• Keine Ergebnisse gefunden

Single-trial averaging improves the physiological interpretation of contact heat evoked potentials.

N/A
N/A
Protected

Academic year: 2022

Aktie "Single-trial averaging improves the physiological interpretation of contact heat evoked potentials."

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ContentslistsavailableatScienceDirect

NeuroImage

journalhomepage:www.elsevier.com/locate/neuroimage

Single-trial averaging improves the physiological interpretation of contact heat evoked potentials

Catherine R. Jutzeler

a,b,c,1,

, Lukas D. Linde

d,e,f,1

, Jan Rosner

c,g

, Michèle Hubli

c

, Armin Curt

c

, John L.K. Kramer

d,e,f,

aSwiss Federal Institute of Technology (ETH Zurich), Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland

bSIB Swiss Institute of Bioinformatics, Switzerland

cSpinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland

dICORD, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada

eDepartment of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada

fDjavad Mowafaghian Centre for Brain Health, University of British Columbia, 818W 10th Ave, Vancouver, British Columbia, Canada

gDepartment of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland

a r t i c le i n f o

Keywords:

Contact heat Evoked potentials Ageing

Single-trial averaging Pain

a b s t r a ct

Laserandcontactheatevokedpotentials(LEPsandCHEPs,respectively)provideanobjectivemeasureofpath- waysandprocessesinvolvedinnociception.ThemajorityofstudiesanalyzingLEPorCHEPoutcomeshavedone sobasedonconventional,across-trialaveraging.Withthisapproach,evokedpotentialcomponentsarepotentially confoundedbylatencyjitterandignorerelevantinformationcontainedwithinsingletrials.Thecurrentstudy addressedtheadvantageofanalyzingnociceptiveevokedpotentialsbasedonresponsestonoxiousstimulations withineachindividualtrial.Single-trialandconventionalaveragingwereappliedtodatapreviouslycollectedin 90healthysubjectsfrom3stimulationlocationsontheupperlimb.Theprimaryanalysisfocusedonrelation- shipsbetweensingleandacross-trialaveragedCHEPoutcomes(i.e.,N2P2amplitudeandN2andP2latencies) andsubjectcharacteristics(i.e.,age,sex,height,andratingofperceivedintensity),whichwereexaminedby wayoflinearmixedmodelanalysis.Single-trialaveragingleadtolargerN2P2amplitudesandlongerN2and P2latencies.Ageandratingsofperceivedintensityweretheonlysubjectlevelcharacteristicsassociatedwith CHEPsoutcomesthatsignificantlyinteractedwiththemethodofanalysis(conventionalvssingle-trialaveraging).

Thestrengthofrelationshipsforageandratingsofperceivedintensity,measuredbylinearfit,wereincreased forsingle-trialcomparedtoconventionalacross-trialaveragedCHEPoutcomes.Byaccountingforlatencyjit- ter,single-trialaveragingimprovedtheassociationsbetweenCHEPsandphysiologicaloutcomesandshouldbe incorporatedasastandardanalyticaltechniqueinfuturestudies.

1. Introduction

Contactheatandlaserevokedpotentials(CHEPsandLEPs,respec- tively)representrecruitmentofthinlymyelinatedA-deltafibresinthe periphery,conductionin thespinothalamic tract, andareassociated withtheperceptionofpain(Chenetal., 2001;Haefelietal.,2013b; Jutzeler etal., 2016; Krameret al., 2009). While neuralactivity of CHEPsandLEPs maynot directly reflect centralprocessing of noci- ceptionandpain(MourauxandIannetti,2018,2009),bothmeasures arereliablyemployedtoassessthefunctionofthespinothalamicpath- waysandpain perception (Chen etal., 2001; Haefeli et al., 2013a;

Correspondingauthors.

E-mailaddresses:Catherine.Jutzeler@bsse.ethz.ch(C.R.Jutzeler),kramer@icord.org(J.L.K.Kramer).

1 Theseauthorscontributedequallytothiswork.

Jutzeleretal.,2016;Krameretal.,2012b)withinsubjects(HuandIan- netti,2019).

The amplitudes and latencies of nociceptive evoked potentials are dependent on numerous factors, including stimulation location (Granovskyetal.,2005;Haefelietal.,2013b),age(Chaoetal.,2007; Granovsky et al., 2016;Jutzeler et al., 2016),andsex (Chen etal., 2006;deTommasoetal.,2017;Granovskyetal.,2016;Staikouetal., 2016; Truini et al., 2005). Location related variability is primar- ily attributable to differences in peripheral conduction distances (Magerland Treede, 1996; Truiniet al., 2005),temporaldispersion (Iannettietal.,2006;Krameretal.,2013),andreceptordensitygra- dients(Athertonetal.,2007;Perrettietal.,2003;Ragé etal.,2011).In

https://doi.org/10.1016/j.neuroimage.2020.117473

Received2June2020;Receivedinrevisedform12September2020;Accepted14October2020 Availableonline21October2020

1053-8119/© 2020TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)

(2)

addition,behavioral relevanceofstimuluslocationfurtherinfluences waveformsparameters of evoked potentials, asmore proximal loca- tions tend toresult in larger and earlier responses (Bufacchi et al., 2016;BufacchiandIannetti,2018;Samboetal.,2012;SamboandIan- netti,2013).Microstructuralchangeswithinthesomatosensorynervous systemassociatedwithaginggiverisetoloweramplitudeandlonger latency ofnociceptive evokedpotentials in olderadults (Jacobs and Love, 1985; Lauriaet al., 1999). Sex differences,while variably re- ported(Chenet al., 2006; deTommaso et al., 2017; Staikouet al., 2016; Truini et al., 2005), tend to provide objective evidence that womenare more sensitivetonoxious stimulation compared tomen (Granovskyetal.,2016),evenafteradjustingforrelevantsubjectchar- acteristics(e.g.,height)(Jutzeleretal.,2016).Collectively,thesefind- ingsdemonstratetheinherentvalueofCHEPsandLEPstodepictbiolog- icallyrelevantinformationunderlyingnoxiousheatstimulationapplied intheperiphery.

ThestandardacquisitionofeitherCHEPsorLEPsinvolvestherepet- itiveapplicationofnoxiousstimuliatlonginter-stimulusintervals,from whichwaveformsareconventionallyaveragedforvisualinspectionand evaluation(Chenetal.,2006;Krameretal.,2013).Whileeffectivein increasingsignaltonoiseratios,amajordisadvantageofthisapproach isthattrialspecificvariationsinamplitude,latency,andmorphologyof evokedpotentialswithinasubject,betweenstimuliareminimizedand distortedfromacrosstrialaveraging(MourauxandIannetti,2008).An importantexampleofsuchinter-trialvariabilityislatencyjitter,which describesthevariationinlatenciesofN2andP2waveforms.Thecon- ventionalanalysisofacrosstrialaveraging,withoutaccountingforla- tencyjitter,candistortevokedpotentialcomponents,andthusamajor concernisthatthispracticeremovesbiologicallyrelevantinformation.

