• Keine Ergebnisse gefunden

See appendix A.1 on page 175 for Supplementary Methods, Figures, and Tables.

References

Agee, C. B. (1998). Phase transformations and seismic structure in the upper mantle and transition zone.Rev. Mineral.37, 165–203.

Akaogi, M., E. Ito, and A. Navrotsky (1989). Olivine-modified spinel-spinel transitions in the system Mg2SiO4– Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application.J. Geophys. Res.: Solid Earth94, 15671–15685.

Anderson, D. L. and O. L. Anderson (1970). The bulk modulus-volume relationship for ox-ides.J. Geophys. Res.75, 3494–3500.

Angel, R. J. (2000). Equations of state.Rev. Mineral. Geochem.41, 35–59.

— (2003). Automated profile analysis for single-crystal diffraction data.J. Appl. Crystallogr.

36, 295–300.

Angel, R. J. and L. W. Finger (2011). SINGLE: a program to control single-crystal diffrac-tometers.J. Appl. Crystallogr.44, 247–251.

Angel, R. J., M. Alvaro, and J. Gonzalez-Platas (2014). EosFit7c and a Fortran module (li-brary) for equation of state calculations.Z. Kristallogr. - Cryst. Mater.229, 405–419.

Bina, C. R. and B. J. Wood (1987). Olivine-spinel transitions: Experimental and thermody-namic constraints and implications for the nature of the 400-km seismic discontinuity.

J. Geophys. Res.: Solid Earth92, 4853–4866.

Birch, F. (1947). Finite elastic strain of cubic crystals.Phys. Rev.71, 809–824.

Bolfan-Casanova, N., M. Muñoz, C. McCammon, E. Deloule, A. Férot, S. Demouchy, L.

France, D. Andrault, and S. Pascarelli (2012). Ferric iron and water incorporation in wadsleyite under hydrous and oxidizing conditions: A XANES, Mössbauer, and SIMS study.Am. Mineral.97, 1483–1493.

References

Chang, Y.-Y., S. D. Jacobsen, C. R. Bina, S.-M. Thomas, J. R. Smyth, D. J. Frost, T. Boffa Bal-laran, C. A. McCammon, E. H. Hauri, T. Inoue, et al. (2015). Comparative compressibility of hydrous wadsleyite and ringwoodite: Effect of H2O and implications for detecting wa-ter in the transition zone.J. Geophys. Res.: Solid Earth120, 8259–8280.

Chung, D. H. (1972). Birch’s law: Why is it so good?Science177, 261–263.

Demouchy, S., E. Deloule, D. J. Frost, and H. Keppler (2005). Pressure and temperature-dependence of water solubility in Fe-free wadsleyite.Am. Mineral.90, 1084–1091.

Deon, F., M. Koch-Müller, D. Rhede, M. Gottschalk, R. Wirth, and S.-M. Thomas (2010).

Location and quantification of hydroxyl in wadsleyite: New insights. Am. Mineral. 95, 312–322.

Finger, L. W., R. M. Hazen, and A. M. Hofmeister (1986). High-pressure crystal chemistry of spinel (MgAl2O4) and Magnetite (Fe3O4): Comparisons with silicate spinels.Phys. Chem.

Miner.13, 215–220.

Finger, L. W., R. M. Hazen, J. Zhang, J. Ko, and A. Navrotsky (1993). The effect of Fe on the crystal structure of wadsleyiteβ-(Mg1xFex)2SiO4, 0.00≤x ≤0.40.Phys. Chem. Miner.

19, 361–368.

Frost, D. J. (2003). The structure and sharpness of (Mg,Fe)2SiO4 phase transformations in the transition zone.Earth Planet. Sci. Lett. 216, 313–328.

— (2008). The upper mantle and transition zone.Elements4, 171–176.

Frost, D. J. and D. Dolejš (2007). Experimental determination of the effect of H2O on the 410-km seismic discontinuity.Earth Planet. Sci. Lett.256, 182–195.

Frost, D. J. and C. A. McCammon (2009). The effect of oxygen fugacity on the olivine to wadsleyite transformation: Implications for remote sensing of mantle redox state at the 410 km seismic discontinuity.Am. Mineral.94, 872–882.

