developed and linked national policy models of twenty coun- t r i e s , which t o g e t h e r a c c o u n t f o r n e a r l y 8 0 p e r c e n t of important a g r i c u l - t u r a l a t t r i b u t e s s u c h as a r e a , production, population, e x p o r t s . imports a n d so on. The remaining c o u n t r i e s are r e p r e s e n t e d by 1 4 somewhat s i m p l e r models of g r o u p s of c o u n t r i e s . This system of models, t h a t we c a l l t h e Basic Linked System (BLS) permits analysis of national and I n t e r n a t i o n a l policies in a global c o n t e x t .

The economies of t h e CMEA (Council of Mutual Economic Assistance) member c o u n t r i e s play a n important r o l e o n t h e world a g r i c u l t u r a l t r a d e . The FAP of IIASA h a s invested s u b s t a n t i a l e f f o r t in t h e investigation of t h e a g r i c u l t u r a l system of t h e CMEA c o u n t r i e s . The CMEA Agricultural Model w a s c o n s t r u c t e d as o n e of t h e models of t h e BLS. The model treats t h e Euro- p e a n CMEA member c o u n t r i e s , including t h e Soviet Union, as o n e a g g r e g a t e . In f a c t , two v e r s i o n s of t h e CMEA Agricultural Model h a v e b e e n developed so f a r . In t h i s p a p e r Csaba Cs&i and LlIszlo Zedld give a d e t a i l e d d e s c r i p t i o n of t h e s t r u c t u r e a n d mathematical background of t h e second v e r s i o n of t h e model (CMEA/2). The CMEA/1 model, as well as r e s u l t s of t h e investigations with t h e f i r s t FAP/CMEA model were p r e s e n t e d e a r l i e r in t w o publications, see C. Csaki (1982) and (1985).

K i r i t S. P a r i k h P r o g r a m L e a d e r Food and Agriculture Program.

(3)

The authors would llke to e x p r e s s their thanks to Giinther Fischer f o r his contributions to t h e computer Lmplementation of the model, t o V. Iak- imets, K . Parikh and F. Rabar f o r their comments on the model and t o B . Hauser f o r typing the material.

(4)

CONTENTS

1. GENERAL CHARACTERISTICS OF THE CMEA/2 MODEL 2. MATHEMATICAL DESCRIPTION

2.1. Economic Planning Submodel

2.1.1. Module E P / l : Overall Objectives 2.1.2. Module EP/2: Adjustment of Objectives 2.1.3. Module EP/3: Consumption T a r g e t s 2.1.4. Module EP/4: Investment T a r g e t s

2.1.5. Module EP/5: Setting U p p e r a n d Lower Bounds 2.2. P / P r o d u c t i o n Submodel

2.2.1. Module P / 1 : Domestic P r i c e s 2.2.2. Module P/2: Population R e s o u r c e s 2.2.3. Module P/3: L a b o r F o r c e s

2.2.4. Module P/4: Capital S t o c k in A g r i c u l t u r e 2.2.5. Module P/5: F e r t i l i z e r Input

2.2.6. Module P/6: Agricultural P r o d u c t i o n 2.2.7. Module P/7: Weather E f f e c t s

2.2.8. Module P/9: Non-Agricultural P r o d u c t i o n 2.3. R: Realization

2.3.1. Module R/1: World Market P r i c e s 2.3.2. Module R/2: Exchange

R e f e r e n c e s

(5)

THE CldEA AGRICULTURAL MODEL IN THE FAP / B E SYSl'EX

O a b a C s 4 k i a n d L d s z l 6 Zeold

1. GENERAL CHARACTERISTICS OF THE CMEA/2 MODEL

The Food and Agriculture P r o g r a m of IIASA h a s been engaged in t h e develop- ment of a set of linkable national models f o r a g r i c u l t u r a l policy analysis s i n c e 1976, with t h e help of a network of collaborating institutions a r o u n d t h e world.

The p u r p o s e of t h e FAP i s to study t h e e f f e c t o n policy measures as t a k e n by t h e i r own governments, by t h e governments of o t h e r c o u n t r i e s and by i n t e r n a t i o n a l organizations which o p e r a t e u n d e r specified i n t e r n a t i o n a l agreements. The basic elements of t h e FAP model system are t h e n a t i o n a l p o l i c y models developed o n t h e basis of a joint methodology. A s p e c i a l linkage methodology w a s developed in o r d e r to c r e a t e t h e global food system. F o r f u r t h e r information on t h e s t r u c t u r e of t h e FAP national models and t h e linkage methodology see M. Keyzer (1981).