Asanalternative,singletrialaveragingtechniqueshavebeendeveloped toextract waveformcharacteristicsfromevokedpotentialsgenerated inresponsetoindividualstimuli(Hatemetal.,2012;Huetal.,2011, 2010;Huangetal.,2013;Mayhewetal.,2006;Warbricketal.,2009).

SingletrialaveragingtendstoincreaseLEPamplitudes(Huetal.,2011; Warbricketal.,2009),improvingtheclarityofevokedpotentialwave- formsbyaccountingfortrialtotrialvariations.Despitetheseadvances insignalprocessing(MourauxandIannetti,2008),relativelyfewstud- ieshaveadoptedsingletrialapproachtoanalyzeandinterpretCHEPs (Warbricketal.,2009).

The present study addressed the hypothesis that the single-trial compared to across trial averaging approach would better capture physiologicalrelevantinformationinresponsestonoxiousstimulation, specificallybyaccountingforlatencyjitterinN2P2waveforms.This inturnwillstrengtheningtherelationshipsbetweenCHEPoutcomes, subjectcharacteristics,andstimuluslocation.Single-trialanalysiswas performedon previously publishedCHEPsdata using anestablished technique(Hatemetal.,2012;Huetal.,2011,2010)andcomparedto outcomesfromconventionalaveraging(Jutzeleretal.,2016).

2. Methods

Toaddressourhypothesis,weutilizedalargeCHEPsdatasetprevi- ouslypublishedbyJutzeleretal.,2016(Jutzeleretal.,2016).Thisstudy focusedonnormativeCHEPoutcomes,basedonconventionalaveraging only.Forcomparativepurposes,theresultsofconventionalaveraging areincludedhereagain.All procedureswerein accordancewiththe DeclarationofHelsinki andapprovedbythelocalethicsboard‘Kan- tonaleEthikkommissionZurich,KEK’(ref.number:EK-04/2006,cini- caltrial.govnumber:NCT02138344).Participantsprovidedwrittenin- formedconsent.

2.1. Subjects

Onehundredandfiveneurologicallyhealthysubjectswererecruited throughonlineandprintedadvertisements.Inclusioncriteriacomprised ageof18–80yearsandnativelanguagebeingeitherEnglishorGerman.

Exclusioncriteriaincludedpregnancy,intakeofanymedication(except birthcontrol),andanyobviousneurologicalcondition.

2.2. Studyprotocol

CHEPs were recorded afterthermally stimulatingthe C4 (shoul- der),C6(baseofthethumb),andC8dermatomes(baseofdigitusmin- imus).Normalbaselinestimulations(35°Cbaseline,rampedtoapeak temperatureof52 °C,atarateof 70°C/s) wereemployedtorecord CHEPs,describedpreviously(Haefelietal.,2013a;Jutzeleretal.,2015; Krameretal.,2012b).DuringtheacquisitionofCHEPs,subjectswere lyinginasupinepositionwitheyesopen.Inordertominimize ocu- larartefacts,subjectswereinstructedtofocusonapointontheceil- ing,minimizeblinking,aswellastoremainrelaxedandquietduring testing.Traces contaminatedwithmuscleorblinkartefacts wereex- cluded inrealtimeandadditionalstimuliwereappliedtorecord15 artefactfreetracesperlocation.Contactheatstimuliwereappliedwith aninter-stimulustimeintervalthatrandomlyvariedbetween8and12s (Haefelietal.,2013a;Jutzeleretal.,2015;Krameretal.,2012b).Cued byanauditorysignaltwosecondspoststimulus,subjectswereinstructed toratetheperceivedpainofeachstimulusfrom0(nopain)to10(most unbearablepain).Theauditorycuealsoprovided anopportunityfor participantstoblinkandtherefore,avoidblinkingduringheatstimula- tions.TheCHEPsthermodewasslightlyrepositionedaftereachstimulus withinthedermatometestedtoreducereceptorfatigueorsensitization byoverheatingtheskin(Granovskyetal.,2005).

2.3. Stimulatingdeviceandrecordingsetup

Acontactheatstimulatorwasemployedtodeliverstimulation(Path- way,Medoc,RamatYishai,Israel).TheCHEPthermodesurface(diam- eter:27mm)consistsofaheatingthermo-foilcoveredwithalayerof thermo-conductiveplastic.Thenominalheatingrateofthisdeviceis 70°C/s,withacoolingrateof40°C/s.

Corticalresponsestothenoxiousheatwererecordedwith9mm Ag/AgCl surfacediskelectrodes filled withconductive adhesivegel.

ScalprecordingsiteswerepreparedwithNuprep(D.O.Weaver&Co.

Aurora,CO)andalcohol.Electrodeswerepositionedinaccordancewith theInternational10–20system.BothN2 andP2wereacquiredfrom anactivevertexrecordingelectrode(Cz)referencedtolinkedearlobes (A1-A2).Therationaleforareducedelectrodesetup arosefrom the factthatconsistentnegativeandpositivepotentials,labelledN2andP2, arereliablydetectedatCz(Chenetal.,2006;Granovskyetal.,2016; Haefelietal.,2013a;Jutzeleretal.,2015;Krameretal.,2012b).All signalsweresampledat2000Hzusingapreamplifier(20000x,band- passfilter1-300Hz,ALEASolutions,Zurich,Switzerland).Datawere recordedwith100mspre-triggerandaonesecondpost-triggerinacus- tomizedLabView(V1.43CHEP,ALEASolutions,Zurich,Switzerland) program.

2.4. Conventionalaveraging

FilteredCHEPsfrom15 artefactfree trialswereaveragedandvi- sually inspected forN2 and P2waveforms. Toensureadequate sig- naltonoiseratioforthedeterminationofwaveformparameters,aver- agedamplitudesoflessthan10uVwereexcludedfromfurtheranalysis (Jutzeleretal.,2016).