Griffin, J. M., A. J. Berry, D. J. Frost, S. Wimperis, and S. E. Ashbrook (2013). Water in the Earth’s mantle: a solid-state NMR study of hydrous wadsleyite.Chem. Sci.4, 1523–1538.

Haussühl, S. (2007). Physical Properties of Crystals: An Introduction. Wiley-VCH, Weinheim, 439 pp.

Hazen, R. M. (1993). Comparative compressibilities of silicate spinels: Anomalous behavior of (Mg,Fe)2SiO4.Science259, 206–209.

Hazen, R. M. and L. W. Finger (1979). Bulk modulus–volume relationship for cation-anion polyhedra.J. Geophys. Res.84, 6723–6728.

Hazen, R. M., J. Zhang, and J. Ko (1990). Effects of Fe/Mg on the compressibility of synthetic wadsleyite:β-(Mg1xFex)2SiO4 (x≤0.25).Phys. Chem. Miner.17, 416–419.

Hazen, R. M., M. B. Weinberger, H. Yang, and C. T. Prewitt (2000a). Comparative high-pressure crystal chemistry of wadsleyite,β-(Mg1−xFex)2SiO4, with x =0 and 0.25.Am.

Mineral.85, 770–777.

Hazen, R. M., H. Yang, and C. T. Prewitt (2000b). High-pressure crystal chemistry of Fe3+ -wadsleyite,β-Fe2.33Si0.67O4.Am. Mineral.85, 778–783.

Higo, Y., T. Inoue, B. Li, T. Irifune, and R. C. Liebermann (2006). The effect of iron on the elastic properties of ringwoodite at high pressure.Phys. Earth Planet. Inter. 159, 276–

285.

Hill, R. (1963). Elastic properties of reinforced solids: Some theoretical principles.J. Mech.

Phys. Solids11, 357–372.

Holl, C. M., J. R. Smyth, S. D. Jacobsen, and D. J. Frost (2008). Effects of hydration on the structure and compressibility of wadsleyite,β-(Mg2SiO4).Am. Mineral.93, 598–607.

Horiuchi, H. and H. Sawamoto (1981). β-Mg2SiO4: Single-crystal X-ray diffraction study.

Am. Mineral.66, 568–575.

ofγ-Mg2SiO4 to 873 K by Brillouin spectroscopy.Am. Mineral.85, 296–303.

Jacobsen, S. D., S. Demouchy, D. J. Frost, T. Boffa Ballaran, and J. Kung (2005). A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: Oxygen sites for hydrogen storage in Earth’s interior.Am. Mineral.90, 61–70.

Jeanloz, R. and R. M. Hazen (1991). Finite-strain analysis of relative compressibilities: Ap-plication to the high-pressure wadsleyite phase as an illustration.Am. Mineral.76, 1765–

1768.

Kantor, I., V. Prakapenka, A. Kantor, P. Dera, A. Kurnosov, S. Sinogeikin, N. Dubrovinskaia, and L. Dubrovinsky (2012). BX90: A new diamond anvil cell design for X-ray diffraction and optical measurements.Rev. Sci. Instrum.83, 125102.

Katsura, T., A. Yoneda, D. Yamazaki, T. Yoshino, and E. Ito (2010). Adiabatic temperature profile in the mantle.Phys. Earth Planet. Inter.183, 212–218.

Kawamoto, T., R. L. Hervig, and J. R. Holloway (1996). Experimental evidence for a hydrous transition zone in the early Earth’s mantle.Earth Planet. Sci. Lett.142, 587–592.

Kawazoe, T., J. Buchen, and H. Marquardt (2015). Synthesis of large wadsleyite single crys-tals by solid-state recrystallization.Am. Mineral.100, 2336–2339.

Kawazoe, T., A. Chaudhari, J. R. Smyth, and C. McCammon (2016). Coupled substitution of Fe3+ and H+ for Si in wadsleyite: A study by polarized infrared and Mössbauer spec-troscopies and single-crystal X-ray diffraction.Am. Mineral.101, 1236–1239.

Keppler, H. and J. R. Smyth (2005). Optical and near infrared spectra of ringwoodite to 21.5 GPa: Implications for radiative heat transport in the mantle. Am. Mineral. 90, 1209–

1212.

