• Keine Ergebnisse gefunden

Dark

Time Gene Expression Std. Error 95% C.I. P(H1) Result

3:00 AM fcpB 0,187 0,049 ‐ 1,869 0,016 ‐ 4,087 0,094 6:00 AM fcpB 0,271 0,043 ‐ 6,207 0,019 ‐ 13,575 0,342 9:00 AM fcpB 0,985 0,269 ‐ 13,122 0,063 ‐ 28,698 0,983 12:00 PM fcpB 1,607 0,547 ‐ 4,581 0,245 ‐ 6,964 0,477

3:00 PM fcpB 0,219 0,084 ‐ 0,668 0,029 ‐ 1,052 0,04 DOWN 6:00 PM fcpB 0,121 0,037 ‐ 0,257 0,024 ‐ 0,322 0,012 DOWN 9:00 PM fcpB 0,075 0,036 ‐ 0,240 0,009 ‐ 0,318 0,012 DOWN 12:00 AM fcpB 0,056 0,019 ‐ 0,136 0,010 ‐ 0,164 0,004 DOWN 3:00 AM fcpB 0,054 0,019 ‐ 0,200 0,006 ‐ 0,353 0,005 DOWN 6:00 AM fcpB 0,06 0,022 ‐ 0,142 0,010 ‐ 0,191 0,006 DOWN 9:00 AM fcpB 0,5 0,175 ‐ 2,451 0,048 ‐ 4,796 0,387

3:00 AM Lhcx1 1,11 0,724 ‐ 1,968 0,478 ‐ 2,133 0,742 6:00 AM Lhcx1 4,23 2,540 ‐ 6,441 1,975 ‐ 9,796 0,024 UP 9:00 AM Lhcx1 13,965 7,401 ‐ 24,001 3,670 ‐ 39,651 0,026 UP 12:00 PM Lhcx1 5,173 1,728 ‐ 13,496 0,857 ‐ 26,140 0,061

3:00 PM Lhcx1 1,511 0,540 ‐ 3,922 0,420 ‐ 7,597 0,516 6:00 PM Lhcx1 2,455 0,435 ‐ 19,898 0,216 ‐ 38,540 0,439 9:00 PM Lhcx1 0,87 0,504 ‐ 1,459 0,304 ‐ 2,805 0,733 12:00 AM Lhcx1 0,564 0,329 ‐ 0,984 0,256 ‐ 1,211 0,13

3:00 AM Lhcx1 0,378 0,090 ‐ 1,850 0,070 ‐ 3,584 0,247 6:00 AM Lhcx1 0,471 0,143 ‐ 1,464 0,071 ‐ 2,552 0,324 9:00 AM Lhcx1 5,11 1,514 ‐ 16,944 0,872 ‐ 30,072 0,04 UP 3:00 AM Lhcx2 1,359 0,484 ‐ 3,270 0,367 ‐ 5,871 0,477 6:00 AM Lhcx2 1,666 0,569 ‐ 4,404 0,397 ‐ 7,912 0,399 9:00 AM Lhcx2 2,086 0,940 ‐ 5,446 0,429 ‐ 10,899 0,242 12:00 PM Lhcx2 0,514 0,198 ‐ 1,501 0,097 ‐ 2,703 0,233 3:00 PM Lhcx2 0,175 0,059 ‐ 0,586 0,026 ‐ 1,053 0,067

6:00 PM Lhcx2 0,167 0,042 ‐ 0,545 0,037 ‐ 0,980 0,042 DOWN 9:00 PM Lhcx2 0,221 0,087 ‐ 0,487 0,066 ‐ 0,875 0,007 DOWN 12:00 AM Lhcx2 0,183 0,060 ‐ 0,481 0,052 ‐ 0,866 0,036 DOWN

3:00 AM Lhcx2 0,181 0,046 ‐ 0,645 0,026 ‐ 1,849 0,064 6:00 AM Lhcx2 0,179 0,050 ‐ 0,750 0,017 ‐ 1,350 0,062 9:00 AM Lhcx2 0,419 0,100 ‐ 1,729 0,061 ‐ 3,110 0,282 3:00 AM Lhcx3 0,59 0,403 ‐ 0,818 0,342 ‐ 1,072 0,08 6:00 AM Lhcx3 0,504 0,258 ‐ 0,894 0,219 ‐ 1,483 0,088 9:00 AM Lhcx3 0,64 0,220 ‐ 2,724 0,128 ‐ 4,853 0,577 12:00 PM Lhcx3 0,205 0,062 ‐ 0,834 0,036 ‐ 1,485 0,076