2.5. Singletrialanalysis

Singletrialanalysiswasperformedusinganopenlyavailablepro- gram (Huetal.,2011, 2010).Inbrief,singletrialaveragingusinga combinationofwaveletfilteringandmultiplelinearregressionstode- terminewaveformparameters(N2/P2amplitudesandlatencies)from individualtrials(Huetal.,2011,2010).Waveletfilteringwasemployed

(3)

Fig.1. Representativetracesofconventionalaveragingandsingletrialaveraginganalysismethods.A)Individualcontactheatevokedpotential(CHEP)waveforms, filteredandre-referenced.B)ConventionalaveragingofindividualCHEPwaveforms,fromwhichN2andP2outcomearederived.C)IndividualCHEPwaveforms followingsingletrialanalysis,viawaveletfilteringandmultiplelinearregressionwithdispersionterm(Huetal.,2011,2010).D)AveragedCHEPoutcomes determinedfromsingletrialanalysis.

toenhancethesignaltonoiseratioandfacilitatetheestimationofla- tencyandamplitudeofsingletrialevokedpotentialpeaks(Huetal., 2011,2010;Krameretal.,2013).Toperformanunbiasedsingletrial analysis,anautomatedapproachusingmultiplelinearregressionwith adispersionterm(MLRd)isthenimplemented(Huetal.,2011).The dispersiontermenhancestheabilityofmultiplelinearregressionsto detectchangesinwaveformmorphologyandprovidesamoreaccurate measureoflatencyandamplitudeofsingletrialevokedpotentialpeaks (Huetal.,2011).Waveformpeakswereautomaticallydetectedwithin a100-millisecondwindowofthewavelet-filteredaverageN2andP2.

IndividualtrialN2andP2waveformparameterswerethenaveraged together,toprovidethesingletrialanalysisoutcomesforeachpartici- pant(Fig.1).

2.6. Statisticalanalysis

CHEPoutcomesfromconventionalaveragingandsingle-trialaver- agingwereexaminedusinglinearmixedeffectsmodels.ForeachCHEP outcome(N2P2amplitude,N2latency,P2latency),fixedeffectsofder- matome(C4,C6,C8),andanalysismethod(conventionalvssingletrial averaging)wereassessedinalinearmixedmodel,withrandomeffects ofparticipants.Subjectcharacteristics(age,sex,height,andratingof perceivedintensity) wereincludedin these linearmixed models,ex- aminingtheoveralleffectofanalysismethodanddermatomeonCHEP outcomes.Subsequentmodelswithaninteractiontermbetweeneach subjectcharacteristicandanalysismethodwereincludedtoexploreof influenceofanalysismethodontherelationshipsbetweenCHEPout- comesandsubjectcharacteristics.Significantinteractionswerefollowed

upvialinearmixedmodelsforeachanalysismethod,todeterminere- spectivedifferencesinCHEPoutcomesandtherelationshiptosubject characteristicsbetweenconventionalandsingle-trialaveraging.Based onpreliminarylinearmixedmodelanalysis,multiplelinearregressions between age,ratingofperceivedintensity,andCHEPoutcomeswere furtherexploredforbothanalysismethods.Bonferronicorrectionwas appliedtoadjustformultiplecomparisons.Analphalevelof0.05was usedforallstatisticaltests.RStatisticalSoftware(version3.5.3,MacOS 10.14.6Mojave)wasusedforallstatisticalanalysesandproducingall plots(RCoreTeam,2019;Wickham,2016).

2.7. Simulateddataanalysis

Tofurtherexploretheeffectsofconventionalaveragingandsingle trial analysis onCHEPs outcomes,we performed a smallsimulation experiment. The goal here was to systematically manipulate the amplitudes andlatencies of individual trialwaveformsto determine the comparative effects on conventional averaging and single trial analysis, respectively. A single waveform was artificially increased in amplitudeby 40%,andthelatency wasshifted20mstotheleft.

Thus,twowaveforms(smallandlarge)wereusedforoursimulation.

First,thesmallwaveformwasreplicated,suchthata15-trialdataset contained only thesmall waveform. Then, a single large waveform trialwas added,withasmallwaveformremoved. Thiswas repeated untilonlylargewaveformsremained.Foreachdataset,weperformed conventional (across-trial) averaging and single trial analysis, and N2P2 outcomes were compared for each dataset. Findings from the simulationandexampletracesofwaveformscanbefoundinFig.7.

(4)

Fig.2. Contactheatevokedpotentials(CHEP)N2P2am- plitudes(A),N2latencies(B),andP2latencies(C)from cervicalspinedermatomes(C4,C6,C8).Conventionalav- eraging(CV) andsingletrialaveraging(STA)analysis methodscomparedwithineachdermatome/CHEPout- comes.Agegroupsseparatedintoyoung(18–40yrs),mid- dle(41–60yrs),andelderly(61–80yrs).Lettersdenote significantdifferencesbetweendermatomesforbothstim- ulationprotocols,suchthatdifferentletterscorrespondto significantdifferencesbetweendermatomes.ForpanelB specifically,differentlettersdenotesignificantdifferences betweendermatomesandbetweenanalysismethods(i.e.

aissignificantlydifferentfromb,c,cd,andc;dissignifi- cantlydifferentfromc,butneitheraresignificantlydiffer- entfromcd).Linearmixedmodelswereadjustedforage, sex,andheight,withasignificancelevelofalpha<0.05.

3. Results

3.1. Cohortsummary

Out of 105 neurologically healthy participants, four were previ- ouslyexcludedduetointolerancetoheatstimuliandpoordataquality (Jutzeleretal.,2016).Anadditionaleightparticipantswereexcluded fromthepresentanalysisduetopoordataquality(i.e.,conventional averagedN2P2amplitudesbelow10uVorsubstantialartefactsthatin- fluencedsingletrialanalysis).Theremaining93individualscomposed of45menand48womenwithameanage45.8±16.8years(range:

19–80years)wereincludedinthebothanalysismethods(conventional averagingandsingletrialanalysis).Individualcharacteristicsaresum-

Table1

Participantcharacteristics(mean±standarddevia- tion).

Sex Males ( N = 45) Females ( N = 48) Age (years) 44.2 ± 15.4 47.2 ± 18.0 Height (cm) 168.1 ± 7.0 178.4 ± 7.1

marizedinTable1.SummaryN2P2amplitude,N2latency,andP2la- tencyfollowingconventionalandsingle-trialaveragingaresummarized inTable2.RepresentativeCHEPs(N2/P2)individualtrialtracesofcon- ventionalandsingle-trialaveragingareillustratedinFig.1.

(5)

Table2

Contactheatevokedpotential(CHEP)summaryoutcomes(mean±standarddeviation).

CHEP Outcome Analysis Method

Dermatome

C4 C6 C8

N2P2 Amplitude (uV) CA 27.0 ± 11.7 23.8 ± 7.4 23.2 ± 8.5

STA 28.2 ± 12.2 25.2 ± 9.8 24.1 ± 11.4

N2 Latency (ms) CA 361.4 ± 31.3 383.6 ± 31.1 402.3 ± 31.6 STA 380.8 ± 37.9 414.6 ± 41.2 420.3 ± 53.8 P2 Latency (ms) CA 504.4 ± 44.2 527.5 ± 61.2 530.0 ± 46.5 STA 513.9 ± 43.8 536.8 ± 53.6 541.5 ± 62.4 CA-Conventionalaveraging.

STA– Single-trialaveraging.