King, H. E. and L. W. Finger (1979). Diffracted beam crystal centering and its application to high-pressure crystallography.J. Appl. Crystallogr.12, 374–378.

Kleppe, A. K., A. P. Jephcoat, H. Olijnyk, A. E. Slesinger, S. C. Kohn, and B. J. Wood (2001).

Raman spectroscopic study of hydrous wadsleyite (β-Mg2SiO4) to 50 GPa.Phys. Chem.

Miner.28, 232–241.

Kleppe, A. K., A. P. Jephcoat, and J. R. Smyth (2006). High-pressure Raman spectroscopic study of Fo90hydrous wadsleyite.Phys. Chem. Miner.32, 700–709.

Klotz, S., J.-C. Chervin, P. Munsch, and G. Le Marchand (2009). Hydrostatic limits of 11 pressure transmitting media.J. Phys. D: Appl. Phys.42, 075413.

Koch, M., A. B. Woodland, and R. J. Angel (2004). Stability of spinelloid phases in the system Mg2SiO4–Fe2SiO4–Fe3O4at 1100C and up to 10.5 GPa.Phys. Earth Planet. Inter.

143–144, 171–183.

References

Kudoh, Y. and T. Inoue (1999). Mg-vacant structural modules and dilution of the symmetry of hydrous wadsleyite,β-Mg2−xSiH2xO4with 0.00≤x≤0.25.Phys. Chem. Miner.26, 382–

388.

Kudoh, Y., T. Inoue, and H. Arashi (1996). Structure and crystal chemistry of hydrous wad-sleyite, Mg1.75SiH0.5O4: possible hydrous magnesium silicate in the mantle transition zone.Phys. Chem. Miner.23, 461–469.

Kurnosov, A., I. Kantor, T. Boffa-Ballaran, S. Lindhardt, L. Dubrovinsky, A. Kuznetsov, and B. H. Zehnder (2008). A novel gas-loading system for mechanically closing of various types of diamond anvil cells.Rev. Sci. Instrum.79, 045110.

Kurnosov, A., H. Marquardt, D. J. Frost, T. Boffa Ballaran, and L. Ziberna (2017). Evidence for a Fe3+-rich pyrolitic lower mantle from (Al,Fe)-bearing bridgmanite elasticity data.

Nature543, 543–546.

Libowitzky, E. and G. R. Rossman (1996). Principles of quantitative absorbance measure-ments in anisotropic crystals.Phys. Chem. Miner.23, 319–327.

— (1997). An IR absorption calibration for water in minerals.Am. Mineral.82, 1111–1115.

Litasov, K. D., A. Shatskiy, E. Ohtani, and T. Katsura (2011). Systematic study of hydrogen incorporation into Fe-free wadsleyite.Phys. Chem. Miner.38, 75–84.

Mao, Z. and X. Y. Li (2016). Effect of hydration on the elasticity of mantle minerals and its geophysical implications.Sci. China: Earth Sci.59, 873–888.

Mao, Z., S. D. Jacobsen, F. M. Jiang, J. R. Smyth, C. M. Holl, D. J. Frost, and T. S. Duffy (2008). Single-crystal elasticity of wadsleyites,β-Mg2SiO4, containing 0.37–1.66 wt.%

H2O. Earth Planet. Sci. Lett.268, 540–549.

Mao, Z., S. D. Jacobsen, F. Jiang, J. R. Smyth, C. M. Holl, D. J. Frost, and T. S. Duffy (2010).

Velocity crossover between hydrous and anhydrous forsterite at high pressures. Earth Planet. Sci. Lett.293, 250–258.

Mao, Z., S. D. Jacobsen, D. J. Frost, C. A. McCammon, E. H. Hauri, and T. S. Duffy (2011).

Effect of hydration on the single-crystal elasticity of Fe-bearing wadsleyite to 12 GPa.

Am. Mineral.96, 1606–1612.

Marquardt, H. and K. Marquardt (2012). Focused ion beam preparation and characteriza-tion of single-crystal samples for high-pressure experiments in the diamond-anvil cell.

Am. Mineral.97, 299–304.