The FAP global a g r i c u l t u r a l model s y s t e m called t h e Basic Linked System (BLS): f o r f u r t h e r information a b o u t t h e BLS see G. F i s c h e r and K. F r o h b e r g (1980), consists of twenty o n e models linked t o g e t h e r . Of t h e s e twenty o n e models, 18 r e f e r to individual c o u n t r i e s , t w o refer t o t h e EC and t h e CMEA and o n e t o t h e r e s t of t h e world. These models h a v e been developed at IIASA in c o o p e r a t i o n with s c i e n t i s t s of t h e r e s p e c t i v e c o u n t r i e s . The BLS d e s c r i b e s t h e international t r a d e at 10 s e c t o r s l e v e l , namely, wheat, rice, coarse g r a i n , bovine and ovine meats, d a i r y p r o d u c t s , o t h e r animal p r o d u c t s , p r o t e i n f e e d s , o t h e r food, nonfood a g r i c u l - t u r e , a n d nonagriculture. However, some of t h e national models have a d i f f e r e n t s e c t o r a l detail.

Within t h e FAP, a s p e c i f i c modeling framework w a s developed to r e p r e s e n t t h e c e n t r a l l y planned food and a g r i c u l t u r e systems in t h e global investigations. This modeling a p p r o a c h

i n c o r p o r a t e s t h e b a s i c f e a t u r e s of t h e CMEA member c o u n t r i e s ' economy

.

o f f e r s o p p o r t u n i t i e s t o include t h e c o u n t r y s p e c i f i c f e a t u r e s

i s detailed enough to b e used as a n experimental tool f o r a c t u a l planning and f o r e c a s t i n g p u r p o s e s

IIASA's modeling framework f o r c e n t r a l l y planned food and a g r i c u l t u r e sys- tems was f i r s t applied f o r t h e development of t h e Hungarian Agricultural Model (HAM), see (Csaki, 1901). The a g g r e g a t e d CMEA Agricultural Model h a s been con- s t r u c t e d by using t h e e x p e r i e n c e gained with HAM and by t h e f i r s t v e r s i o n of t h e BLS c o u n t r y models. Actually two v e r s i o n s of t h e CMEA Agricultural Model h a v e been developed.

ChfEA/I Model w a s built in 1980-81 with a detailed commodity c o v e r a g e (22 food and a g r i c u l t u r e commodities) consistent with t h e commodlty classification of FAO's Agriculture Toward 2000 P r o j e c t . The model is divided into two major p a r t s : t h e f i r s t submodel d e s c r i b e s t h e a g r i c u l t u r a l system of t h e Soviet Union and t h e second includes t h e smaller E u r o p e a n CMEA c o u n t r i e s , namely, Bulgaria, Czechoslovakia, t h e GDR, Hungary, Poland and Rumania. The two submodels have a completely identical s t r u c t u r e a n d c a n b e o p e r a t e d independently of e a c h o t h e r . The CMEA/l model h a s n e v e r been linked to t h e BLS, i t h a s only been used in a stand-alone mode f o r mid- and long-range p r o j e c t i o n s on limits and potentials of a g r i c u l t u r a l development in t h e CMEA c o u n t r i e s . F o r a detailed account of CMEA/l experiments. see C. Csaki (1982).

(6)

The C M A / 2 Model represents t h e CMEA region in the current version o f t h e BLS. The model is designed along t h e same principles as t h e CMEA/l model and also fully consistent with t h e other elements o f t h e BLS. The commodity classification follows t h e one used in t h e BLS and t h e production model block is constructed by using the overall methodology and based on t h e same data base from FA0 as other country models. Due t o t h e specific features o f the centrally planned food and agriculture systems o f t h e C M E A , the model has several specific features as well.

Figure 1 shows t h e structure o f the CMEA/2 Model.

In the CMEA member countries agricultural policy and policy goals are deter- mined by the f a c t that they are integral parts o f t h e central plan f o r t h e whole national economy. The targets f o r production and consumption are fixed in t h e national plan and are realized by a coordinated system of-sectoral, industrial, agricultural, etc.,--regional, local and enterprise plans. Though the indirect pol- icy instruments o f price, market, t a x , credit and interest policy are used t o an increasing extent t o realize targets, their role and the way in which they are implemented are rather d i f f e r e n t from those in market economies. First o f all, one should point out t h e following characteristics:

-

The agricultural and t h e domestic market o f t h e CMEA countries are not directly related t o t h e world market. Protection is implemented not by price and tax policy instruments, but mainly b y administrative means, e.g.. govern- ment foreign trade monopoly, central decisions on export and import o f agri- cultural products.

-

Decisions on t h e desired growth o f personal consumption and investment allo- cation to agriculture are made within the framework o f t h e five-year national plans.

-

Domestic producer prices are not directly related t o international prices, they are generally fixed f o r a given year and changed mainly to adjust t o changing production expenses.

-

Producing firms have no direct relation t o t h e world market. Exports and imports are carried over by government foreign trade agencies.

-

Availability o f foreign currencies and Labor flows are controlled by t h e cen- tral planners.

-

Consumer prices are set based on central income and wage policy targets and they do not r e f l e c t t h e actual supply demand relations.

The CMEA/2 model in t h e BLS is constructed t o r e f l e c t t h e above mentioned conditions. Thus,

-

Domestic prices are not endogenized and are expressed in rubles.