Fig.3.LinearregressionsbetweenagingandN2P2amplitudefor eachdermatome(C4,C6,C8)andanalysismethod(conventional averagingandsingletrialaveraging).Strengthoflinearregression (R2)isgivenforeachdermatome,acrossanalysismethods.

3.2. Maineffectsofanalysismethod

ThereweresignificantmaineffectsofanalysismethodonN2P2am- plitude(F(1408.3)=5.97,p<0.05),N2latency(F(1413.7)=69.8,p<0.001), orP2latency(F(1410.3)=6.37,p<0.05).Overall,single-trialaveraging resultedinlargerN2P2amplitudesandlongerN2andP2latencies.

3.3. Maineffectsofstimuluslocation

Therewere significantmaineffectsof stimuluslocationon N2P2 amplitude(F(2420.7)=9.92,p<0.001), andboth P2(F(2428.7) =72.7,

p<0.001)andN2latencies(F(2422.4)=20.0,p<0.001).Generally,laten- cieswerelonger,andamplitudesweresmallerinC6andC8(i.e.,hand) dermatomescomparedtoC4(i.e.,shoulder).Specificcomparisonsbe- tweendermatomesforCHEPoutcomesarefurtheroutlinedinFig.2. 3.4. Maineffectsofsubjectcharacteristics

There was a significant main effect of age on N2P2 amplitude (F(1,87.4) =18.4,p<0.001),N2latency(F(1,86.3) =4.72,p<0.05),and P2latency(F(1,83.0)=8.00,p<0.01).Ouranalysisalsorevealedasig- nificant maineffect of sexon N2 (F(1,87.5) = 7.06, p<0.01) and P2

(6)

Fig.4.LinearregressionsbetweenagingandN2latencyforeach dermatome(C4,C6,C8)andanalysismethod(conventionalaver- agingandsingletrialaveraging).Strengthoflinearregression(R2) isgivenforeachdermatome,acrossanalysismethods.

latencies(F(1,85.6)=10.32,p<0.01),aswellasamaineffectofrating ofperceivedintensityonN2P2amplitude(F(1480.6)=31.7,p<0.001).

NosignificantmaineffectofheightonanyCHEPoutcomeswasfound (N2P2:F(1,85.8)= 0.29,p= 0.59;N2:F(1,84.0)= 1.23,p= 0.27;P2:

F(1,81.4)=0.01,p=0.91).

3.5. Interactioneffectsbetweenmethodofanalysis,stimulationlocation, andsubjectcharacteristics

There was a significant age by analysis method interaction ef- fect for N2P2 amplitude (F(1408.0) = 4.60, p<0.05) and P2 latency (F(1407.1) = 8.55, p<0.01). These interactions suggest that the rela- tionship between age and CHEP outcomes depends on the method ofanalysis.Linearmixedmodelsperformedseparatelyforsingle-trial andconventionallyaveragedCHEPsrevealedsignificantmaineffects of agefor N2P2amplitudeforboth analysismethods (conventional:

F(1,87.0)=13.7,p<0.001;singletrial:F(1,86.5)=21.8,p<0.001),whilethe effectofagewassignificantduringsingletrialaveragingonlyforP2la- tency(conventional:F(1,86.4)=1.16,p=0.28;singletrial:F(1,81.8)=16.5, p<0.001).ForbothN2P2amplitudeandP2latency,thebetacoefficients foragefromlinearmodelswerehigherforsingle-trialaveraging(N2P2:

ß=−0.31,t=−4.8,p<0.001;P2:ß=0.84,t=2.5,p<0.05)compared toconventional averaging(N2P2:ß=−0.25,t=−4.3,p<0.001;P2:

ß=0.27,t=0.83,p=0.40).Collectively,theseobservationssuggest

thattherelationshipbetweenageandCHEPsisstrengthenedbysingle- trialanalysis.SpecificlinearrelationshipsbetweenagingandCHEPout- comesforeachdermatomeandanalysismethodarefurtheroutlinedin Figs.3–5,whiletherelationshipsbetweenratingofperceivedintensity andN2P2amplitudeareoutlinedinFig.6.

There was a significant ratingof perceived intensityby analysis methodinteractionforN2P2amplitude(F(1411.7)=4.24,p<0.05).This suggeststhattherelationshipbetween N2P2amplitudeandratingof perceived intensitydepends onthemethod ofanalysis. Separatelin- earmixedmodelsrevealsignificantmaineffectsofratingofperceived intensity on N2P2 amplitudefor conventional andsingle trial aver- agedanalysismethods(conventional:F(1250.3)=10.0,p<0.001;single trial: F(1231.7) = 15.9,p<0.001).The betacoefficients ratingof per- ceivedintensityfromlinearmodelswashigherforsingletrialaverag- ing(ß=1.74,t=3.53,p<0.001)comparedtoconventionalaveraging (ß=1.55,t=3.70,p<0.001).Similartoaging,thesecollectiveobser- vationssuggestthattherelationshipbetweenratingofperceivedinten- sityandN2P2amplitudeisstrengthenedbysingletrialanalysis.There werenosignificantinteractionsforsexorheightandanalysismethod foranyCHEPoutcomes.Therewerealsonothree-wayinteractionsbe- tweensubjectcharacteristics,analysis,anddermatomeforanyCHEP outcomes.

Therewasnosignificantinteractionbetweendermatomeandanal- ysisforN2latency(F(2406.4)=2.59,p=0.08).Pairwisecomparisons

(7)

Fig.5.LinearregressionsbetweenagingandP2latencyforeach dermatome(C4,C6,C8)andanalysismethod(conventionalaver- agingandsingletrialaveraging).Strengthoflinearregression(R2) isgivenforeachdermatome,acrossanalysismethods.

between analysis methods revealedsignificantly longerN2 latencies forsingletrialaveragingcomparedtoconventional averagingforC4 (t=−8.4,p<0.001,Cohen’sd=0.56),C6(t=−11.8,p<0.001,Cohen’s d=0.85),andC8(t=−4.0,p<0.001,Cohen’sd=0.44)dermatomes.

Separatelinearmodelscalculatedforconventionalaveragingandsin- gletrialaveragingrevealeddifferencesbetweendermatomes.Forsingle trialaveraging,N2latenciesforC6(t=5.8,p<0.001)andC8(t=6.5, p<0.001)weresignificantlylongerthanC4,withnosignificantdiffer- encesbetweenC6andC8(t=1.06,p=0.29).Thisfitswithincreased peripheralconductiondistanceassociatedwithstimulatingtheshoul- dercomparedtostimulatingthehand.Conventionalaveragingdemon- stratedsignificantlylongerN2latenciesforC6(t=9.2,p<0.001)and C8(t=16.5,p<0.001)comparedtoC4,andalsodemonstratedafur- thersignificantincreaseforN2latenciesinC8comparedtoC6(t=8.4, p<0.001)(Fig.2).