McCammon, C. A, D. J Frost, J. R Smyth, H. M. S Laustsen, T Kawamoto, N. L Ross, and P. A van Aken (2004). Oxidation state of iron in hydrous mantle phases: implications for subduction and mantle oxygen fugacity.Phys. Earth Planet. Inter.143–144, 157–169.

McGetchin, T. R. and J. R. Smith (1978). The mantle of Mars: Some possible geological implications of its high density.Icarus34, 512–536.

McMillan, P. F., M. Akaogi, R. K. Sato, B. Poe, and J. Foley (1991). Hydroxyl groups in β-Mg2SiO4.Am. Mineral.76, 354–360.

Meng, Y., D. J. Weidner, and Y. Fei (1993). Deviatoric stress in a quasi-hydrostatic diamond anvil cell: Effect on the volume-based pressure calibration.Geophys. Res. Lett.20, 1147–

1150.

Mrosko, M., M. Koch-Müller, C. McCammon, D. Rhede, J. R. Smyth, and R. Wirth (2015).

Water, iron, redox environment: effects on the wadsleyite–ringwoodite phase transition.

Contrib. Mineral. Petrol.170, 9.

Nishihara, Y., T. Shinmei, and S.-i. Karato (2008). Effect of chemical environment on the hydrogen-related defect chemistry in wadsleyite.Am. Mineral.93, 831–843.

silicate glasses and similar materials.Bull. Mineral.105, 20–29.

Prescher, C., C. McCammon, and L. Dubrovinsky (2012). MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources.J. Appl.

Crystallogr.45, 329–331.

Reichmann, H. J. and S. D. Jacobsen (2004). High-pressure elasticity of a natural magnetite crystal.Am. Mineral.89, 1061–1066.

Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastiz-itätsbedingung für Einkristalle.Z. Angew. Math. Mech.9, 49–58 (in German).

Richmond, N. C. and J. P. Brodholt (2000). Incorporation of Fe3+ into forsterite and wads-leyite.Am. Mineral.85, 1155–1158.

Rigden, S. M. and I. Jackson (1991). Elasticity of germanate and silicate spinels at high pressure.J. Geophys. Res.: Solid Earth96, 9999–10006.

Ringwood, A. E. (1991). Phase transformations and their bearing on the constitution and dynamics of the mantle.Geochim. Cosmochim. Acta55, 2083–2110.

Ringwood, A. E. and A. Major (1970). The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures.Phys. Earth Planet. Inter.3, 89–108.

Ross, N. L. (1997). Optical absorption spectra of transition zone minerals and implications for radiative heat transport.Phys. Chem. Earth22, 113–118.

Ross, N. L. and W. A. Crichton (2001). Compression of synthetic hydroxylclinohumite [Mg9Si4O16(OH)2] and hydroxylchondrodite [Mg5Si2O8(OH)2].Am. Mineral. 86, 990–

996.

Sawamoto, H. and H. Horiuchi (1990).β(Mg0.9, Fe0.1)2SiO4: Single crystal structure, cation distribution, and properties of coordination polyhedra.Phys. Chem. Miner.17, 293–300.

Schulze, K., J. Buchen, K. Marquardt, and H. Marquardt (2017). Multi-sample loading tech-nique for comparative physical property measurements in the diamond-anvil cell.High Pressure Res.37, 159–169.

Shearer, P. M. (2000). Upper mantle seismic discontinuities. In:Earth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale. Ed. by S.-i. Karato, A. Forte, R. Liebermann, G. Masters, and L. Stixrude. American Geophysical Union, Washington, DC, 115–131.

Sinogeikin, S. V., T. Katsura, and J. D. Bass (1998). Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite.J. Geophys. Res.: Solid Earth103, 20819–20825.

Smyth, J. R. (1994). A crystallographic model for hydrous wadsleyite (β-Mg2SiO4): An ocean in the Earth’s interior?Am. Mineral.79, 1021–1024.

Smyth, J. R. and D. J. Frost (2002). The effect of water on the 410-km discontinuity: An experimental study.Geophys. Res. Lett.29, 123.