-

In t h e model t h e desired growth o f t h e overall economy, al, the desired growth o f consumption, a2. and t h e desired share o f food and agriculture in total investment funds, a3, are taken exogenously with lower and upper bounds determining t h e desired path. Adjustment mechanism is also built in t o keep these targets as much as possible.

-

Lower and upper bounds are introduced in the production module t o assure self-sufficiency requirements o r limit production growth ln certain commodi- ties.

-

Modeling o f consumption is based on FA0 trends, see "Agriculture Toward 2000" ( F A O ) , estimations and targets on private consumption published in CMEA countries.

(7)

Figure 1: O v e r a l l Structure o f the C M E A / 2 A g r i c u l t u r a l M o d e l

(8)

-

The e x c h a n g e model built into t h e model e x p r e s s e s p r e s e n t p r a c t i c e and assumed p r e f e r e n c e o r d e r i n g of areas w h e r e t h e adjustment t o changes in t h e conditions of t h e world m a r k e t t a k e s p l a c e . In t h e p r e s e n t v e r s i o n t h e p r e f e r e n c e o r d e r i n g of adjustment i s s t a t e d as follows:

adjustment of s t o c k s of t h e nonagricultural commodity;

stock adjustment o f a g r i c u l t u r a l commodities;

.

modification of government e x p e n d i t u r e s ;

modification of investment in t h e rest of t h e economy;

.

modification of investment in a g r i c u l t u r e ;

adjustment of p r i v a t e consumption of t h e n o n a g r i c u l t u r a l p r o d u c t ;

.

modification of food consumption

-

The model c a n b e r u n with v a r i o u s assumptions on domestic p r i c e policy. I t i s possible t o u s e unchanged domestic p r i c e s f o r t h e whole r u n , while i t c a n a l s o b e assumed t h a t if a world m a r k e t p r i c e c h a n g e s s t r o n g l y in a p e r s i s t e n t way o v e r a long p e r i o d of time, t h i s will r e s u l t in c h a n g e s of domestic p r i c e s of CMEA c o u n t r i e s . A logistic function i s used p r o p o s e d b y 0 . Gulbrandsen.

w h e r e t h e transmission of t h e world market p r i c e c h a n g e i s v e r y limited with small c h a n g e a n d grows with l a r g e p e r s i s t e n t changes. O t h e r p r i c e policies might a l s o be included in t h e model.

2 . MATHEXATICAL DESCRIPTION

A s F i g u r e 1 shows t h r e e major submodels are d i f f e r e n t i a t e d within t h e model as follows:

EP: Economic Planning

P: P r o d u c t i o n

R: Realization

The Economic R u n n i n g Submodel r e f l e c t s t h e decision making a n d economic c o n t r o l a c t i v i t i e s of t h e government. The o v e r a l l t a r g e t s guiding t h e o p e r a t i o n of t h e whole system a r e set h e r e . T h e r e are f l v e modules within t h i s submodel.

The P r o d u c t i o n Submodel r e l a t e a g r i c u l t u r a l a n d nonagricultural produc- tion. R e s o u r c e s a n d domestic p r i c e s are set a l s o in t h i s module. The random e f f e c t s of w e a t h e r upon c r o p production c a n a l s o b e t a k e n into account. The sub-

model P is s t r u c t u r e d a c c o r d i n g t o nine modules.

The R e a l i z a t i o n Submodel d e s c r i b e s p r o d u c t utillzation, demand a n d r e l a - tions t o t h e i n t e r n a t i o n a l m a r k e t . T h e r e are f o u r modules in t h i s submodel. The model i s dynamic, with a o n e y e a r time increment. The b a s i c methodology used i s a simulation technique. Next t h e mathematical d e s c r i p t i o n of t h e model i s p r e s e n t e d a c c o r d i n g t o t h e s t r u c t u r e outlined above. The a c t u a l values of p a r a m e t e r s used

in t h e p r e s e n t v e r s l o n of t h e model are a l s o llsted.

2.1. E c o n o m i c P l a n n i n g S u b m o d e l

This submodel i s d e v o t e d t o introduction of government policy objectives.

2.1.1. M o d u l e E P / l : O v e r a l l objectives

The major government o b j e c t i v e s are t a k e n i n t o consideration in a n exo- genous manner within t h e model. The t h r e e major exogenous p a r a m e t e r s given f o r t h e system are as follows:

(9)

1. Desired growth of t h e n a t i o n a l income:

al (=0.05)

2. Desired growth of p e r s o n a l c o n s u m p t i o n : h e r e lower and u p p e r bounds are given f o r t h e annual growth rate of t h e t o t a l p e r s o n a l consumption

a2 mi, ( a ) a n d

a 2

,,,

( a . 1 )

3. Desired s h a r e of a g r i c u l t u r a l i n v e s t m e n t in t h e t o t a l investment funds:

h e r e a l s o Lower and u p p e r bounds are s e t : a 3 ( a . 1 ) a n d l e s s o r equal to

a 3 ( a . 3 )

2.1.2. M o d u l e EP12: A d j u s t m e n t o f O b j e c t i v e s

The major exogenous p a r a m e t e r s are updated at t h e beginning of e a c h simu- l a t e d time increment.