3.6. Simulateddatafindings

N2latencieswerelongerwithsingletrialanalysiscomparedtocon- ventional(across-trial) averagingwhenalow numberoflargewave- formswereincludedindatasets(Fig.7A).Asprogressivelymorelarge waveformswereincluded,conventionalaveragingandsingletrialanal- ysis N2 latenciesconverged(Fig.7A).Asimilar trend was observed forP2latencies,albeitwithlessconvergencewithprogressivelymore

largeamplitudewaveforms(Fig.7B).N2P2amplitudeweremostconsis- tentbetweenanalysismethodswithsimilarnumberofsmallandlarge amplitudetrials,whileextremespresented thelargest differencesbe- tweenanalysismethods(Fig.7C).Overall,conventionalaveragingand singletrialanalysisaresimilarweresimilarwhendatasetscontained mostlylargewaveformswithafewsmallwaveforms.Conversely,anal- ysismethodsdeviatedsubstantiallywhendatasetscontainedafewlarge amplitudetrials.

4. Discussion

Inthecurrentstudy,single-trialaveragingleadtolargeramplitude CHEPswaveformsandlongerlatencies.Moreover,thesesubtlechanges in N2P2waveformssignificantlychanged theinterpretation ofCHEP outcomes comparedtoconventional(across-trialaveraging) analysis.

Single trial averaging revealed strongerassociations with peripheral conductiondistances,age,andratingofperceivedintensitycompared toconventionalaveraging.Overall,ourresultsdemonstratetheadvan- tageofsingletrialaveragingtocapturebiologicallyrelevantinformation pertainingtotheacquisitionofCHEPs.

The applicationof singletrial analysistonociceptive evokedpo- tentialsdatesbackmorethan25years,toseminalresearchexploring time-shifted averagingof LEPs(Purves andBoyd,1993).Subsequent approachesutilizedwavelettransformationasameansoffilteringindi-

(8)

Fig.6. LinearregressionsbetweenpainratingandN2P2ampli- tudeforeachdermatome(C4,C6,C8)andanalysismethod(con- ventionalaveragingandsingletrialaveraging).Strengthoflinear regression(R2)isgivenforeachdermatome,acrossanalysismeth- ods.

vidualevokedpotentials(MourauxandPlaghki,2004)andincorporated automatedpeakdetectionbymultiplelinearregression(Mayhewetal., 2006),beforeultimatelyarrivingatthemethodemployedinthecur- rentstudy(Huetal.,2011,2010).Whiledemonstratingthatsingletrial analysisisclearlypossible,decidedlymissing,tothispoint,hasbeen evidencethatsingletrialanalysisimprovesthedetectionofbiologically relevantaspectsofnociception.Thelackofthisknowledgehaslikely,in part,contributedtolimiteduptakeamongresearchers,forwhomsingle trialanalysiscomesatthecostofincreasedanalysistimeandgreater complexitycomparedtoconventionalaveraging.

Towardsshiftingthediscussionfromtheorytopractice,ourresults demonstratetheinherentvalueofsingletrialanalysisfornociceptive evokedpotentials.Thiswasevidencedbythreekeyobservations.The first is that single trial analysis nullified N2 latency differences be- tweenC6andC8stimulationsites,readilyapparentwithconventional averaging. Wehave reportedsignificant differences between C6and C8stimulationsitespreviouslybasedonananalysisofthesamedata (Jutzeleretal.,2016)andalsoobservedtrendstowardssimilardiffer- encesin other,independentdatasets thatincorporatingconventional averaging(Haefelietal.,2013b).Basedonmatching peripheralcon- ductiondistancesandmarginaldifferencescentrally,C6(i.e.,baseof thethumb) andC8 (i.e.,base of the4th finger)stimulationshould, fromaneurophysiologicalperspective,yieldsimilarlatencies.Theres- olutionofthisdiscrepancybysingletrialanalysissuggeststhatdiffer-

encesbetweenC6andC8,asreportedpreviously(Haefelietal.,2013b; Jutzeleretal.,2016),areanartefactofconventionalaveraging.Specif- ically,stimulationoftheC8dermatomeatthebaseofthe5thfinger mayyieldmorelatencyjitterduetoalessevenlydistributedactiva- tionofcutaneousthermo-nociceptors,owingtotheanatomicalstructure oftheskinareaandsizeoftheheatstimulator.Thesechallengesmay alsoresultinunintentionalstimulationofglabrousskin,knowntoresult inlongerCHEPslatencies(Hüllemannetal.,2019).Thedevelopment ofsmaller,moreeffectivecontactheatstimulationdevices(DeKeyser etal.,2018)mayimprovetheassessmentoftheC8dermatome.

Second, single trial analysis improved the relationship between CHEPs,specificallyN2P2amplitudeandP2latency,andage.Numer- ous studies have highlighted this relationship previously, generally confirmingthatnociceptive evokedpotentialsaresmallerandlonger with advanced age (Creac’H et al., 2015; Di Stefano et al., 2017; Granovsky et al.,2016; Lagerburg etal., 2015; Rosner etal., 2018; Truinietal.,2005).Thisisthoughttoprimarilyreflect aprogressive lossofnociceptorsintheperiphery(Ceballosetal.,1999;Ochoaand Mair,1969;O’SullivanandSwallow,1968;Yezierski,2012)andare- ductioninconductionvelocityofthespinothalamictract(Kakigiand Shibasaki, 1991), which are both paralleled by changes observed for other measures of pain (e.g.,thresholds) (Chakour et al., 1996; Gagliese,2009;GibsonandFarrell,2004; GibsonandHelme,2001).

Acrossstudies,however,thedetailsoftherelationshipbetweenageand

(9)

Fig.7. Simulationstudyfindings:asmallwaveformandlargewaveform(40%largeramplitude,20msearlierlatency)wereusedtocreate16datasets.Theratio oflargetosmalltrialsisgiveninthex-axisofpanelsA,B,andC(e.g.5:10equateto5largewaveformsand10smallwaveforms).Conventionalaveraging(CA) andsingletrialanalysis(STA)N2P2outcomesfromeachdatasetwerecomparedforeachdataset.A)N2latenciesacrosssimulateddatasets.B)P2latenciesacross simulateddatasets.C)N2P2amplitudesacrosssimulateddatasets.D)Individualtrialsfrom5:10simulateddataset,boldlineisconventional(across-trial)average.

E)Individualtrialsfrom10:5simulateddataset,boldlineisconventional(across-trial)average.F)Across-trialaveragesfromallsimulationdatasets,boldlinesare theallsmallwaveformandalllargewaveformdatasets.

nociceptive evokedpotentialsareless consistent.For example,stud- ies have reported an association for amplitudeonly (Frasson et al., 2020;Truinietal.,2005),whileothersobservedlocationdependence (Creac’Hetal.,2015;Granovskyetal.,2016;Rosneretal.,2018).Our observationssuggesttheoptimalapproachtodetectgenuineagerelated changesinnociceptive evokedpotentials, unrelatedtoslightafferent desynchronizationandincreasedlatencyjitter,iswithsingletrialanal- ysis.

