• Keine Ergebnisse gefunden

„Kochsalz Chemie, Eigenschaften und Bedeutung“

N/A
N/A
Protected

Academic year: 2021

Aktie "„Kochsalz Chemie, Eigenschaften und Bedeutung“"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Philipps-Universität Marburg Fachbereich Chemie

Übungen im Experimentalvortrag

Leitung: Prof. Dr. B. Neumüller, Dr. P. Reiß

Protokoll zum Experimentalvortrag

„Kochsalz

Chemie, Eigenschaften und Bedeutung“

Vortrag vom 12.01.2006

erstellt und vorgelegt von:

Andrea Bontjer Am Zehntenstein 3

65549 Limburg

Hinweis:

Dieses Protokoll stammt von der Seite www.chids.de (Chemie in der Schule).

Dort können unterschiedliche Materialien für den Schulunterricht heruntergeladen werden, unter anderem hunderte von Experimentalvorträgen so wie der vorliegende:

http://online-media.uni-

marburg.de/chemie/chids/veranstaltungen/uebungen_experimentalvortrag.html

(2)

Inhalt

1. Einleitung 2

2. Was ist Kochsalz? 4

3. Chemie und Struktur 7

4. Bedeutung und Verwendung des Kochsalzes im Laufe der Geschichte

9

4.1 In vorindustrieller Zeit 9

4.2 Beginn der Industrialisierung 11

4.3 Aktuelle Bedeutung 12

5. Kochsalzgewinnung 15

6. Funktionen des Kochsalzes im menschlichen Körper 17

7. Schulrelevanz des Themas 19

8. Literatur 19

(3)

1. Einleitung

„Salz ist unter allen Edelsteinen, die uns die Erde schenkt, der Kostbarste.“, sagte Justus von Liebig über das eigentlich doch eher alltägliche Kochsalz. Und auch Cassiodor, ein römischer Staatsmann aus dem 6. Jahrhundert, meinte: „Auf Gold kann man verzichten, nicht aber auf Salz.“

Kochsalz wurde lange als das „weiße Gold“ bezeichnet, denn es war bis ins 19.

Jahrhundert ein wertvolles und knappes Gut. Städte mit Salzvorkommen waren mit Macht und Wohlstand ausgestattet und noch heute erkennt man die „Salzstädte“ an ihren Namen, die die Wortteile „Salz“ oder „Hall“ (von keltisch hal: Salz) enthalten, z.B. Halle, Bad Reichenhall, Salzburg oder Hallstatt. Auch unser etwas altmodisches Wort für Lohn/ Gehalt „Salär“ lässt sich vom Salz ableiten: Früher wurde römischen Legionären ein Teil ihres Soldes in Form von Salzgeld (salarium) ausgezahlt.

Der Salzhandel war lange Zeit ein wichtiger Motor für die Wirtschaft. Es wurden Salzstraßen angelegt, auf denen das Salz z.B. von Halle nach Köln oder von Bad Reichenhall über München nach Augsburg transportiert wurde. Auch internationaler Salzhandel wurde betrieben: So wurde Meersalz vom Mittelmeer ins ferne Asien, Persien und Arabien exportiert.

Wie alle knappen Ressourcen war auch das Kochsalz früher heftig umkämpft und es wurden sogar Salzkriege geführt – z.B. im 17. Jahrhundert der Salzkrieg Salzburgs gegen Bayern. Bereits im 13. Jahrhundert wurden an den Salzabbaustätten Befestigungsanlagen gebaut, um sie vor Raub zu schützen.

Auch wenn die Verwendung des Kochsalzes heute eine andere ist als zu früheren

Zeiten und auch wenn es heute durch verbesserte Abbaumöglichkeiten in

ausreichendem Maße zur Verfügung steht, ist die Bedeutung des Kochsalz in Alltag

und Industrie nach wie vor groß. Deshalb soll ein Schwerpunkt des Vortrages auf der

Bedeutung und Verwendung des Kochsalzes im Laufe der Geschichte liegen. Auch

die Kochsalzgewinnung und die Funktionen des Natriumchlorids im menschlichen

Körper sollen behandelt werden. Zunächst soll aber auf die Chemie und Struktur des

Natriumchlorids eingegangen werden.

(4)

2. Was ist Kochsalz?

Der chemische Name des Kochsalzes, im alltäglichen Sprachgebrauch oft auch nur als Salz bezeichnet, ist Natriumchlorid, die Summenformel lautet NaCl. Tatsächlich kann es aus den Elementen Natrium und Chlor dargestellt werden, was im ersten Versuch gezeigt werden soll.

Versuch 1: Darstellung von Natriumchlorid aus den Elementen

Geräte: Küchenmesser, Krepppapier, Pinzette, kleines Reagenzglas mit passender Reagenzglasklammer, Filmdöschen mit passendem Gummistopfen, Kanülen, Einmalspritzen (20 ml, 10 ml), Bunsenbrenner, Hammer o.ä., 2 Reagenzgläser, Pipetten, Blumenspritze

Chemikalien: Natrium, Kaliumpermanganat KMnO

4

, Salzsäure HCl

(aq)

(w = 0,35), Silbernitratlösung AgNO

3(aq)

(w = 0,01), Salpetersäure HNO

3(aq)

(w = 0,65), Natriumcarbonat Na

2

CO

3

, Aktivkohleadsorber (Spritze ohne Kolben, gefüllt mit Glaswolle und gekörnter Aktivkohle)