1 . National Income

The t a r g e t e d national income is computed by PNIC,

=

NICt-, ( l + a , )

where NICt -1: t h e a c t u a l national income in t h e p r e v i o u s y e a r . 2 . P e r s o n a l C o n s u m p t i o n

The planned value of t o t a l p e r s o n a l consumption in y e a r t i s PCONSt

=

( 1

+

aZt)

where CONSt-, : t h e a c t u a l value o f total p e r s o n a l consumption in t h e previous y e a r . The azt p a r a m e t e r i s adjusted in t h e following way

i f : sa2

<

s2 t h e n a2, i n c r e a s e s a z t

=

a2t-1

+

0.5(s2 d,

-

s a 2 ) ( ~ 2

=

0.04)

if: sa2

>

s2 maX, t h e n a2, d e c r e a s e s ,

a2t

=

a2t-1

-

0.5 (sa2

-

s2

(s2 msx

=

0.09) i n a l l o t h e r c a s e s a2t

=

a 2 t - 1

3. A g r i c u l t u r a l I n v e s t m e n t S h a r e

(10)

Total investment t a r g e t :

PINV,

=

PNIC,

-

PCONS,

Agricultural investment t a r g e t :

PINVA,

=

a,,

*

PINV, Nonagricultural investment t a r g e t :

PINVN,

=

( 1 -a3,) PINV, The a3, p a r a m e t e r is adjusted in t h e following way:

GNPA,

sa

- -

-1

GNPAt-l where

GNPA i s g r o s s national p r o d u c t of t h e a g r i c u l t u r a l sector

iy: sa3

<

s3 t h e n a3, i n c r e a s e s .

a 3 ~

=

a3t-l + ('3 min

-

'a3) ( ~ 3 min

=

0.03)

if: sa3

>

s3 max. t h e n a3, d e c r e a s e s

a3,

=

a3,-1

-

(sa3

-

s3 max) ( ~ 3 max

=

0.06)

i n all other cases a3t

=

a3t -1

4 . Stocks

The d e s i r e d s t o c k s are set as a ratio to t h e previous y e a r ' s a c t u a l p e r s o n a l consumption

w h e r e

DS,,, : d e s i r e d s t o c k f o r t h e i-th commodity

TCI,t-l : p r e v i o u s y e a r a c t u a l consumption from t h e i-th commodity

nI

: d e s i r e d s t o c k level Table 1

(11)

2.1.3. Module EP/3 Consumption Targets

The t a r g e t s f o r p e r s o n a l consumption are computed by using t r e n d functions.

which h a v e b e e n estimated o n t h e basis of 1961-1974 d a t a . The consumption t a r g e t f o r commodity 1 is computed by

P T C ~ , ~

=

T C ~ , ~ - ~ +

cI1 *

( 1

-

e "'a)

-

(i

=

1

...

8 )

Table 2 Parameters of Demand Trend Functions

2.1.4. Module EP/4 Investment Targets

T a r g e t s f o r g r o s s a n d a g r i c u l t u r a l investment a r e s e t by using t h e exogenous p a r a m e t e r s explained u n d e r 2.1.1 a n d 2.1.2.

T a r g e t f o r g r o s s investments:

PINVt

=

PNICt

-

PCONSL

T a r g e t f o r a g r i c u l t u r a l investments:

PINVAL

=

agL

*

PINVt T a r g e t f o r a g r i c u l t u r a l investments:

PINVNt

=

(1 - a g L )

*

PINVt

2.1.5. Module EP/Sr Setting Upper and Lower Bounds

In t h e l a s t module of EP Submodel lower a n d u p p e r bounds are set f o r produc- tion. T h e r e are two a p p r o a c h e s used in t h e model in t h i s r e s p e c t :

1 ) W e assume t h a t t h e maximal possible level of self-sufficiency in most of t h e p r o d u c t s i s a major government policy objective. The production lower and u p p e r bounds are set accordingly. In t h i s case p r o d u c t i o n Lower b o u n d s are set f o r t h e 1 0 e x c h a n g e commodities as follows:

(12)

where

ybl t h e p r e v i o u s y e a r ' s production

slb,: r e q u i r e d minimum level of self sufficiency Then, f o r

i = l , pdlbl

=

max)pdlbl, t p l l a (PTC1

+

FEED1

+

CINT1)I

i = 4 , pdlb4

=

max[pdlb4, tp14

*

(PTC4

+

FEED,

+

CINT4)I

i=5, pdlb5 = max[pdlb5, tp15

=

(PTC,

+

FEED,

+

CINT,)]

i = 7 , pdlb7

=

max[pdlb7, tp17 (PTC,

+

FEED7

+

CINT7)I i=8, pdlbg

=

(ybg

-

b7B yb7) slb,

pdlb,

=

maxfpdlb,, tpl: (TCB

+

FEEDB

+

CINTB)I w h e r e the allowed

tpl,

=

p a r a m e t e r s e x p r e s s i n g lower level of self sufficiency PTCl

=

planned t o t a l consumption

TC 1

=

a c t u a l t o t a l consumption FEEDl

=

f e e d u s a g e

CINTi

=

i n t e r n a l consumption

b 7 ~

=

b y p r o d u c t p a r a m e t e r

The u p p e r b o u n d s f i r p r o d u c t i o n are set f o r t h e 1 0 e x c h a n g e commodities as follows:

Then, f o r

i

=

2. pdub2

=

y b 2 1.025

pdub2

=

minfpdub2 , tpu2 (PTC2

+

FEED2

+

CINT2) ] 1

=

3, pdub:,

=

tpus

*

(TC,

+

FEED,

+

CINT,)

PTC,

i

=

6 , pdub,

=

yb6 max (1.025.