3:00 PM Lhcx3 0,144 0,052 ‐ 0,488 0,036 ‐ 0,869 0,026 DOWN 6:00 PM Lhcx3 0,223 0,027 ‐ 1,183 0,016 ‐ 1,664 0,169

9:00 PM Lhcx3 0,201 0,059 ‐ 0,574 0,034 ‐ 1,022 0,042 DOWN 12:00 AM Lhcx3 0,157 0,058 ‐ 0,314 0,033 ‐ 0,432 0,022 DOWN

3:00 AM Lhcx3 0,17 0,027 ‐ 0,830 0,015 ‐ 1,391 0,068

6:00 AM Lhcx3 0,094 0,019 ‐ 0,339 0,011 ‐ 0,445 0,013 DOWN 9:00 AM Lhcx3 0,376 0,098 ‐ 1,175 0,057 ‐ 1,832 0,258

3:00 AM Lhcx4 1,042 0,660 ‐ 1,701 0,436 ‐ 2,239 0,832 6:00 AM Lhcx4 1,221 0,554 ‐ 2,721 0,382 ‐ 4,210 0,683 9:00 AM Lhcx4 1,789 1,066 ‐ 2,924 0,742 ‐ 3,918 0,101 12:00 PM Lhcx4 4,431 2,416 ‐ 9,101 1,914 ‐ 15,260 0,004 UP

3:00 PM Lhcx4 6,835 3,819 ‐ 13,311 2,626 ‐ 19,580 0,003 UP 6:00 PM Lhcx4 5,77 3,955 ‐ 8,447 3,165 ‐ 10,099 0,017 UP 9:00 PM Lhcx4 5,894 4,359 ‐ 8,228 3,030 ‐ 11,048 0,018 UP 12:00 AM Lhcx4 4,023 2,693 ‐ 5,934 2,052 ‐ 8,055 0,007 UP

3:00 AM Lhcx4 2,204 1,286 ‐ 3,817 0,802 ‐ 5,027 0,071 6:00 AM Lhcx4 2,017 1,353 ‐ 3,121 0,939 ‐ 3,921 0,037 UP 9:00 AM Lhcx4 4,689 2,756 ‐ 9,076 1,896 ‐ 14,841 0,002 UP

Table A.10A,caption on page 140

Low Light

Time Gene Expression Std. Error 95% C.I. P(H1) Result

3:00 AM fcpB 0,063 0,028 ‐ 0,143 0,019 ‐ 0,192 0,01 DOWN 6:00 AM fcpB 0,079 0,037 ‐ 0,193 0,022 ‐ 0,230 0,019 DOWN 9:00 AM fcpB 0,114 0,040 ‐ 0,401 0,030 ‐ 0,649 0,006 DOWN 12:00 PM fcpB 1,418 0,691 ‐ 2,426 0,438 ‐ 5,008 0,446

3:00 PM fcpB 5,318 2,813 ‐ 10,077 1,918 ‐ 14,203 0 UP

6:00 PM fcpB 3,931 2,025 ‐ 5,598 1,634 ‐ 10,594 0 UP

9:00 PM fcpB 1,004 0,438 ‐ 2,266 0,298 ‐ 3,276 0,97

12:00 AM fcpB 0,041 0,015 ‐ 0,128 0,013 ‐ 0,297 0,005 DOWN 3:00 AM fcpB 0,016 0,007 ‐ 0,036 0,004 ‐ 0,083 0,016 DOWN 6:00 AM fcpB 0,014 0,006 ‐ 0,032 0,004 ‐ 0,057 0,009 DOWN 9:00 AM fcpB 0,054 0,024 ‐ 0,121 0,017 ‐ 0,169 0,008 DOWN 3:00 AM Lhcx1 0,68 0,374 ‐ 1,192 0,316 ‐ 1,513 0,306