Durchführung: Zunächst wird das Chlorgas hergestellt (um evt. austretendes

Chlorgas niederzuschlagen, bereitet man eine Blumenspritze mit gesättigter

Natriumcarbonatlösung vor). Dazu gibt man eine Spatelspitze Kaliumpermanganat in

das Filmdöschen und verschließt dieses mit dem Gummistopfen, durch den man

zwei Kanülen gesteckt hat. In die eine Kanüle steckt man die 20 ml-Spritze, deren

Kolben man vorher eingefettet hat, damit dieser gut beweglich ist. In die zweite

Kanüle steckt man die 10 ml-Spritze, in die man 2 ml Salzsäure eingezogen hat

(danach Spitze gut abwischen). Dann tropft man langsam die Salzsäure in das

Filmdöschen. Es folgt eine Gasentwicklung im Filmdöschen. Das entstehende

Chlorgas drückt sich in die leere Spritze, so dass 20 ml Chlorgas aufgefangen

werden. Dann entfernt man die Spritze und steckt eine neue, verschlossene Kanüle

auf die Spritze. Das Chlorgas lässt sich so mehrere Stunden bis zur Verwendung

lagern. Auf die Kanüle im Gummistopfen steckt man den Kohleadsorber, um nicht

benötigtes Chlorgas aufzufangen.

(5)

Zur Natriumchloriddarstellung entrindet man ein kleines Stück Natrium, so dass ein etwa reiskorngroßes Stück Natrium erhalten wird. Dieses gibt man in das kleine Reagenzglas und schmilzt es über der Bunsenbrennerflamme. Dann drückt man das Chlorgas aus der Spritze mit Kanüle in das Reagenzglas hinein. Sobald es zu einem intensiven Leuchten kommt, nimmt man das Reagenzglas aus der Flamme. Wenn die Reaktion abgeklungen ist, legt man das Reagenzglas zwischen zwei Schichten Krepppapier und zerschlägt es vorsichtig. Man gibt ein Stückchen Glas, an dem die entstandene weiße Substanz haftet, in ein Reagenzglas mit entionisiertem Wasser.

Die Substanz löst sich auf und die Lösung wird in ein zweites Reagenzglas abdekantiert. Dann prüft man auf Chloridionen: Die Lösung wird mit wenig Salpetersäure angesäuert und mit einigen Tropfen Silbernitratlösung versetzt. Es fällt ein weißer Niederschlag aus, der auf Chloridionen hinweist.

Auswertung:

Energetisch kann die Reaktion und die Bildung des festen Ionenkristalls folgendermaßen beschrieben werden:

Es muss Energie aufgebracht werden, um das feste Natriummetallgitter zu zerstören und einzelne, gasförmige Na-Atome zu erhalten (Sublimationsenergie) und um die Chlormoleküle zu spalten (Dissoziationsenergie). Die Na-Atome geben unter Zufuhr von Energie (Ionisierungsenergie) je ein Atom an die Chloratome ab, die das Elektron unter Energieabgabe aufnehmen (Elektronenaffinität). Es entstehen also Natrium- und Chlorid-Ionen. Bildet sich schließlich aus den entstandenen Ionen ein festes Ionengitter wird Energie (Gitterenergie) frei, dessen Wert höher ist als die Summe der vorher zugeführten Energiebeträge.

Natrium und Chlor reagieren unter Wärme- und Lichtentwicklung zu Natriumchlorid. Es wird also ein großer Energiebetrag dabei frei.

0 G NaCl Cl

2 / 1

Na

(s)

2(g)

  



(s)

 

Dies deutet darauf hin, dass die entstehende Verbindung sehr energiearm und daher sehr stabil ist. Wie in der Versuchsbeschreibung zu sehen, muss jedoch zunächst Energie aufgebracht werden, um die Reaktion zu starten.

Abb. 1: Reaktion von Natrium und Chlor (Aufbau entspricht nicht dem im Versuch) (aus:

www.theochem.uni-duisburg.de)

(6)

Der reale Vorgang der Bildung eines Ionenkristalls aus den Elementen stimmt in seiner zeitlichen Abfolge nicht mit den hier beschriebenen Schritten überein. Bei energetischen Betrachtungen ist aber der Weg, auf dem man vom Ausgangs- zum Endzustand gelangt, ohne Bedeutung.

Die Energiebeträge sind folgendem Schema zu entnehmen:

Abb. 2: Born-Haber-Kreisprozess für Natriumchlorid

Die freiwerdende Gitterenergie ist für die Wärme- und Lichtentwicklung bei der NaCl- Synthese verantwortlich. Sie führt zur Bildung eines energiearmen und damit stabilen Ionenkristalls. Die Triebkraft für die Reaktion ist die Bildung stabiler Ionenkristalle und nicht die Tendenz zur Erreichung der Edelgaskonfiguration. Der Kristall wird durch starke elektrostatische Kräfte (Coulombkraft) zusammen gehalten. Zum Auflösen der Kristallstruktur sind hohe Energiebeträge nötig. Der Schmelzpunkt des Natriumchlorids beträgt ca. 800°C.