Finally, ratings were more strongly correlatedwith CHEPs from single trial analysis compared toconventional averaging. As a gen- eralruleofthumb,N2P2amplitudesarelargerandlatenciesshorter whenstimulationsare,onaverage,moreintense(Jutzeleretal.,2016; Krameretal.,2013,2012a;Lindeetal.,2020),albeitwithin-subjects (HuandIannetti,2019).Whileexceptionsarecommonplaceandhave aneuroanatomicalbasis(Krameretal.,2016),therelationshipbetween CHEPsandratingsreflectsanumberofimportantprocesses,including attention,arousal,saliency,andstimulusnovelty(Iannettietal.,2008; LePeraetal., 2002;Madsenetal., 2014;Ronga etal., 2013).Such endogenouscontributionsofevokedpotentialsarethoughttobemore susceptibletolatency jitter(Kutas etal., 1977; Legrainetal., 2002; SiedenbergandTreede,1996).Tothisend,methodsthatbettercap- ture arelationship withpain,aswas thecase for singletrialanaly- sis,arehighlydesirable.Theinherent valueofsingletrialanalysisis themoreaccurateportrayalofnociceptiveevokedpotentials.Similar topreviousstudies,weobservedsignificantlylargerN2P2amplitudes (Huetal.,2011)andlongerN2latencies(Warbricketal.,2009)follow- ingsingletrialanalysiscomparedtoconventionalaveraging.Increased amplitudesareattributabletophasecancelationresultingfromtrialto trialwaveformvariability(i.e.,latencyjitter),whichleadsto“flatten- ing” ofthegrandaveragewaveformthatservesthebasistointerpret conventionallyaveragedCHEPs(Huetal.,2011).IncreasedN2laten- ciesareattributedtodistortionsinwaveformmorphologyintroduced

byconventionalaveraging(Mayhewetal.,2006;Warbricketal.,2009).

Morespecifically,largeamplitude,individualwaveforms(i.e.,outliers), whichtendalsotobe shorter(Huetal.,2011;Iannettietal.,2005),

“pull” thegrandaverageleft,biasinginterpretationofconventionally averagedlatency.Wedemonstratedthisphenomenonwithsimulated data.Whenalownumberoflargeamplitudetrials,withearlierlatency, wereincludedinadatasetwithpredominatelysmalltrials,conventional (across-trial)averagedN2latenciesprogressivelyshiftedlefttoagreater extentthansingletrialaveragedlatencies(Fig.7A).Thisdifferencein N2latencycanbeexplainedbythedistortionorwaveformmorphology inconventionalaveraging,whichputsgreaterweightonlargerampli- tude waveforms.Incontrast,singletrialaveragingaccountsforthese differences in waveformmorphologyinthedeterminationindividual trialN2latencies,whicharesubsequentlyaveraged.Wealsoprovided anexampleofthisdifferencebetweenanalysismethodsasindividual trialsareaddedstepwise(Fig.8),againdemonstratedtheeffectoflarge amplitudetrialsinfluencingacrosstrialaveraging.Inaddition,thenon- linearincreaseinN2P2withconventionalaveragingprovidedfurther evidenceofdistortionsofwaveformmorphology,whichhavepreviously reported(Mayhewetal.,2006;Warbricketal.,2009).

C6CHEPsappeartohavebeenmoreaffectedbysingletrialaverag- ingcomparedtoC8(i.e.,largerincreaseinC6N2latency),whichmay relatetophysicaldifferencesintestingsites.Onthedorsumofthehand, wherestimulationyieldsmorerobustCHEPscomparedtostimulationof thepalmersurface(Haefelietal.,2013b),theC8siteissmallerthanC6.

Thesizeofthestimulationsiteisamajorissueforcontactheatbecause thethermodeiscomparativelylargeandneedstobesubtlyshiftedafter eachstimulationwhilstremaininginthetargetdermatome.Thisisim- portantforclinicalapplications,whichaimtoassesssegmentalpatholo- gies(Haefelietal.,2013a;Krameretal.,2012a).InC6,shiftingthether- modeismorelikelytoactivatenovelreceptors,inturnproducingmore

“large” amplituderesponsesinC6(i.e.,outliers),whichultimatelyleads

(10)

Fig.8. Conventional(arithmetic)averageandsingletrialaveragedN2latenciescomparedduringstepwiseadditionofindividualtrials.N2latencydenotedinred.

Itcanbeobservedthatwithsubsequenttrials,conventionalaveragingispulledfurtherleft,duetodifferencesintrialamplitude.

toalargerdiscrepancybetweensingletrialandconventionallyaveraged CHEPs.

4.1. Limitations

Amajorstrengthofouranalysisisoursamplesize,whichislargein comparisontopreviousstudiesapplyingsingletrialanalysis(Huetal., 2010;Krameretal.,2016,2013;Mayhewetal.,2006;Warbricketal., 2009).Moreover,bothmenandwomenofvaryingageswereincluded.

Nevertheless,therearelimitations.Singletrialanalysisinvolvesaseries ofsignalprocessingsteps,whichultimatelyimprovesignalclarityofthe N2P2waveformbeforeextractingkeyamplitudeandlatencyoutcomes.

Giventhereareaseriesofstepsinvolved,thesemay,inpart,alsoen- hancethesignalclarityofN2P2waveforms.Forexample,convention-

allyaveragedCHEPswerenotwaveletfiltered.Assuch,ourfindings arelimitedtoacomparisonoftwooverallmethodsofdataanalysis.An- otherimportantpointisthatourfindingsarelimitedtoacomparisonof twoseparatemethodsofCHEPsanalysis,withnoobjective‘goldstan- dard’.Whileweprovideevidenceandsupportfortheuseofsingletrial analysis,thereremainsnotrue‘goldstandard’approachforCHEPsanal- ysis.Ourfindingsarealsolimitedtohealthysubjects.Furtherresearch isneededtodetermineifsingletrialanalysisimprovesunderstanding ofpathologyinpatientpopulations.

5. Conclusion

CHEPsprovideamethodtoreliablyandsafelyassesssmalldiam- eter nociceptiveafferentsofthespinothalamicpathway thataretyp-

(11)

icallyinvolvedin peripheralsensitization andchronicpaindevelop- ment.Whenoptimalstimulationanddataprocessing parametersare employed,CHEPoutcomesdemonstrateclear,robustage-andlocation- dependentchanges.Ourreportedimprovedassociationstoagingand ratingofperceivedintensitywhenusingsingletrialaveragingsuggest abetterrepresentationoftheunderlyingphysiologyofthenociceptive systemcomparedtotraditionalacross-trialaveraging. Whileconven- tional(across-trial)averagingoffersconvenienceandeaseofuse,itmay bemoresusceptibletowaveformdistortionandlatencyshiftswhenam- plitudevariationispresentamongindividualtrialsareincludedinanal- ysis.Werecommendtheuseofsingle-trialaveraging,withfreelyavail- ablesoftware(Huetal.,2011,2010),toassessthenociceptivesystem usingCHEPsinbothclinicalandresearchsettings.