6:00 AM Lhcx1 3,084 1,695 ‐ 5,520 1,343 ‐ 7,402 0,008 UP 9:00 AM Lhcx1 86,116 46,397 ‐ 156,798 35,006 ‐ 220,401 0 UP 12:00 PM Lhcx1 44,005 21,743 ‐ 99,140 12,192 ‐ 140,775 0 UP 3:00 PM Lhcx1 13,179 6,742 ‐ 21,645 5,249 ‐ 40,943 0 UP 6:00 PM Lhcx1 2,52 1,197 ‐ 5,512 0,803 ‐ 8,040 0,021 UP 9:00 PM Lhcx1 1,255 0,683 ‐ 2,590 0,396 ‐ 3,546 0,573 12:00 AM Lhcx1 2,923 1,478 ‐ 5,207 1,070 ‐ 9,294 0,033 UP

3:00 AM Lhcx1 0,715 0,373 ‐ 1,342 0,356 ‐ 1,415 0,332 6:00 AM Lhcx1 1,827 1,019 ‐ 3,501 0,683 ‐ 4,444 0,144 9:00 AM Lhcx1 66,518 32,826 ‐ 123,134 25,325 ‐ 193,915 0,005 UP 3:00 AM Lhcx2 1,257 0,772 ‐ 2,048 0,555 ‐ 2,575 0,426 6:00 AM Lhcx2 1,132 0,697 ‐ 1,702 0,567 ‐ 2,270 0,692 9:00 AM Lhcx2 6,681 4,227 ‐ 12,890 2,378 ‐ 15,275 0 UP

12:00 PM Lhcx2 4,81 3,048 ‐ 8,770 1,598 ‐ 11,530 0 UP

3:00 PM Lhcx2 2,317 1,331 ‐ 3,927 0,999 ‐ 5,099 0,056 6:00 PM Lhcx2 1,435 0,859 ‐ 2,651 0,532 ‐ 3,336 0,213 9:00 PM Lhcx2 0,946 0,531 ‐ 1,723 0,354 ‐ 2,514 0,793 12:00 AM Lhcx2 1,849 1,016 ‐ 3,329 0,679 ‐ 5,372 0,105 3:00 AM Lhcx2 1,775 0,892 ‐ 3,230 0,631 ‐ 6,097 0,189 6:00 AM Lhcx2 1,617 0,940 ‐ 3,168 0,486 ‐ 3,997 0,244 9:00 AM Lhcx2 5,213 1,853 ‐ 12,273 0,874 ‐ 20,109 0,041 UP 3:00 AM Lhcx3 0,662 0,377 ‐ 1,055 0,292 ‐ 1,523 0,191 6:00 AM Lhcx3 0,479 0,251 ‐ 0,897 0,171 ‐ 1,340 0,121 9:00 AM Lhcx3 2,453 1,497 ‐ 4,007 1,154 ‐ 4,955 0,025 UP 12:00 PM Lhcx3 2,479 1,537 ‐ 4,782 0,719 ‐ 6,380 0,064

3:00 PM Lhcx3 1,203 0,700 ‐ 2,253 0,461 ‐ 2,631 0,567 6:00 PM Lhcx3 1,169 0,679 ‐ 2,208 0,478 ‐ 2,536 0,612 9:00 PM Lhcx3 1,658 0,911 ‐ 3,190 0,641 ‐ 4,004 0,147 12:00 AM Lhcx3 2,44 1,464 ‐ 4,490 1,032 ‐ 5,313 0,036 UP

3:00 AM Lhcx3 1,059 0,625 ‐ 1,677 0,527 ‐ 1,916 0,846 6:00 AM Lhcx3 0,83 0,447 ‐ 1,290 0,342 ‐ 2,211 0,643 9:00 AM Lhcx3 4,512 2,136 ‐ 7,369 1,794 ‐ 16,942 0,008 UP 3:00 AM Lhcx4 3,472 0,780 ‐ 93,628 0,544 ‐ 134,255 0,342 6:00 AM Lhcx4 4,326 1,038 ‐ 109,534 0,649 ‐ 172,304 0,123 9:00 AM Lhcx4 5,218 1,252 ‐ 138,704 0,837 ‐ 205,554 0,296 12:00 PM Lhcx4 7,018 1,529 ‐ 180,091 0,980 ‐ 314,964 0,038 UP