Als Beweis, dass sich tatsächlich Ionen gebildet haben, wurde Chlorid nachgewiesen. Dieses fällt in salpetersaurer Lösung mit Silbernitrat zum schwerlöslichen Silberchlorid aus, das als weißer Niederschlag sichtbar ist:

121 kJ/mol

- 411 kJ/mol

Standardbildungsenthalpie Gitterenergie -787 kJ/mol

108 kJ/mol Sublimations-

enthalpie Ionisierungs- energie

496 kJ/mol

Elektronen- affinität

-349 kJ/mol

Halbe

Dissoziations- enthalpie

Na

+(g)

+ Cl

-(g)

Na

(g)

+ Cl

(g)

Na

(s)

+ ½ Cl

2(g)

NaCl

(s)

(7)

) s ) (

aq ( ) aq

(

Cl AgCl

Ag

  



3. Chemie und Struktur des Natriumchlorids

Die Anionen bilden eine dichtgepacktes kubisch-flächenzentriertes Gitter, die Kationen füllen dabei die Oktaederlücken auf. Umgekehrt bilden auch die Natrium- Kationen ein kubisch-flächenzentriertes Gitter, dessen Oktaederlücken durch Chlorid-Anionen aufgefüllt werden.

.

Wie oben beschrieben sind zum Aufbrechen der Kristallstruktur hohe Energiemengen nötig. Im täglichen Leben hat aber jeder die Erfahrung gemacht, dass die Salzkristalle leicht zerstörbar sind, indem man sie in Wasser gibt - sie lösen sich auf. Warum ist dies auch ohne Energiezufuhr von außen möglich?

Natriumchlorid bildet ein Ionengitter, dessen Plätze von den negativ geladenen Chlorid- und den positiv geladenen Natrium-Ionen eingenommen werden. Jedes Chlorid-Ion ist dabei oktaedrisch von sechs Natrium-Ionen

umgeben und umgekehrt. Die

Koordinationszahl beträgt für beide Ionenarten also sechs.

Abb. 3: Elementarzelle des Natriumchlorids (aus: www.theochem.uni-duisburg.de)

Abb. 4: Kubisch-

flächenzentriertes Gitter (aus: www.wikipedia.org)

Beim kubisch-flächenzentrierten Kristallgitter sind acht Atome (bzw. hier Ionen) so angeordnet, dass sie die Ecken eines Würfels bilden. Zusätzlich sind insgesamt sechs weitere Atome mittig auf den Würfelflächen so angeordnet, dass bei Verbindung dieser ein Oktaeder entsteht. Im Zentrum dieses Oktaeders befindet sich das Ion des Bindungspartners.

Die Chlorid-Ionen sind etwa doppelt so groß wie die Natrium-Ionen.

Chlorid-Ion Natrium-Ion

Abb. 5: Struktur des NaCl unter Berücksichtigung der

Ionenradien (aus: www.quarks.de)

(8)

Gibt man Kochsalz in Wasser, lösen sich die Kristalle auf, sie dissoziieren zu Ionen:

) aq ( ) aq O (

) H s

(

Na Cl

Cl

Na

   

2

Anmerkung: Die Abbildung entspricht nicht ganz den wirklichen Verhältnissen in der Lösung, obschon dies in den Lehrbüchern meist so dargestellt wird. Die Natrium- Ionen sind oktaedrisch von sechs Wassermolekülen umgeben, wobei sich kovalente Bindungen mit ionischem Anteil ausbilden, während die Wassermoleküle um die Chlorid-Ionen durch Wasserstoffbrücken angelagert sind.

Der Lösevorgang ist auch umkehrbar, das heißt, dass aus einer Salzlösung durch Wasserentzug (Verdunstung) wieder Kristalle entstehen können:

Demonstration 1: Kristallbildung aus einer gesättigten Kochsalzlösung

Geräte: 250 ml-Becherglas, Glasstab, Faden oder Kordel Chemikalien: gesättigte Natriumchloridlösung

Durchführung: In das zur Hälfte mit NaCl-Lösung gefüllte Becherglas lässt man einen Faden, der am Glasstab befestigt ist, reinhängen. Nach einigen Tagen beginnen am Faden außerhalb der Lösung NaCl-Kristalle zu wachsen.

Auswertung: Die Kochsalzlösung wird von dem Faden wie von einem Docht aufgesogen. Das Wasser verdunstet, die Lösung wird übersättigt und Kristallbildung tritt ein.

Abb. 6: Lösevorgang eines Ionengitters (aus: www.chempage.de)

Beim Lösevorgang lagern sich Wassermoleküle mit

den entgegengesetzt geladenen Enden des

Wasserdipols um die Ionen an, die Ionen werden

hydratisiert. Dabei wird Hydratationsenthalpie frei,

die die Energie zum Aufbrechen der Ionenbindung

liefert.

(9)

Ob eine Kochsalzlösung den elektrischen Strom leitet, soll im nächsten Versuch geklärt werden.

Versuch 2: Leitfähigkeit einer Natriumchloridlösung

Geräte: Wechselstromquelle, Steckkabel, Amperemeter, 2 Graphitelektroden mit Klemmen, kleines Becherglas, Glasstab, Hebebühne, Stativmaterial

Chemikalien: entionisiertes Wasser, Natriumchlorid NaCl

Durchführung: Man füllt das Becherglas mit ca. 50 ml entionisiertem Wasser und befestigt die Elektroden so am Stativ, dass sie in das Wasser ragen. Dann legt man eine Wechselspannung von etwa 5 V an. Das Amperemeter (Messbereich 3 A) schlägt nicht aus, das heißt, dass keine elektrische Leitfähigkeit messbar ist. Man schaltet die Stromquelle ab und gibt einen großen Spatel NaCl in das Wasser und rührt bis es sich löst. Wieder legt man eine Spannung an. Diesmal zeigt das Amperemeter eine Stromstärke von etwa 2 A an, die Natriumchloridlösung leitet also den elektrischen Strom.

Auswertung: Im entionisierten Wasser liegen durch die geringe Eigendissoziation des Wassers nur wenige H

3

O

+

- und OH

-

-Ionen vor. Deshalb leitet entionisiertes Wasser den elektrischen Strom kaum (die geringe Leitfähigkeit ist mit den hier verwendeten Geräten nicht messbar, weshalb es zu keinem Ausschlag kommt).