CRediTauthorshipcontributionstatement

CatherineR.Jutzeler:Conceptualization,Methodology,Investiga- tion,Datacuration, Writing- review&editing, Fundingacquisition, Validation,Visualization.LukasD.Linde:Conceptualization,Method- ology,Formalanalysis,Writing-originaldraft,Writing-review&edit- ing,Software,Visualization.Jan Rosner:Investigation,Writing -re- view&editing.MichèleHubli:Investigation,Writing-review&edit- ing.ArminCurt:Supervision,Writing -review&editing. JohnL.K.

Kramer:Conceptualization,Writing-review&editing,Supervision,Re- sources,Projectadministration.

Acknowledgements

TheauthorswouldliketothankJanoshRinertforthesupportindata collection.CRJissupportedbytheSwissNationalScienceFoundation (AmbizioneGrant,PZ00P3_18610).Thisworkwasfurthersupportedby theSwissSpinalCordInjuryCohortStudyNestedProjectGrant(J.R.and C.R.J.,2016-N-005).JRissupportedbytheClinicalResearchPriority ProgramoftheUniversityofZurich(CRPPPain)andthroughfunding fromtheHartmannMuellerFoundation(grantnumber1997).Thefun- dershadnoroleinstudydesign,datacollectionandanalysis,decision topublish,orpreparationofthemanuscript.

Dataandcodeavailabilitystatement

Fullyanonymizeddatawillbesharedattherequestfromanyquali- fiedinvestigator(pleasecontacttheCorrespondingAuthor).Thecodeto runtheanalysisaswellascreatethefigurescanbefoundonourGithub repository(https://github.com/jutzca/CHEPs_STA).

References

Atherton, D.D., Facer, P., Roberts, K.M., Misra, V.P., Chizh, B.A., Bountra, C., Anand, P., 2007. Use of the novel Contact Heat Evoked Potential Stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra- epidermal nerve fibre counts. BMC Neurol. 7, 21. doi: 10.1186/1471-2377-7-21 . Bufacchi, R.J., Iannetti, G.D., 2018. An action field theory of peripersonal space. Trends

Cogn. Sci. 22, 1076–1090. doi: 10.1016/j.tics.2018.09.004 .

Bufacchi, R.J., Liang, M., Griffin, L.D., Iannetti, G.D., 2016. A geometric model of defensive peripersonal space. J Neurophysiol 115, 218–225. doi: 10.1152/jn.00691.2015 . Ceballos, D., Cuadras, J., Verdú, E., Navarro, X., 1999. Morphometric and ultrastruc-

tural changes with ageing in mouse peripheral nerve. J. Anat. 195 (Pt 4), 563–576.

doi: 10.1046/j.1469-7580.1999.19540563.x .

Chakour, M.C., Gibson, S.J., Bradbeer, M., Helme, R.D., 1996. The effect of age on A 𝛿- and C-fibre thermal pain perception. Pain 64, 143–152.

doi: 10.1016/0304-3959(95)00102-6 .

Chao, C.C., Hsieh, S.T., Chiu, M.J., Tseng, M.T., Chang, Y.C., 2007. Effects of aging on contact heat-evoked potentials: the physiological assessment of thermal perception.

Muscle Nerve 36, 30–38. doi: 10.1002/mus.20815 .

Chen, A.C.N., Niddam, D.M., Arendt-Nielsen, L., 2001. Contact heat evoked potentials as a valid means to study nociceptive pathways in human subjects. Neurosci. Lett. 316, 79–82. doi: 10.1016/S0304-3940(01)02374-6 .

Chen, I.-.A. , Hung, S.W. , Chen, Y.-.H. , Lim, S.-.N. , Tsai, Y.-.T. , Hsiao, C.-.L. , Hsieh, H.-.Y. , Wu, T. , 2006. Contact heat evoked potentials in normal subjects. Acta Neurol. Tai- wanica 15, 184–191 .

Creac’H, C., Bertholon, A., Convers, P., Garcia-Larrea, L., Peyron, R., 2015. Effects of aging on laser evoked potentials. Muscle Nerve 51, 736–742. doi: 10.1002/mus.24458 .

De Keyser, R., van den Broeke, E.N., Courtin, A., Dufour, A., Mouraux, A., 2018. Event- related brain potentials elicited by high-speed cooling of the skin: a robust and non- painful method to assess the spinothalamic system in humans. Clin. Neurophysiol. Off.

J. Int. Fed. Clin. Neurophysiol. 129, 1011–1019. doi: 10.1016/j.clinph.2018.02.123 . de Tommaso, M., Ricci, K., Montemurno, A., Vecchio, E., 2017. Age-related changes in

laser-evoked potentials following trigeminal and hand stimulation in healthy subjects.

Eur J Pain 21, 1087–1097. doi: 10.1002/ejp.1010 .

Di Stefano, G., La Cesa, S., Leone, C., Pepe, A., Galosi, E., Fiorelli, M., Valeriani, M., Lacerenza, M., Pergolini, M., Biasiotta, A., Cruccu, G., Truini, A., 2017. Diagnostic accuracy of laser-evoked potentials in diabetic neuropathy. Pain 158, 1100–1107.

doi: 10.1097/j.pain.0000000000000889 .

Frasson, E., Tozzi, M.C., Bordignon, M., Motti, L., Ferrari, F., Torre, G., Graziottin, A., Monaco, S., Bertolasi, L., 2020. Laser-evoked potentials to pudendal stimulation in healthy subjects: a pilot study. J. Clin. Neurophysiol. Off. Publ. Am. Electroen- cephalogr. Soc doi: 10.1097/WNP.0000000000000694 .

Gagliese, L., 2009. Pain and aging: the emergence of a new subfield of pain research. J.

Pain Off. J. Am. Pain Soc. 10, 343–353. doi: 10.1016/j.jpain.2008.10.013 . Gibson, S.J., Farrell, M., 2004. A review of age differences in the neurophysiology

of nociception and the perceptual experience of pain. Clin. J. Pain 20, 227–239.

doi: 10.1097/00002508-200407000-00004 .

Gibson, S.J. , Helme, R.D. , 2001. Age-related differences in pain perception and report.

Clin. Geriatr. Med. 17, 433–456 v–vi .

Granovsky, Y., Anand, P., Nakae, A., Nascimento, O., Smith, B., Sprecher, E., Valls-Solé, J., 2016. Normative data for A 𝛿contact heat evoked potentials in adult population: a multicenter study. Pain 157. doi: 10.1097/j.pain.0000000000000495 .