3:00 PM Lhcx4 6,607 1,670 ‐ 158,181 0,927 ‐ 284,020 0,069 6:00 PM Lhcx4 8,068 1,896 ‐ 203,060 1,213 ‐ 335,943 0,006 UP 9:00 PM Lhcx4 10,449 2,409 ‐ 229,286 1,286 ‐ 504,515 0,011 UP 12:00 AM Lhcx4 5,988 1,380 ‐ 159,541 0,905 ‐ 239,732 0,039 UP

3:00 AM Lhcx4 5,509 1,087 ‐ 169,103 0,996 ‐ 183,110 0,051 6:00 AM Lhcx4 9,256 1,920 ‐ 264,705 1,581 ‐ 335,897 0,01 UP 9:00 AM Lhcx4 15,099 3,534 ‐ 378,898 2,279 ‐ 641,535 0,026 UP

Table A.10B,caption on page 140

A.6. Supplementary Material, Chapter 7

Moderate High Light

Time Gene Expression Std. Error 95% C.I. P(H1) Result

3:00 AM fcpB 0,345 0,058 ‐ 4,312 0,008 ‐ 14,486 0,422 6:00 AM fcpB 0,492 0,092 ‐ 8,360 0,005 ‐ 26,378 0,538

9:00 AM fcpB 0,012 0,003 ‐ 0,149 0,003 ‐ 0,182 0,043 DOWN 12:00 PM fcpB 0,004 0,001 ‐ 0,040 0,001 ‐ 0,067 0,023 DOWN 3:00 PM fcpB 0,023 0,006 ‐ 0,204 0,004 ‐ 0,484 0,043 DOWN 6:00 PM fcpB 0,082 0,022 ‐ 0,955 0,017 ‐ 1,409 0,103

9:00 PM fcpB 0,09 0,024 ‐ 1,027 0,017 ‐ 1,634 0,11 12:00 AM fcpB 0,081 0,024 ‐ 0,863 0,016 ‐ 1,426 0,072

3:00 AM fcpB 0,162 0,049 ‐ 1,582 0,029 ‐ 3,088 0,136 6:00 AM fcpB 0,17 0,050 ‐ 1,843 0,033 ‐ 3,003 0,12

9:00 AM fcpB 0,015 0,004 ‐ 0,148 0,003 ‐ 0,283 0,011 DOWN 3:00 AM Lhcx1 0,708 0,336 ‐ 1,110 0,262 ‐ 1,326 0,32

6:00 AM Lhcx1 3,469 1,740 ‐ 5,743 1,193 ‐ 7,599 0 UP

9:00 AM Lhcx1 63,593 37,260 ‐ 132,639 18,517 ‐ 169,927 0,006 UP 12:00 PM Lhcx1 53,691 24,183 ‐ 83,243 21,179 ‐ 92,183 0,001 UP 3:00 PM Lhcx1 35,389 18,245 ‐ 79,320 9,789 ‐ 101,619 0 UP 6:00 PM Lhcx1 12,403 6,285 ‐ 19,927 4,282 ‐ 24,591 0,004 UP

9:00 PM Lhcx1 5,3 2,486 ‐ 8,176 2,011 ‐ 9,883 0 UP

12:00 AM Lhcx1 8,4 3,959 ‐ 13,199 3,157 ‐ 17,883 0,013 UP 3:00 AM Lhcx1 1,414 0,749 ‐ 2,244 0,474 ‐ 2,837 0,319 6:00 AM Lhcx1 2,903 1,389 ‐ 4,752 1,059 ‐ 5,389 0,03 UP 9:00 AM Lhcx1 21,537 11,518 ‐ 37,835 6,999 ‐ 49,431 0,008 UP 3:00 AM Lhcx2 1,059 0,529 ‐ 2,505 0,330 ‐ 3,952 0,903 6:00 AM Lhcx2 1,203 0,716 ‐ 2,943 0,325 ‐ 4,107 0,687 9:00 AM Lhcx2 44,39 30,956 ‐ 91,869 14,805 ‐ 113,786 0,022 UP 12:00 PM Lhcx2 38,173 19,431 ‐ 69,173 11,251 ‐ 85,606 0,029 UP 3:00 PM Lhcx2 21,601 14,354 ‐ 42,100 7,572 ‐ 52,143 0,019 UP 6:00 PM Lhcx2 19,919 10,996 ‐ 32,059 7,265 ‐ 38,962 0,023 UP 9:00 PM Lhcx2 15,729 9,146 ‐ 26,373 5,444 ‐ 32,435 0,025 UP 12:00 AM Lhcx2 23,197 11,760 ‐ 33,408 9,513 ‐ 40,068 0,024 UP 3:00 AM Lhcx2 3,605 1,920 ‐ 5,586 1,382 ‐ 6,834 0,014 UP 6:00 AM Lhcx2 3,054 1,643 ‐ 4,515 1,166 ‐ 5,636 0,024 UP 9:00 AM Lhcx2 22,195 12,599 ‐ 37,881 8,060 ‐ 45,478 0,021 UP 3:00 AM Lhcx3 0,676 0,423 ‐ 1,024 0,377 ‐ 1,711 0,17