In der Natriumchloridlösung liegen die Ionen hydratisiert vor und können als bewegliche Ladungsträger fungieren. Legt man eine Spannung an, wandern die Ionen (von griech. ion: der Wanderer) zu den Elektroden: die Kationen zur Kathode, die Anionen die Anode. Dort nehmen sie ein Elektron auf bzw. geben eines ab. Auf diese Weise leiten sie Elektronen durch die Lösung von einer Elektrode zur anderen und halten so den Stromfluss aufrecht. Die Kochsalzlösung leitet also den elektrischen Strom.

Auch eine NaCl-Schmelze leitet den elektrischen Strom, da in der Schmelze das Ionengitter zerstört ist und die Ionen frei beweglich vorliegen.

4. Bedeutung des Kochsalzes im Laufe der Geschichte

(10)

4.1 Vorindustrielle Zeit

In vorindustrieller Zeit wurde das Kochsalz zum Würzen von Speisen und – noch wichtiger – zum Konservieren von Lebensmitteln wie Fleisch, Fisch und Gemüse verwendet: „Bey dem Einsalzen bestreut man den einzusalzenden Körper mit Salz, welches sich dann in den wässrigen Theilen desselben auflöst und ihn durchdringt, oder man legt ihn in Salzlösung, von der er auf ähnliche Art durchdrungen wird, und dann weit weniger freywilliger Zersetzung unterworfen ist.“, schrieb J.C. Leuchs in

„Die Lehre der Aufbewahrung und Erhaltung aller Körper“ aus dem Jahr 1820. Aber natürlich war dieser Effekt auch schon sehr viel früher bekannt. Die Konservierung besteht in erster Linie darin, dass durch das Salz bzw. durch eine konzentrierte Salzlösung das Wasser aus den Bakterienzellen, die die Lebensmittel angreifen und zu ihrem Verderb führen können, heraustritt und diese dadurch absterben. Dies lässt sich anhand eines einfachen Modellversuchs zeigen:

Demonstration 2: Osmotische Aktivität einer Kochsalzlösung

Geräte: Becherglas, Schweinedarm, Bindfaden

Chemikalien: Leitungswasser, gesättigte Natriumchloridlösung

Durchführung: Ein Stück Schweinedarm wird mit Leitungswasser gefüllt und an beiden Enden mit Bindfaden fest zugebunden. Dann legt man ihn in die Kochsalzlösung. Man sieht, dass das Wasser aus dem Darm in die Salzlösung fließt (Schlierenbildung). Nach einiger Zeit (1-2 Stunden) ist das Wasser aus dem Darm weitgehend heraus diffundiert.

Auswertung: Das Wasser strömt zu der Lösung mit der höheren Salzkonzentration, die „Bakterienzelle“ verliert Wasser. Dieses Phänomen bezeichnet man als Osmose.

Sie ist definiert als einseitig gerichtete Diffusion eines Lösungsmittels durch eine selektiv permeable Membran (für Wasser durchlässig, für Salz-Ionen undurchlässig).

Dabei wird immer ein Konzentrationsausgleich angestrebt.

(11)

Dies geschieht so lange bis sich die Konzentrationen angeglichen haben. Dieser Prozess läuft freiwillig ab, man bezeichnet ihn als passiven Transport. Die Triebkraft der Diffusion ist die Zunahme der Entropie. Die Steighöhe in den beiden Schenkeln des U-Rohres unterscheidet sich. Durch die Gewichtskraft baut sich bei zunehmender Höhendifferenz ein hydrostatischer Druck auf, der schließlich ein weiteres Eindiffundieren von Lösungsmittel verhindert. Diese Druckdifferenz bezeichnet man als osmotischen Druck.

4.2 Beginn der Industrialisierung

Mit Beginn der Industrialisierung war das Salz als Konservierungsmittel immer noch sehr wichtig, aber es kam eine neue, für die sich entwickelnde chemische Industrie viel bedeutendere Verwendung hinzu: Die Synthese von Soda (Natriumcarbonat) aus Kochsalz. Die Soda wurde in großen Mengen zur Herstellung von Seife und Glas benötigt und hatte deshalb eine Schlüsselfunktion in der damaligen Zeit inne. So stellte Justus von Liebig um 1850 fest: „Die Fabrikation der Soda aus gewöhnlichem Kochsalz kann als Grundlage des außerordentlichen Aufschwunges betrachtet werden, welche die moderne Industrie nach allen Richtungen genommen hat.“ Die historische Synthese der Soda aus Kochsalz erfolgte über ein Zwischenprodukt, das Natriumsulfat: Natriumchlorid  Natriumsulfat  Natriumcarbonat .

Versuch 3: Darstellung von Natriumsulfat

Geräte: Reagenzglas, Reagenzglashalter, Pipette, pH-Papier

Abb. 7: Osmose

(aus:www.ustboniface.mb.ca, verändert)

Im U-Rohr befindet sich links von der Membran eine schwach konzentrierte Lösung, rechts davon eine stark konzentrierte Lösung. Ein Angleichen der Konzentrationen ist nur möglich, indem das Lösungsmittel in die konzentrierte Lösung diffundiert.

Dadurch nimmt das Volumen der zuvor stärker

konzentrierten Lösung zu, das der zuvor schwächer

konzentrierten Lösung ab.

(12)

Chemikalien: Natriumchlorid NaCl, Schwefelsäure H

2

SO

4(konz.)