Granovsky, Y., Matre, D., Sokolik, A., Lorenz, J., Casey, K.L., 2005. Thermoreceptive in- nervation of human glabrous and hairy skin: a contact heat evoked potential analysis.

Pain 115, 238–247. doi: 10.1016/j.pain.2005.02.017 .

Haefeli, J., Kramer, J.L.K., Blum, J., Curt, A., 2013a. Assessment of spinothalamic tract function beyond pinprick in spinal cord lesions: a contact heat evoked potential study.

Neurorehabil. Neural Repair 28, 494–503. doi: 10.1177/1545968313517755 . Haefeli, J.S., Blum, J., Steeves, J.D., Kramer, J.L.K., Curt, A.E.P., 2013b. Differences in

spinothalamic function of cervical and thoracic dermatomes: insights using contact heat evoked potentials. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc.

30, 291–298. doi: 10.1097/WNP.0b013e31827ed9ee .

Hatem, S.M., Hu, L., Ragé, M., Gierasimowicz, A., Plaghki, L., Bouhassira, D., Attal, N., Iannetti, G.D., Mouraux, A., 2012. Automated single-trial assessment of laser-evoked potentials as an objective functional diagnostic tool for the nociceptive system. Clin.

Neurophysiol. 123, 2437–2445. doi: 10.1016/j.clinph.2012.05.007 .

Hu, L., Iannetti, G.D., 2019. Neural indicators of perceptual variability of pain across species. Proc. Natl. Acad. Sci. 116, 1782–1791. doi: 10.1073/pnas.1812499116 . Hu, L., Liang, M., Mouraux, A., Wise, R.G., Hu, Y., Iannetti, G.D., 2011. Taking into ac-

count latency, amplitude, and morphology: improved estimation of single-trial ERPs by wavelet filtering and multiple linear regression. J. Neurophysiol. 106, 3216–3229.

doi: 10.1152/jn.00220.2011 .

Hu, L., Mouraux, A., Hu, Y., Iannetti, G.D., 2010. A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials. Neuroimage 50, 99–111. doi: 10.1016/j.neuroimage.2009.12.010 . Huang, G., Xiao, P., Hung, Y.S., Iannetti, G.D., Zhang, Z.G., Hu, L., 2013. A novel ap-

proach to predict subjective pain perception from single-trial laser-evoked potentials.

Neuroimage 81, 283–293. doi: 10.1016/j.neuroimage.2013.05.017 .

Hüllemann, P., Nerdal, A., Sendel, M., Dodurgali, D., Forstenpointner, J., Binder, A., Baron, R., 2019. Cold-evoked potentials versus contact heat-evoked poten- tials —Methodological considerations and clinical application. Eur. J. Pain 23, 1209–

1220. doi: 10.1002/ejp.1389 .

Iannetti, G.D., Hughes, N.P., Lee, M.C., Mouraux, A., 2008. Determinants of laser-evoked EEG responses: pain perception or stimulus saliency? J. Neurophysiol. 100, 815–828.

doi: 10.1152/jn.00097.2008 .

Iannetti, G.D., Zambreanu, L., Cruccu, G., Tracey, I., 2005. Operculoinsular cortex encodes pain intensity at the earliest stages of cortical processing as indicated by amplitude of laser-evoked potentials in humans. Neuroscience 131, 199–208.

doi: 10.1016/j.neuroscience.2004.10.035 .

Iannetti, G.D., Zambreanu, L., Tracey, I., 2006. Similar nociceptive afferents mediate psy- chophysical and electrophysiological responses to heat stimulation of glabrous and hairy skin in humans. J. Physiol. 577, 235–248. doi: 10.1113/jphysiol.2006.115675 . Jacobs, J.M., Love, S., 1985. Qualitative and quantitative morphology of human sural

nerve at different ages. Brain 108, 897–924. doi: 10.1093/brain/108.4.897 . Jutzeler, C.R., Curt, A., Kramer, J.L.K., 2015. Effectiveness of high-frequency

electrical stimulation following sensitization with capsaicin. J. Pain 16.

doi: 10.1016/j.jpain.2015.03.005 .

Jutzeler, C.R., Rosner, J., Rinert, J., Kramer, J.L.K., Curt, A., 2016. Normative data for the segmental acquisition of contact heat evoked potentials in cervical dermatomes. Sci.

Rep. 6, 34660. doi: 10.1038/srep34660 .

Kakigi, R., Shibasaki, H., 1991. Estimation of conduction velocity of the spino- thalamic tract in man. Electroencephalogr. Clin. Neurophysiol. 80, 39–45.

doi: 10.1016/0168-5597(91)90041-u .

Kramer, J.L.K., Curt, A., Steeves, J.D., 2012a. Increased baseline temperature improves the acquisition of contact heat evoked potentials after spinal cord injury. Clin. Neu- rophysiol. 123, 582–589. doi: 10.1016/j.clinph.2011.08.013 .

Kramer, J.L.K., Haefeli, J., Jutzeler, C.R., Steeves, J.D., Curt, A., 2013. Improving the acquisition of nociceptive evoked potentials without causing more pain. Pain 154.

doi: 10.1016/j.pain.2012.10.027 .

Kramer, J.L.K., Jutzeler, C.R., Haefeli, J., Curt, A., Freund, P., 2016. Discrep- ancy between perceived pain and cortical processing: a voxel-based morphome- try and contact heat evoked potential study. Clin. Neurophysiol. 127, 762–768.

doi: 10.1016/j.clinph.2015.02.054 .

Referenzen

ÄHNLICHE DOKUMENTE

The Single Perturbation Load Approach (SPLA) is a promising deterministic procedure on the basis of mechanical considerations to determine reasonable design loads for

The GAMIN study was an individually randomized 1:1 trial comparing a single oral dose of azithromycin (20  mg/kg) or matching placebo to better understand potential mechanisms

[8] Scholz and colleagues found a median PODE rate of 23.9% in 11 studies included in a meta-analysis of risk factors for postoperative delirium among older patients

DiVerences between brain- stem-TST response size and brainstem-MEP size were not as great as with cortical stimulation (Table 1), and in two out of six subjects, brainstem-MEPs

The “passive exercise alone” and the “combinatory strategies” could be classified with classification accuracy larger than 70%, which is high enough to be used as an indicator

Utilizing EEG signals’ high temporal resolution, we have developed a novel method of detecting motor commands on a single trial basis by performing time domain analysis..

Also, since this study used an unconstrained “no-control” state as one of the mental tasks, the presented method is suitable for, and will later be used in, an asynchronous BCI

Material Methods: A custom-made visual stimulus presentation device with one central visual reference marker (fixation) LED and four target light LEDs was used to present