6:00 AM Lhcx3 0,264 0,122 ‐ 0,498 0,076 ‐ 0,689 0,012 DOWN 9:00 AM Lhcx3 35,088 13,958 ‐ 125,382 12,259 ‐ 190,532 0,005 UP 12:00 PM Lhcx3 13,025 8,875 ‐ 17,637 7,446 ‐ 24,632 0,001 UP 3:00 PM Lhcx3 4,972 2,418 ‐ 12,382 1,792 ‐ 18,816 0 UP 6:00 PM Lhcx3 5,388 3,183 ‐ 8,395 2,646 ‐ 11,726 0,006 UP 9:00 PM Lhcx3 6,884 4,965 ‐ 10,103 3,545 ‐ 12,840 0 UP 12:00 AM Lhcx3 11,725 7,642 ‐ 17,140 5,791 ‐ 23,948 0 UP

3:00 AM Lhcx3 1,402 0,943 ‐ 1,961 0,792 ‐ 2,742 0,154 6:00 AM Lhcx3 1,134 0,842 ‐ 1,603 0,747 ‐ 1,868 0,563 9:00 AM Lhcx3 15,552 6,987 ‐ 33,070 4,944 ‐ 46,192 0,015 UP 3:00 AM Lhcx4 0,837 0,437 ‐ 1,854 0,345 ‐ 3,192 0,66 6:00 AM Lhcx4 0,855 0,429 ‐ 1,739 0,248 ‐ 2,211 0,751 9:00 AM Lhcx4 1,307 0,715 ‐ 2,495 0,545 ‐ 3,647 0,55 12:00 PM Lhcx4 3,4 2,038 ‐ 5,831 1,503 ‐ 7,416 0,002 UP

3:00 PM Lhcx4 3,017 1,908 ‐ 4,433 1,527 ‐ 6,277 0,005 UP 6:00 PM Lhcx4 4,644 2,412 ‐ 11,180 2,009 ‐ 19,251 0,002 UP 9:00 PM Lhcx4 3,666 2,175 ‐ 5,598 1,769 ‐ 9,081 0,013 UP 12:00 AM Lhcx4 2,56 1,797 ‐ 3,663 1,450 ‐ 4,317 0,011 UP 3:00 AM Lhcx4 2,761 1,747 ‐ 4,457 1,249 ‐ 5,667 0,009 UP 6:00 AM Lhcx4 4,567 3,242 ‐ 6,514 2,601 ‐ 7,606 0,004 UP 9:00 AM Lhcx4 6,68 4,068 ‐ 11,471 2,974 ‐ 15,388 0,007 UP