Durchführung: Man gibt etwas Natriumchlorid in das Reagenzglas und gibt einige Tropfen konz. Schwefelsäure dazu. Es setzt eine heftige Gasentwicklung ein. Hält man ein angefeuchtetes pH-Papier über die Reagenzglasöffnung, färbt es sich rot.

Auswertung: Beim dem entstandenen Gas handelt es sich um HCl-Gas, das mit Wasser sauer reagiert. Die Reaktion verläuft nach der folgenden Gleichung:

) g ( ) solv ( 4 2 )

l ( 4 2 ) s

(

H SO Na SO HCl

NaCl

2    



 

Das hier entstandene Natriumsulfat lässt sich im Rahmen des Vortrages nicht nachweisen. Durch das HCl-Gas lässt sich aber darauf schließen, dass die Reaktion so abgelaufen ist.

Das Verfahren zur Herstellung von Natriumsulfat wurde von Johann Rudolf Glauber (1604-1670) entwickelt.

In der historischen Synthese wurde das gewonnene Natriumsulfat mithilfe des Leblanc-Verfahren (1790 von Nicolas Leblanc entwickelt) zum Natriumcarbonat, der Soda:

) g ( 2 ) s ) (

s 3( 2 )

s ( ) s ( 3 )

s ( 4

2

SO CaCO 2 C Na CO CaS CO

Na    

 

Problematisch waren bei diesem Verfahren der hohe Energieverbrauch und das Auftreten von Calciumsulfid, das deponiert wurde und dann bei Wasserzufuhr das giftige H

2

S entwickelte. Das Leblanc-Verfahren wird deshalb heute nicht mehr angewandt.

4.3 Aktuelle Bedeutung

Auch heute hat das Kochsalz, neben seiner Verwendung als Speisesalz, viele

Einsatzmöglichkeiten: in der Medizin (Herstellung physiologischer Kochsalzlösung),

als Streusalz und zur Wasserenthärtung (Ionenaustauscherregenerierung, z.B. in

Spülmaschinen). In der chemischen Industrie wird es bei der Darstellung von

Natriumcarbonat (Soda) und Natriumhydrogencarbonat und von Chlor und

Natronlauge benötigt, die jeweils wichtige Ausgangsstoffe für weitere Produkte sind:

(13)

Abb. 8: Verwendungsmöglichkeiten von Natriumcarbonat, Natriumhydrogencarbonat, Chlor und Natronlauge

Zur Darstellung von Natriumcarbonat wird heute das Solvay-Verfahren angewendet, bei dem Ammoniak und Kohlendioxid in eine Kochsalzlösung geleitet werden. Das relativ schwerlösliche Natriumhydrogencarbonat fällt dabei aus. NaHCO

3

wird bei 200°C erhitzt, wobei Natriumcarbonat entsteht. Das Kohlendioxid wird wieder dem Prozess zugeführt.

) g ( 2 ) g ( 2 ) s ( 3 2 )

s ( 3

) aq ( ) 4

aq 3( )

g ( 2 ) g ( 3 2

) aq (

CO O

H CO Na NaHCO

2

Cl NH NaHCO

CO NH

O H NaCl



 



Die beiden anderen Produkte, Chlor und Natronlauge, werden beide bei der Elektrolyse von wässriger NaCl-Lösung gewonnen. Die Gesamtgleichung lautet:

mol / kJ 224 H

Cl H

NaOH 2

O H 2 NaCl

2

(aq)

2

 

(aq)

2(g)

2(g)

  

Versuch 4: Darstellung von Chlor und Natronlauge durch Elektrolyse einer Natriumchloridlösung

Natronlauge Seife

Reinigungsmittel

Papier Chlor Kunststoffe Wasseraufbereitung

Lösungsmittel Desinfektionsmittel

Natriumhydrogenkarbonat Feuerlöschpulver

Tierfutter

Backpulver Natriumcarbonat

Farbstoffe

Wasch- und Reinigungsmittel

Glas

(14)

Geräte: U-Rohr aus Glas, Eisenelektrode, Graphitelektrode, Krokodilklemmen, Steckkabel, Gleichstromquelle, Pinzette, Stativmaterial, Kaliumiodid-Stärke-Papier Chemikalien: gesättigte Natriumchloridlösung NaCl

(aq)

, Phenolphthaleinlösung

Durchführung: Das U-Rohr wird mit der gesättigten NaCl-Lösung, der man etwas Phenolphthaleinlösung als Indikator zugibt, gefüllt. In die eine Öffnung des U-Rohrs ragt die Eisen-, in die andere Öffnung die Graphitelektrode. Dann legt man eine Spannung von 5 Volt an. Bald setzt an beiden Elektroden eine Gasentwicklung ein.

Die Lösung im Kathodenraum (Eisenelektrode) färbt sich rot. Das Gas, das an der Graphitelektrode aufsteigt, färbt ein angefeuchtetes Kaliumiodid-Stärke-Papier blau.

Auswertung:

Abb. 9: Elektrolyse von Natriumchloridlösung

Die Eisenelektrode ist die Kathode. An ihr wird Wasserstoff abgeschieden. Dieser bildet sich durch Reduktion aus H

3

O

+

-Ionen:

O H 2 H e

2 O

H

2

3 (aq)

 

2(g)

2

Die H

3

O

+

-Ionen stammen aus der Eigendissoziation des Wassers:

) aq ( )

aq 3 (

2

O H O OH

H

2

Dadurch, dass die H

3

O

+

-Ionen dem Gleichgewicht entzogen werden, verschiebt sich das Gleichgewicht nach rechts, die Konzentration der OH

-

- Ionen nimmt zu, es bildet sich Natronlauge (Natriumionen sind bereits in der NaCl-Lösung enthalten). Die Natronlauge (bzw. die basische Reaktion) wird mit Phenolphthalein nachgewiesen.