-

TC 6 )

pdub,

=

max [pdub, , 1.05 (PTC,

+

CINT,) w h e r e

t p u , = p a r a m e t e r e x p r e s s i n g t h e allowed u p p e r level of self sufficiency.

All o t h e r v a r i a b l e s are t h e same as f o r production lower bounds. I t i s assumed t h a t self sufficiency requirement may v a r y in o r d e r t o utilize comparative advantages via a n extended magnitude of i n t e r n a t i o n a l t r a d e . The lower bounds f o r production are set f o r t h e 1 0 e x c h a n g e commodities as follows:

w h e r e

slb,: r e q u i r e d minimum level of self sufficiency f o r t h e i-th commodi- t i e s

Tcl,L-l: a c t u a l p r i v a t e consumption from t h e i-th commodity in t h e previ- ous y e a r

(13)

FEEDi,,-l: f e e d usage from t h i-th commodity in t h e p r e v i o u s y e a r

CINT,,t-l: i n t e r n a l consumption from t h e i-th commodity in t h e p r e v i o u s y e a r .

By changing s l b , coefficients various d e s i r e d self sufficiency levels c a n b e c o n s i d e r e d . The p r o d u c t i o n u p p e r b o u n d s are v e r y Large numbers e x p r e s s i n g no a c t u a l u p p e r limits upon production. This option h a s been used in t h e s o called F r e e T r a d e f o r CMEA/BLS Run with s l b l

=

0.6 f o r all t h e commodities.

Due t o t h e p r e s e n t f e a t u r e s of t h e Production Submodel when t h e 10-list com- modities are a g g r e g a t e d into t h e 8-list production commodities in both cases t h e bounds set f o r t h e 1 0 commodity l i s t h a v e t o b e c o n v e r t e d as follows:

Similar p r o c e d u r e i s used f o r t h e u p p e r bounds 2.2. P/Production Submodel

The Production Submodel c o n s i s t s of 9 models. Five of them are used to set p a r a m e t e r s f o r t h e modeling of a g r i c u l t u r a l and nonagricultural production. Four modules are devoted t o supply modeling.

2.2.1. Module Plr Domestic Prices

In t h e Production Submodel f i r s t t h e domestic p r i c e s are adjusted f o r t h e given p e r i o d . T h e r e are two switch-selectable methods t o determine t h e domestic p r i c e s . F i r s t w e d e t e r m i n e p r i c e s c o r r e s p o n d i n g to t h e 10-commodity l i s t .

The f i r s t method is based on t h e assumption of fixed domestic p r i c e s by using t h e p r o c e d u r e as follows:

(14)

a n d

The second method h a s been recommended by 0. Gulbrandsen. In t h i s case world m a r k e t p r i c e changes are t r a n s f e r r e d into domestic p r i c e system by using a logistic function a f t e r t h e y e a r of 1980:

PDTt(i)

=

PDt(i) (i

=

1, ..., l o ) , if y e a r l e s s or equal 1980.

PWBO(i) = PWt(i)/PWt(lO) (i

=

1 ,

...,

l o ) , if y e a r equal 1980.

If y e a r g r e a t e r t h a n 1980, t h e n

d p w ~

=

(PW(i) / (PW(10)

-

PWBO(i)) / PW80 (i) adpw,

=

min (l.abs(dpw,))

ri

=

p l / ( l + e *dpwl ) -p2

PDTt(i)

=

PDt(i)

*

( 1

+

dpw,

*

r , ) ( i = l ,

...

10)

Due t o t h e s p e c i f i c commodity classification (only 8 commodities) of agricul- t u r a l supply module (P/6), switch-selectable methods are used to determine t h e e x p e c t e d p r o d u c e r p r i c e s from domestic p r i c e s set by t h e a b o v e mentioned twu methods.

(15)

- - - - -

In case of the first method In case of the second method

(Fixed Prices) (Domestic Price Adjustment)

2.2.2. Module P/2: Population Resources The total population is computed by

POPt

=

POPL grpopt (POP,,,,

=

345710)

grpopt

=

gr2+gr3*t (gr2

=

1.00953)

(gr,

=

-0.000097) 2.2.3. Module P / 3 Labor Forces

The total labor f o r c e is a fraction of the total population shared by the parti- cipation rate:

L: =

POP^

partt

partt

=

gr4 (gr4

=

0.502157) The agricultural labor force is:

and

A A1 A

Lt 2 Lt

-

a,, Lt w h e r e

(a,,

=

1.001) (a,,

=

0.02813) (a,,

=

0.965)

The labor force of the nonagricultural sector LFA is determined a s follows:

N A = L T - L A

Lt t t

(16)

where

t POP, Lt' Lt"

L?'