References

Smyth, J. R., T. Kawamoto, S. D. Jacobsen, R. J. Swope, R. L. Hervig, and J. R. Holloway (1997). Crystal structure of monoclinic hydrous wadsleyite[β-(Mg,Fe)2SiO4].Am. Min-eral.82, 270–275.

Smyth, J. R., N. Bolfan-Casanova, D. Avignant, M. El-Ghozzi, and S. M. Hirner (2014).

Tetrahedral ferric iron in oxidized hydrous wadsleyite.Am. Mineral.99, 458–466.

Speziale, S., T. S. Duffy, and R. J. Angel (2004). Single-crystal elasticity of fayalite to 12 GPa.J. Geophys. Res.: Solid Earth109, B12202.

Stixrude, L. and C. Lithgow-Bertelloni (2005). Thermodynamics of mantle minerals – I.

Physical properties.Geophys. J. Int.162, 610–632.

— (2011). Thermodynamics of mantle minerals – II. Phase equilibria.Geophys. J. Int.184, 1180–1213.

Sumino, Y. (1979). The elastic constants of Mn2SiO4, Fe2SiO4 and Co2SiO4, and the elastic properties of olivine group minerals at high temperature.J. Phys. Earth27, 209–238.

Takahashi, T. and L.-G. Liu (1970). Compression of ferromagnesian garnets and the effect of solid solutions on the bulk modulus.J. Geophys. Res.75, 5757–5766.

Tsuchiya, J. and T. Tsuchiya (2009). First principles investigation of the structural and elas-tic properties of hydrous wadsleyite under pressure.J. Geophys. Res.: Solid Earth 114, B02206.

Voigt, W. (1928). Lehrbuch der Kristallphysik. Teubner, Leipzig, 979 pp. (in German).

Wang, J., J. D. Bass, and T. Kastura (2014). Elastic properties of iron-bearing wadsleyite to 17.7 GPa: Implications for mantle mineral models.Phys. Earth Planet. Inter.228, 92–96.

Watt, J. P., G. F. Davies, and R. J. O’Connell (1976). The elastic properties of composite materials.Rev. Geophys.14, 541–563.

Weidner, D. J., H. Sawamoto, S. Sasaki, and M. Kumazawa (1984). Single-crystal elastic properties of the spinel phase of Mg2SiO4.J. Geophys. Res.: Solid Earth89, 7852–7860.

Wood, B. J. (1995). The effect of H2O on the 410-kilometer seismic discontinuity. Science 268, 74–76.

Woodland, A. B. and R. J. Angel (1998). Crystal structure of a new spinelloid with the wadsleyite structure in the system Fe2SiO4-Fe3O4and implications for the Earth’s Mantle.

Am. Mineral.83, 404–408.

— (2000). Phase relations in the system fayalite–magnetite at high pressures and temper-atures.Contrib. Mineral. Petrol. 139, 734–747.

Woodland, A. B., R. J. Angel, and M. Koch (2012). Structural systematics of spinel and spinelloid phases in the system MFe2O4–M2SiO4 with M=Fe2+ and Mg.Eur. J. Mineral.

24, 657–668.

Ye, Y., J. R. Smyth, A. Hushur, M. H. Manghnani, D. Lonappan, P. Dera, and D. J. Frost (2010). Crystal structure of hydrous wadsleyite with 2.8% H2O and compressibility to 60 GPa.Am. Mineral.95, 1765–1772.

Yoneda, A. and M. Morioka (1992). Pressure derivatives of elastic constants of single crystal forsterite. In:High-Pressure Research: Application to Earth and Planetary Sciences. Ed. by Y. Syono and M. H. Manghnani. American Geophysical Union, Washington, DC, 207–

214.

Young, T. E., H. W. Green II, A. M. Hofmeister, and D. Walker (1993). Infrared spectro-scopic investigation of hydroxyl inβ-(Mg,Fe)2SiO4 and coexisting olivine: Implications for mantle evolution and dynamics.Phys. Chem. Miner. 19, 409–422.

Yusa, H. and T. Inoue (1997). Compressibility of hydrous wadsleyite (β-phase) in Mg2SiO4 by high pressure X-ray diffraction.Geophys. Res. Lett. 24, 1831–1834.

Chapter 5

High-Pressure Elastic Properties of