Es kommt zu einer Rotfärbung.

An der Graphitelektrode, der Anode, werden Chlorid-Ionen zu Chlor oxidiert, das als Gas entweicht.

   Cl  2 e

Cl

2 ( aq ) 2 ( g )

(15)

Der Nachweis von Chlor wird mit Kaliumiodid-Stärke-Papier durchgeführt. Chlor oxidiert das Iodid zu Iod. Dieses bildet mit der Stärke eine blaue Einschlussverbindung.

Warum scheidet sich an der Kathode kein Natrium ab, sondern Wasserstoff? Dies ist auf die hohe Abscheidungsspannung für Natrium an einer Eisenelektrode zurückzuführen. Wasserstoff hat eine wesentlich niedrigere Abscheidungsspannung und wird deshalb gebildet.

In der Technik werden drei Verfahren zur Darstellung von Chlor und Natronlauge durch Elektrolyse angewandt: Amalgam, Diaphragma- und Membranverfahren.

Beim Amalgamverfahren wird anstelle einer Eisenelektrode eine Quecksilberelektrode verwendet, an der sich bei der Elektrolyse Natrium abscheidet.

Im Gegensatz zur Eisenelektrode bildet sich hier an der Kathode also Natrium und kein Wasserstoff. Die Abscheidungsspannung für Natrium ist hier geringer als für Wasserstoff. Das Natrium löst sich im Quecksilber und bildet ein Amalgam.

Abb. 10: Amalgamverfahren

Das Diaphragmaverfahren ähnelt dem Aufbau im obigen Versuch, die Elektrodenräume sind durch eine ionendurchlässige Membran aus Keramik oder Asbest getrennt. Der Nachteil dieses Verfahren ist, dass eine nur 5%ige Natronlauge erhalten wird, die mit NaCl verunreinigt ist.

Eine reine, wenn auch nicht sehr hochprozentige Natronlauge erhält man durch das Membranverfahren, bei dem eine kationendurchlässige Membran verwendet wird. In Das Amalgam wird in hochreines Wasser geleitet, wo das Natrium mit dem Wasser reagiert und Natronlauge bildet:

) g ( 2 ) aq ( 2

) s

(

2 H O 2 NaOH H

Na

2    

Der Vorteil des Verfahrens ist, dass reine,

50%ige Natronlauge erhalten wird. Der

Einsatz des giftigen Quecksilbers ist jedoch

nachteilig.

(16)

den Kathodenraum wird entionisiertes Wasser gefüllt, durch die Membran können nur die Natrium-Ionen, nicht die Chlorid-Ionen aus dem Anodenraum. Da das Membranverfahren den geringsten Energieverbrauch von den drei Verfahren ausweist, wird es heute bevorzugt angewendet.

5. Gewinnung von Kochsalz

Das Salzwasser der Meere ist Ursprung aller Salzvorkommen. Meerwasser enthält 3,5% Natriumchlorid, das, wenn das Wasser verdunstet, auskristallisiert. Im Handel befindlich sind drei verschiedene Salzsorten, auf deren Gewinnung im Folgenden eingegangen werden soll: Meersalz, Steinsalz und Siedesalz.

Zur Gewinnung von Meersalz wird das Meerwasser durch Pumpen oder den Tidenhub in spezielle Becken (Meeressalinen oder Salzgärten) befördert, wo das Wasser verdunstet und das Salz (NaCl mit geringen Mengen anderer Salze wie KCl, MgCl

2

und MgSO

4

) auskristallisiert. Dies wird, wegen des trockenen und warmen Klimas, v.a. im Mittelmeerraum und an anderen südlichen Küsten durchgeführt. Der Anteil des Meersalzes an der Weltproduktion beträgt 30%.

Das Steinsalz entstand vor 100-200 Mio. Jahren durch Verdunstung der Meere. Da auch im Bereich des heutigen Festlandes in Mitteleuropa zu Urzeiten Meere vorhanden waren, finden sich hier heute riesige Vorkommen an Steinsalz. Bei der Verdunstung der Meere (oder Meeresabschnitte, die durch sogenannte Barren vom offenen Wasser abgetrennt waren) setzten sich zunächst schwerlösliche Salze wie Kalk (CaCO

3

) und Gips (MgSO

4

) ab. Dann wurde das Natriumchlorid und schließlich

Abgebaut wird das Steinsalz untertage, beispielsweise im Kammerverfahren. Dabei wird eine Hauptförderstrecke in den Salzstock gegraben, von der aus rechts und leichter lösliche Kalisalze abgelagert. Darüber wurden verschiedene Erd- und Gesteinsschichten

abgelagert, so dass die heutigen

Steinsalzvorkommen in 70-1000 m Tiefe liegen.

Abb. 11: Entstehung der

Steinsalzvorkommen (aus: Noll

1998/1)

(17)

Zwischen den Kammern bleiben Reste als Stabilisierung des Kammersystems stehen.

Das Siedesalz stellt ebenfalls Steinsalz dar. Zur Gewinnung wird ein Steinsalzvorkommen angebohrt und es wird Wasser hineingepumpt, wobei sich eine gesättigte Sole bildet, die an die Erdoberfläche gepumpt wird. Die Sole lässt man eindampfen und trocknen und man gewinnt schließlich das trockene Siedesalz.