=

time v a r i a b l e , (1971

=

1 )

=

population in y e a r t [I000 persons] (1970: 345710)

=

t o t a l l a b o r f o r c e in y e a r t [I000 p e r s o n s ] (1970: -)

=

a g r i c u l t u r a l l a b o r f o r c e in y e a r t [I000 persons] (1970: 48755)

=

lower bound on a g r i c u l t u r a l l a b o r f o r c e in y e a r t [ l o 0 0 persons]

(1970: -)

=

l a b o r f o r c e of nonagricultural s e c t o r in y e a r t [ l o 0 0 persons]

(1970: -)

=

n e t national income of a g r i c u l t u r e in y e a r t

=

n e t national income of nonagricultural s e c t o r in y e a r t 2.2.4. Module P/4: Capital Stock in Agriculture

DEPA,

= 8,

CSA,

The v a r i a b l e s and t h e i r initial values in y e a r 1970:

n.c

=

UDSSR Ruble 1970

CSA,

=

c a p i t a l s t o c k employed in a g r i c u l t u r e in y e a r t [mill.n.c] (1970:

205921)

INVA,

=

a g r i c u l t u r a l investment in y e a r t [mill.n.c]

DEPA,

=

d e p r e c i a t i o n value in a g r i c u l t u r e in y e a r t [mill.n.c]

PD;

=

domestic p r i c e of nonagricultural commodity in y e a r t

I

mil1.n.c

1

I

millUS870

81 =

0.035: The (constant) d e p r e c i a t i o n rate in a g r i c u l t u r e 2.2.5. Module P/5: Fertilizer Input

Total f e r t i l i z e r input is calculated according t o t h e following function:

TF,

=

TF, f e r t t (t 'I) f e r k i s a time dependent function in t h e following form:

I I

t2 Years

(17)

The total amount of a v a i l a b l e f e r t i l i z e r 1s modified by r o u g h a g e production.

The meaning of t h e v a r i a b l e s and t h e i r initial values in y e a r 1970:

T F ~

=

t o t a l amount of f e r t i l i z e r in y e a r t [ l O O O m.t. nitrogen equivalent] (1970: TF = 7746)

TFP,

=

t o t a l amount of f e r t i l i z e r (without r o u g h a g e production in y e a r t [lOOO m.t. nitrogen equivalent] (1970: - )

YSt

=

p r o d u c e d amounts of commodities in y e a r t. (In n a t u r a l measure- ment, see commodity lists)

The meaning of t h e p a r a m e t e r :

f e r t ,

=

t h e (time dependent) growth rate of t h e f e r t i l i z e r usage The meaning of t h e c o e f f i c i e n t s and t h e i r input values:

LI -

=

t h e f i r s t b r e a k p o i n t of t h e f e r t i l i z e r function (=I9701

t 2

=

t h e second b r e a k p o i n t of t h e f e r t i l i z e r function (=ZOO01

f 1 = minimum value of t h e growth rate of t h e f e r t i l i z e r usage (=1.035)

f 2

=

maximum value of t h e growth rate of t h e f e r t i l i z e r usage (=1.035)

2.2.6. Module P/6: Agricultural Production

The a g r i c u l t u r a l production module follows t h e e a r l i e r methodology of t h e BLS country models using a nonlinear programming model, where l i n e a r c o n s t r a i n t s are applied with a nonlinear o b j e c t i v e function. Among t h e f a c t o r s of t h e production c a p i t a l , l a b o r and f e r t i l i z e r and considered.

The a g r i c u l t u r a l production model c a n b e written f o r any y e a r t as follows.

max ma"

K L F

C

P l . Y S 1

1' I ' I l = l

s u b j e c t to:

YLBI

=

YSl

s

YUBl ( i = l ,

...,

mall)

mall

KI

s

TK

mall

C

L, S T L

(18)

ALL v a r i a b l e s and p a r a m e t e r s a l s o depend on t h e time b u t f o r simplicity w e omit t h e

"t" index.

The meaning of t h e v a r i a b l e s a r e as follows:

I n p u t v a r i a b l e s

p i

=

n e t r e v e n u e of commodity i YLBl

=

lower bounds on production YUBl

=

u p p e r bounds on production TK

=

a g r i c u l t u r a l c a p i t a l s t o c k TL

=

a g r i c u l t u r a l l a b o r f o r c e

TF

=

f e r t i l i z e r input ( e x c e p t roughage) O u t p u t v a r i a b l e s

YSi

=

n e t o u t p u t (including f e e d ) K 1

=

c a p i t a l a l l o c a t e d t o commodity i

L

i

=

l a b o r a l l o c a t e d t o commodity i

F1

=

f e r t i l i z e r a l l o c a t e d t o commodity i The meaning of t h e p a r a m e t e r s are as follows:

0 . =

81 = 1

P a r a m e t e r s of t h e Cobb-Douglas Yi

= !

t y p e production function

El

=

mc = number of "crops" in t h e commodity list mall

=

number of commodities

The module P/6 works on t h e b a s i s of 8 commodities as w a s mentioned e a r l i e r . while t h e whole model i s based on 1 0 commodities.

