• Keine Ergebnisse gefunden

depth [m] depth [m]

N/A
N/A
Protected

Academic year: 2022

Aktie "depth [m] depth [m]"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Validation of a global finite element sea ice-ocean model

Ralph Timmermann, Sergey Danilov, Jens Schröter

Alfred Wegener Institute for Polar and Marine Research, Bremerhaven

Finite-Element Sea-ice Ocean Model

1. Introduction

Results from a global Finite Element Sea ice–Ocean Model (FESOM; Timmermann et al., 2009) are evaluated using eulerian and lagrangian datasets We demonstrate that the model captures many of

2. Model Description: Finite Element Sea Ice Ocean Model (FESOM; Timmermann et al. 2009)

hydrostatic, free-surface, primitive-equation Finite Element Ocean Model (grown up from FENA model ofDanilov et al 2004)

• dynamic-thermodynamic Finite-Element Sea-Ice Model (FESIM)

• Heat storage in ice/snow neglected evaluated using eulerian and lagrangian datasets. We demonstrate that the model captures many of

the typical features of sea ice distribution and global ocean circulation, but also shows a couple of weaknesses. Local refinement of the grid is expected to improve results further.

(grown up from FENA model of Danilov et al., 2004)

• tetrahedral mesh, P1-P1 discretization

• global domain, 1.5° horizontal resolution, 26 layers, shaved cells

• Heat storage in ice/snow neglected

• EVP rheology

• atmospheric forcing from NCEP reanalysis 1948-2007

3. Results: Ocean circulation, meridional overturning and bottom water formation

4. Results: Sea ice cover 5. Results: Estimating net freezing rates

Annual mean net growth rateg

Equatorial currents

Sea ice net freezing rates 4

FESOM Eisbildungsrate

Fig. 5: Simulated and observed minimum and maximum sea ice extents

Antarctic Circumpolar Current (ACC)

-2 -1 0 1 2 3

[cm/d]

FESOM Seal

cm/Tag

Daten

m/yr Charassin et al., PNAS (2008)

Fig. 8: Comparison of FESOM freezing rates to estimates derived from repeated salinity profiles obtained from Southern Elephant Seals (Charrassin et al PNAS 2008) Similar agreement for other positions g

ACC: 145 Sv, Gulf Stream: 30 Sv, Kurushio: 30 Sv :  -2.6 %/decade

0 100 200 300

days of year 2004 -3

Tag des Jahres 2004

Fig. 2: 16 yrs of simulated trajectories (200 m depth) Fig. 1: Annual mean velocity at 150 m depth after 10 years of integration (displayed on 3°x3° grid)

Uta Menzel

(Charrassin et al., PNAS 2008). Similar agreement for other positions.

Global meridional overturning circulation (MOC)

−5 15

20 −15−30−25−20 2025

25 0 25

1000

FESOM (after 50 yrs of integration) North Atlantic Deep Water Antarctic Bottom Water formation:

Propagation of a ventilation tracer (constantly restored to 1 in surface layer) in FESOM bottom layer

7. New “Weddell Sea grid”: global with local refinements

FESOM

−30

−30

−25

−25

−20

−20

−15

−15

−10

−10

−5

−5

−5

−10

−10 −15

5 10

−20 5

−25 1510

−5 −30

−10

latitude [°]

depth [m]

−80 −60 −40 −20 0 20 40 60 80

1000 2000 3000 4000 5000 6000

Antarctic Bottom Water (AABW) : -6.5 %/decade

Antarctic Bottom Water (AABW)

−1 −1

13

−5−3 0

Meridional overturning circulation  in the North Atlantic

FESOM (after 50 yrs of integration) North Atlantic Deep Water

Fig. 6: Time series of simulated ice extents and volume

Timmermann et al., 2009 Compares well to CFC‐11 

bottom concentration map of Orsi et al. (1999)

−5

−5

−3

−3

−1

−1 1

3 5 97

−1 11

−1

−3

−5

13

latitude [o]

depth [m]

−80 −60 −40 −20 0 20 40 60 80

1000 2000 3000 4000 5000

6000 FESOM

Fig. 7: FESOM ice thickness validation:

North Atlantic Weddell Sea Verena Haid

Fig. 3: Meridional overturning circulation (global mean and North Atlantic) Fig. 4: Bottom spreading of a numerical tracer released at the surface

6. Conclusions

latitude [o] Antarctic Bottom Water (AABW)

ice thickness validation:

comparison to upward looking sonars (ULS)

6. Conclusions

- good representation of ocean general circulation; subsurface velocities on the small side. Strong AABW cell, ventilation at correct locations.

- summer ice extent too small, winter ice extent excellent. Realistic trends. Ice thickness comparison for Weddell Sea very good, except for northwestern corner.

Fig. 9: Surface grid to be used for study of ice-ocean-atmosphere interaction in the Weddell Sea. 106959 surface nodes, resolution varies from 0.25° to 2.5°.

Further reading:

Charrassin, J-B., et al.: Southern Ocean frontal structure and sea ice formation rates revealed by elephant seals, Proceedings of the National Academy of Sciences, 105(33), 11634-11639, doi: 10.1073/pnas.0800790105, 2008.

Rollenhagen, K., R. Timmermann, T. Janjic, J. Schröter, and S. Danilov: Assimilation of sea ice motion in a Finite Element Sea Ice Model. Journal of Geophysical Resarch (in press)

7. Outlook

• Local refinements in the Weddell Sea

• Implementation of ice shelf-ocean interaction

Contact:

Ralph Timmermann (Ralph.Timmermann@awi.de), Alfred Wegener Institute for Polar and Marine Research, Bussestraße 24, 27570 Bremerhaven, Germany

Timmermann, R., Danilov, S., Schröter, J., Böning, C., Sidorenko, D., Rollenhagen, K.(2009): Ocean circulation and sea ice distribution in a finite element global sea ice -- ocean model, Ocean Modelling, doi:10.1016/j.ocemod.2008.10.009.

• Coupling to COSMO (coop. with D. Schröder / G. Heinemann, Uni Trier)

Referenzen

ÄHNLICHE DOKUMENTE

Basal melt rates for Larsen C Ice Shelf in the FESOM simulations (48 Gt/yr mass loss, 1.0 m/yr mean melting) are therefore considerably higher than in BRIOS, from which 38 Gt/yr

The present paper describes a contribution to this topic, showing how an analytic model based on depth-averaged shock theory can capture the im- pact force of a granular

Examples of analyses are shown considering a 1:1 slope reinforced by a triangular distribution of tree root blocks where the effect of both additional cohesion and block morphology

Assimilation of sea-ice drift into a finite element dynamic-thermodynamic sea-ice model of the entire Arctic using a Singular Evolutive Interpolated Kalman (SEIK) filter is

Comparison of simulated and observed monthly mean ocean bottom pressure time series at locations on the northern slope of the Atlantic- Indian Ridge (top) and in the Cape Basin

5 Comparison of the improvement or error reduction due to assimilation at the fourth analysis time with the global SEIK analysis (right) and with LSEIK with a localization-radius

• Pseudo-nitzschia lineola dominated despite heavy grazing pressure because of its exceptionally high growth rates. • Grazers discriminated between morphological similar species of

sequence of sand layers at 384-380, 363-360, 357-353, 351-344, 340-337, graded, fine to middle sand, fining upwards, sharp lower boundary, dark greenish grey. gravel layer at