Wird das Salz als Speisesalz verwendet, wird es gereinigt und meist von Begleitsalzen befreit. Oft werden Zusatzstoffe zugegeben: z.B. Kaliumiodat (jodiertes Speisesalz), Kaliumfluorid und Folsäure als Nahrungsergänzungsmittel, Natriumnitrit zur Herstellung von Pökelsalz oder Natriumferrocyanid (E 535) als Antiklumpmittel und Rieselhilfe.

Weltweit werden jährlich etwa 215 Mio. t Kochsalz gefördert, in Deutschland sind es ca. 15 Mio. t (davon 90% Steinsalz und 10% Siedesalz). Nur 3% des Kochsalzes werden als Speisesalz verwendet, der größte Teil findet Anwendung in der chemischen Industrie. Die Vorräte in deutschen Salzlagerstätten sind praktisch unbegrenzt.

Industriesalz 80%

Auftausalz 12%

Gewerbesalz Speisesalz 5%

3%

Abb. 12: Verwendung von Kochsalz

6. Funktionen des Kochsalz im menschlichen Körper

Im menschlichen Körper sind etwa 200 g Natriumchlorid gespeichert. Täglich werden

über den Harn und den Schweiß etwa 3 g Natriumchlorid ausgeschieden, die über

(18)

die Nahrung wieder zugeführt werden müssen. Zum „Detektieren“ des Kochsalzes in der Nahrung gibt es spezielle Geschmackspapillen auf der Zunge für den Geschmack „salzig“.

Das Natriumchlorid hat verschiedene Funktionen im Körper: Die Natriumionen sind an der Regulation des Wasserhaushaltes, der Reizleitung in den Nervenzellen und am Knochenaufbau beteiligt. Die Chloridionen dienen der Produktion der Magensäure (HCl

(aq)

).

Natriumchlorid ist in unterschiedlichen Mengen in den Lebensmitteln enthalten.

Natürliche, unverarbeitete Lebensmittel wie Obst, Gemüse, Kartoffeln und Reis enthalten kaum Natriumchlorid, während es in zum Teil großen Mengen in Wurst, Käse, Fischkonserven und Brot eingesetzt wird. Es dient als Geschmacksverstärker, Konservierungsmittel oder zur Verbesserung der Backeigenschaften.

Versuch 5: Nachweis von Natrium und Chlorid in Lebensmitteln

Geräte: Reagenzgläser, Pipetten, Porzellanschalen

Chemikalien: Brot, Wurst, entionisiertes Wasser, Salpetersäure HNO

3(aq)

(w = 0,65), Silbernitratlösung AgNO

3aq

(w = 0,01 ), Methanol

0,2 g Huhn

5,0 g Schinken

6,3 g Matjeshering

0,05 g Kartoffeln

Tab. 1: Kochsalzgehalt in Lebensmitteln

0,002 g Apfel

0,01 g Feldsalat

0,06 g Joghurt

0,02 g Reis

1,25 g Brötchen

1,7 g Bockwurst

2,0 g Gouda

Salzgehalt

Lebensmittel (je 100 g)

(19)

Durchführung: Zum Chloridnachweis gibt man etwas Brot bzw. Wurst in entionisiertes Wasser und lässt dies einige Minuten stehen. Man dekantiert die entstandene Lösung in ein Reagenzglas, säuert mit Salpetersäure an und gibt einige Tropfen Silbernitratlösung hinzu. Es fällt ein weißer Niederschlag aus, der auf Chloridionen hinweist.

Zum Natriumnachweis gibt man etwas Brot bzw. Wurst mit 1-2 ml Methanol in eine Porzellanschale und entzündet den Methanol. Dieser brennt mit einer gelben Flamme, was auf das Vorhandensein von Natriumionen hinweist.

Auswertung: Sowohl Brot als auch Wurst enthalten Natrium- und Chlorid-Ionen.

Die Chlorid-Ionen werden durch den Silberchloridniederschlag nachgewiesen (s.

Versuch 1), die Natrium-Ionen durch die Gelbfärbung der Methanolflamme.

7. Schulrelevanz des Themas „Kochsalz“

Das Thema Kochsalz kann im Chemieunterricht in den Jahrgangsstufen 9 und/ oder 10 behandelt werden. Der hessische Lehrplan für Gymnasien sieht für die 9.

Jahrgangsstufe die Elementgruppen (hier: Alkalimetalle und Halogene), den Salzbegriff, sowie die Leitfähigkeit und die Elektrolyse vor. Fakultativ können Salzlagerstätten und Nachweisreaktionen behandelt werden. In Klasse 10 werden Ionenbindung, Ionenbildung, Salzbildung und die Versalzung von Böden durchgenommen.

Als außerschulischer Lernort kann ein Salzbergwerk oder ein Salzmuseum besucht werden.

Auch für den fächerübergreifenden Unterricht ist das Thema Kochsalz geeignet. So kann im Biologieunterricht die Physiologie und der Geschmacksinn durchgenommen werden. Auch die Anpassung von Tieren und Pflanzen an einen salzreichen Lebensraum ist im Lehrplan vorgesehen. In Erdkunde wären die Bodenversalzung durch Bewässerung, Salzwüsten und die Entstehung von Salzstöcken zur Bearbeitung geeignet. Der Salzhandel und die Salzkriege können im Geschichtsunterricht thematisiert werden. Und schließlich kann im Physikunterricht erörtert werden, ob Salzstöcke als Lagerstätten für radioaktiven Abfall geeignet sind.