The commodity l i s t s in t h e CMEA model system are as follows:

1 0 Commodity List ( R e a l i z a t i o n ) Wheat Rice, milled C o a r s e g r a i n

Bovine and ovine meat Dairy p r o d u c t s

O t h e r animals

P r o t e i n food (of c r o p origin) O t h e r food

Nonfood a g r i c u l t u r e Nonagriculture

(19)

8 Commodity List (Agricultural Production) Wheat

Rlce, milled Coarse g r a i n P r o t e l n f e e d O t h e r food

Nonfood a g r i c u l t u r e Bovine and ovine O t h e r animals

2.2.7. Module P/7r Weather Effects

In t h e b a s i c v e r s i o n of t h e model n o w e a t h e r e f f e c t s upon c r o p production a r e c o n s i d e r e d . However, t h e a c t u a l production computed by module P / 6 f o r wheat (commodity 1 ) and f o r coarse g r a i n (commodity 3 ) c a n b e independently p e r t u r b e d by a random w e a t h e r e f f e c t using t h e followlng distributlon:

Table 3. Weather Random Effects on Crops P r o b a b i l i t y Z of c h a n g e

of t o t a l production

2.2.8. Module P/9* Non-&ricultural Production

The n o n a g r i c u l t u r a l production. Y B , i s calculated by t h e following function:

't

(Lt~]l-tr

YBnVt = pn3

*

CSNt

and

*Module P/8 d o e s n o t exist i n t h i s v e r s l o n . T h i s module is numbered P/9 t o be c o n s i s t e n t w i t h e a r l i e r v e r s i o n s o f t h e model.

(20)

where

pn, (= 0.728) pn2 (= 0.4183)

png (= 0.5461) are estimated p a r a m e t e r s

CSNt: c a p i t a l stock employed in nonagriculture in y e a r t (1970 = 1527677)

L : ~ :

l a b o r f o r c e of nonagricultural sector in y e a r 1 (1970

=

122164) 2.3.

R-

R e a l i z a t i o n

2.3.1. M o d u l e R/1: World Market Prices

The 10-commodity world m a r k e t p r i c e s are t a k e n from t h e international e x c h a n g e module of t h e BLS and influence domestic p r i c e s according t o module P / 1 .

2.3.2. M o d u l e R/2: E x c h a n g e

Module R/2 is a c r u c i a l p a r t of t h e whole model, where t h e final Level of p r i v a t e and government consumption as well as s t o c k s satisfying balance of t r a d e equilibrium conditions are determined. I t is v e r y important to underline t h a t t h e r e a c t i o n mechanism of domestic demands t o new world market conditions ( p r i c e s ) i s d e s c r i b e d h e r e .

In t h i s module t h e so-called noncommitted demands, which c a n b e t h e s u b j e c t s of f u r t h e r adjustment, are determined. The noncommitted demand f o r a specific commodity consists of various elements; t h e r e f o r e , Let q,,, e x p r e s s t h e hth t y p e of demand f o r commodity i. To r e a c h a solution f i r s t w e define a t a r g e t level of t h e hth demand f o r commodity i(qlf)) and introduce a v e c t o r A which indicates t h e e x t e n t t o which t h e t a r g e t s are realized. Obviously t h e realization levels are con- s t r a i n e d between two bounds:

Let u s assume t h a t y is t h e v e c t o r of supply a f t e r t h e deduction of committed e x p e n d i t u r e s is t h e world market p r i c e of commodity i , and k i s t h e prelim- i n a r y fixed balance of foreign t r a d e .

The solution of module R/2 is equal to t h e determination of t h e values of vec- t o r A which satisfy

with

a n d w h e r e Q is a matrix of noncommitted demands

During t h e solution p r o c e d u r e a s t r i c t p r e f e r e n c e o r d e r i n g of various types of demands i s followed:

1. ds,, 2. ds,, 3. PlNVN 4. PINVA

(21)

5. PTC,, 6. PTC,, 7. CINT,,

In t h e e v e n t of c h a n g e s in t h e world m a r k e t p r i c e s a new A v e c t o r h a s t o b e calcu- l a t e d . lf no solution c a n b e obtained, t h e A* a n d A** v e c t o r s h a v e t o b e a d j u s t e d so t h a t a solution can b e r e a c h e d . The calculation of v e c t o r A i s easily programmed.

I t i s worthwhile to c o n s i d e r unity as a n initial value of hi. I t is obvious t h a t in t h e e v e n t t h a t t h e t a r g e t i s r e a l i z e d , Ai=l, a n d always A;

<

1 a n d A;* 2 1.

The t a r g e t values of noncommitted demands are determined as follows.

-

A s f a r as s t o c k s are c o n s i d e r e d , so-called optimal s t o c k s are t a k e n as t a r g e t values. These optimal s t o c k s are computed by:

dsl

=

O.l*PTCi ( i = l ,

...

9) a n d dslo

=

0.025*PTCn.

-

A s t h e t a r g e t value of d i r e c t government investments in food a n d agricul- t u r e t h e value of PINVA (planned investments in food a n d a g r i c u l t u r e ) , as determined in module E P / 2 i s used. The t a r g e t value o f INVN (planned investment of t h e rest of t h e economy) c a l c u l a t e d b a s e d on t h e value o f PINVA determined In module EP/2.

-

The t a r g e t s on consumption P T C ~ ( ~ ) are computed In E P / 3 module

-

A s t a r g e t s o n p r i v a t e consumption, t h e values of T C ~ ( ~ ) r e l a t e d t o consu- m e r p r i c e f o r t h e given y e a r a n d endowments c a l c u l a t e d in module E P / 3 determined by t h e nonlinear demand system are used.

A. and A=' e x p r e s s t h e e x t e n t of allowed deviation from t a r g e t levels. F o r t h e v a r i o u s elements of Q d i f f e r e n t A* a n d A** values are glven, e x p r e s s i n g t h e government o b j e c t i v e s a n d policies in demand of adjustment. Vector A i s d e t e r - mined using t h e algorithm mentioned a b o v e a n d t h e final values of v a r i a b l e s included in matrix Q c a n b e c a l c u l a t e d . On t h e basis of t h e elements of t h e Q matrix t h e e x p o r t - i m p o r t v e c t o r i s calculated:

EI f t )

=

C q l l ( t )

-

('-)

1 yi

tP

E1jt)

s

0 t h e n

1 8 ~ ) =

- E I ~ ( ~ ) a n d E$'-)

=

0

tP

E l f t ) 2: 0 t h e n E f t )

=

El{'-) and 1

f t ) =

0

tP

E I ~ ( ~ )

=

0 t h e n E f t )

=

0 a n d

=

0

The final values of government investment INVA'- a n d I N V N ~ are a l s o calcu- l a t e d . Based on t h e l a t t e r information t h e investment p r o g r a m of t h e given y e a r i s f inallzed.

REFERENCES

Csaki. C. (1981). A National Policy Model f o r t h e Hungarian Food a n d Agriculture S e c t o r . RR-81-23: I n t e r n a t i o n a l I n s t i t u t e f o r Applied Systems Analysis. Lax- e n b u r g , Austria.

(22)

Csaki, C. (1982). Long-Term P r o s p e c t s for A g r i c u l t u r a l Development i n t h e E u r o - p e a n CMEA C o u n t r i e s , including t h e S o v i e t Union. RR-02-25: l n t e r n a t i o n a l I n s t i t u t e f o r Applied S y s t e m s Analysis, L a x e n b u r g , A u s t r i a .

Csaki, C. (1985). S y s t e m S i m u l a t i o n a n d S y s t e m s A n a l y s i s i n A g r i c u l t u r e . E l s e v i e r , Holland.

Food a n d A g r i c u l t u r e O r g a n i z a t i o n (FAO). (1981). A g r i c u l t u r e Toward 2000. Rome.

I t a l y .

F i s c h e r . G.. a n d K . F r o h b e r g (1981). Simplified National Models: T h e Condensed V e r s i o n of t h e Food a n d A g r l c u l t u r e Model S y s t e m of t h e I n t e r n a t i o n a l lnsti- t u t e f o r Applied S y s t e m s Analysis. WP-80-56: IIASA. L a x e n b u r g . A u s t r i a . K e y z e r , M. (1981). T h e I n t e r n a t i o n a l L i n k a g e of Open E x c h a n g e Economies. Doc-

t o r a l D i s s e r t a t i o n . F r e e U n i v e r s i t y . Amsterdam. 1981.

Referenzen

ÄHNLICHE DOKUMENTE

4. Simulative identification of weak points in the generated product-production system and transfer into improvement suggestions for the automated design process To get a

Detailed country information is used to develop a two-season rainfall inventory, to identify present crop-specific technology and input use, t o assess soil

Total production is estimated as a function of the previous year output, a time trend and lagged price ratio.. Ideally one would like to include longer lags to allow

However the exist- ing average technology applied in pulp and paper industry today is far from the most energy efficient available and theoretically it is possible to improve

Our study found that not during the growing season but in the dormant season, storage tissues (stem and roots) of plants at the upper elevational limit had significantly lower levels

However, since as usual in agricultural sector modeling, the data on inputs is not differentiated by type of land use or by crop, and since data on crop output is not land-use

The development of a set of linkable national models for agricultural policy analysis begun at IIASA, in 1977 within the framework of t h e Food and Agricul- ture

row crops* contoured &amp; terraced poor row crops* contoured &amp; terraced good small grain** straight row poor small grainL* straight row good.. small