8. Literatur

(20)

Anton, M.A. (1998): Vom Steinsalz zum Kochsalz. Die Verarbeitung eines Naturprodukts im Unterricht. NiU-Chemie 9. Nr. 46. S. 22-24

Barke, H-D. (1995): Strukturorientierter Chemieunterricht und Teilchenverknüpfungsregeln. Chem. Sch. 42/2. S. 49-56

Bewersdorff, B. & Noll, M. (1998): Salz – ein Produkt aus dem Meerwasser. NiU- Chemie 9. Nr. 46. S. 25-27

Bochter, R. (1991): Historische Sodasynthese nach Leblanc – Unterrichtsversuche.

PdN-Ch. 7/46. S. 25-29

Bochter, R. (1996): Historische Siedesalzerzeugung in Bad Reichenhall. PdN-Ch.

8/45. S. 2-8

Boeck, H. (1995): Elektrolyse von Natriumchloridlösung nach dem Membranverfahren als Demonstrationsexperiment. Chem. Sch. 42. S. 62 f

Bühler, A. & Graf, E. (1998): Synthese von Natriumchlorid aus den Elementen – Ein Unterrichtskonzept für das 1. bzw. 2. Unterrichtsjahr. NiU-Chemie 9. Nr. 46. S. 12 Dorst, F-W. (1979): Was ist eigentlich – ein Kristall? NiU-P/C 27. Nr. 4. S. 115-116 Fritsch, L. (1982): Zum Einsatz der Modellreihe „Ionengitter des Natriumchlorids“ in Klasse 8. CiS 6. S. 237-244

Griß, R. (1996): Salz – Rohstoff und Quell des Lebens. PdN-Ch. 8/45. S. 9-12 Hamann, C.H. & Vielstich, W. (2005): Elektrochemie. Weinheim. 662 S.

Kober, F. (1991): Nicolas Leblanc und Ernest Solvay – die technische Sodagewinnung in 100 Jahren. PdN-Ch. 6/40. S. 9-11

Müller, U. (2004): Anorganische Strukturchemie. Stuttgart. 336 S.

Noll, M. (1998/1): Salz – Technik – Wirtschaft – Kultur. NiU-Chemie 9. Nr. 46. S. 4-7 Noll, M. (1998/2): Konservierung mit Salz. NiU-Chemie 9. Nr. 46. S. 15-16

Noll, M. (1998/3): Auf den Spuren der Salzwirtschaft – außerschulische Lernorte.

NiU-Chemie 9. Nr. 46. S. 37-38

Riedel, E. (2002): Anorganische Chemie. Berlin. 937 S.

Salzindustrie (ohne Jahr): Die Salzwerkstatt. Arbeitsblätter zum Lesen und Lernen für den Schulunterricht. 22 S.

Schmidkunz, H. (1983): Das Kochsalz in Lebensmitteln. Bedeutung und Nachweisverfahren. NiU-P/C 31. Nr. 5. S. 166-167

Schmidkunz, H. (1998): Kochsalz – Lebensmittel oder Chemikalie? Eine

(21)

Schneyder, E. (1979): Beschreibungen von Kristallstrukturen als Kugelpackungen im Anfangsunterricht. NiU-P/C 27. Nr. 4. S. 116-122

Theiß, H.B. (1991): „Rund ums Kochsalz“. NiU-Chemie 2. Nr. 6. S. 13-15

http://schulen.eduhi.at/chemie/chlor1.htm#NaCl (Versuchsanleitung NaCl-Darstellung

aus den Elementen im Mikromaßstab)

Abbildung

Abb. 1: Reaktion von Natrium und  Chlor (Aufbau entspricht nicht dem im Versuch) (aus:
Abb. 2: Born-Haber-Kreisprozess für Natriumchlorid
Abb.   8:   Verwendungsmöglichkeiten   von   Natriumcarbonat,   Natriumhydrogencarbonat,   Chlor   und Natronlauge
Abb. 9: Elektrolyse von Natriumchloridlösung
+4

Referenzen

ÄHNLICHE DOKUMENTE

Ab Lohn und Gehalt Version 11.6 (Jahreswechsel 2020/2021) ist die Versionsnummer (Feld VersionImportDatei) innerhalb der Stammdatenimport-Datei eine optionale Angabe. Ist das Feld

1 ) Schuldner der Lohnsteuer ist grundsätzlich der Arbeitnehmer. Übernimmt der Arbeitgeber eine Lohnsteuer- nachzahlung an das Finanzamt, ohne den Betrag vom

Da der Kostenanteil für eine Begleitperson dem jeweiligen Arbeitnehmer hinzugerechnet wird, wird für Personen mit Begleitung der Freibetrag überschritten. Der übersteigende Teil

Es handelt sich nicht um eine Dienstfahrt, sondern um eine Fahrt zwischen Wohnung und erster Tätigkeitsstätte, die vom AG im Rahmen der Entfernungspauschale pauschal

Es handelt sich nicht um eine Dienstfahrt, sondern um eine Fahrt zwischen Wohnung und erster Tätigkeitsstätte, die vom AG im Rahmen der Entfernungspauschale pauschal

Zettweil Terramontan vorhanden 09.12.2008** Sondierung Probennahme..

Die Lohnsteuer für eine Abfindung kann nach der Fünftelregelung er- mäßigt besteuert werden; die Prüfung für die Voraussetzungen erfolgt automatisch über

Das Gesamtzertifikat „Personal- und Lohnbuchhalter /-in (XB)“ des bundeseinheitlichen Kurs- und Zertifikatssystems Xpert Business wird nach Bestehen der Einzelprüfungen „Lohn