Table A.10C,caption on page 140

Low LightHigh Light GeneExpressionStd. Error95% C.I.P(H1)ResultGeneExpressionStd. Error95% C.I.P(H1)Result 15minfcpB6,281,721 ‐ 22,8911,708 ‐ 23,0700UPfcpB0,230,180 ‐ 0,2980,170 ‐ 0,3150DOWN 30minfcpB6,691,835 ‐ 24,3951,825 ‐ 24,5310UPfcpB0,010,007 ‐ 0,0090,007 ‐ 0,0100DOWN 45minfcpB7,712,114 ‐ 28,1342,087 ‐ 28,4940UPfcpB0,010,003 ‐ 0,0080,002 ‐ 0,0080DOWN 60minfcpB7,772,129 ‐ 28,4002,061 ‐ 29,3160UPfcpB0,000,002 ‐ 0,0030,002 ‐ 0,0030DOWN 120minfcpB5,871,615 ‐ 21,7261,435 ‐ 24,1110UPfcpB0,000,002 ‐ 0,0030,002 ‐ 0,0030DOWN recov4hfcpB3,270,896 ‐ 11,9680,852 ‐ 12,5420,665fcpB0,020,003 ‐ 0,0780,003 ‐ 0,0820DOWN 15minLhcx11,010,734 ‐ 1,3850,725 ‐ 1,4020,688Lhcx18,394,599 ‐ 16,0183,803 ‐ 18,7380UP 30minLhcx11,210,890 ‐ 1,7110,736 ‐ 2,0020,515Lhcx14,712,772 ‐ 9,8541,785 ‐ 13,2260UP 45minLhcx10,830,606 ‐ 1,1570,536 ‐ 1,2890,336Lhcx13,661,998 ‐ 6,9381,708 ‐ 7,9280UP 60minLhcx10,750,548 ‐ 1,0470,485 ‐ 1,1670,498Lhcx13,032,266 ‐ 4,9621,736 ‐ 5,4920,337 120minLhcx10,370,282 ‐ 0,5460,213 ‐ 0,6760DOWNLhcx13,712,025 ‐ 7,0371,714 ‐ 8,1000UP recov4hLhcx10,090,066 ‐ 0,1250,060 ‐ 0,1350DOWNLhcx10,300,133 ‐ 0,9590,073 ‐ 1,3710,339 15minLhcx20,890,638 ‐ 1,2350,612 ‐ 1,2860,842Lhcx256,2351,382 ‐ 61,59150,030 ‐ 63,2070UP 30minLhcx21,000,728 ‐ 1,4270,622 ‐ 1,6320,839Lhcx250,1636,856 ‐ 68,34635,886 ‐ 70,1390UP 45minLhcx20,850,608 ‐ 1,1800,574 ‐ 1,2460,824Lhcx236,1829,274 ‐ 44,76828,504 ‐ 45,9430UP 60minLhcx20,800,577 ‐ 1,1130,570 ‐ 1,1270,834Lhcx220,4920,048 ‐ 20,96219,869 ‐ 21,1420UP 120minLhcx20,450,328 ‐ 0,6450,269 ‐ 0,7580,332Lhcx217,3416,423 ‐ 18,32115,991 ‐ 18,8010UP recov4hLhcx20,310,222 ‐ 0,4290,212 ‐ 0,4480,172Lhcx24,483,234 ‐ 6,2203,149 ‐ 6,3830UP,,,,,,,,,,, 15minLhcx30,970,831 ‐ 1,1430,746 ‐ 1,2580,489Lhcx3322,58240,077 ‐ 442,878211,659 ‐ 494,6020UP 30minLhcx31,090,938 ‐ 1,2760,936 ‐ 1,2790,839Lhcx3304,54229,016 ‐ 442,307174,746 ‐ 544,3550UP 45minLhcx30,820,705 ‐ 0,9640,675 ‐ 1,0060,329Lhcx3259,66192,495 ‐ 353,409177,831 ‐ 380,0970UP 60minLhcx30,840,719 ‐ 0,9830,688 ‐ 1,0260,503Lhcx3160,34134,347 ‐ 200,819121,287 ‐ 213,8800UP 120minLhcx30,600,512 ‐ 0,7050,453 ‐ 0,7860DOWNLhcx3120,8065,813 ‐ 242,17550,217 ‐ 298,0490UP recov4hLhcx30,540,464 ‐ 0,6320,453 ‐ 0,6460DOWNLhcx31,860,806 ‐ 4,6650,615 ‐ 5,7410,66 15minLhcx41,401,136 ‐ 1,7471,024 ‐ 1,9170UPLhcx41,260,939 ‐ 1,6980,866 ‐ 1,8290,675 30minLhcx41,531,238 ‐ 1,8971,160 ‐ 2,0170,169Lhcx43,602,542 ‐ 5,5501,954 ‐ 6,8010,174 45minLhcx41,961,589 ‐ 2,4391,467 ‐ 2,6250,16Lhcx43,232,410 ‐ 4,3332,355 ‐ 4,4300,341 60minLhcx41,731,404 ‐ 2,1601,258 ‐ 2,3810UPLhcx41,361,146 ‐ 1,6961,038 ‐ 1,8040,337 120minLhcx41,220,998 ‐ 1,5460,836 ‐ 1,7920,486Lhcx40,710,533 ‐ 0,9650,491 ‐ 1,0410,504 recov4hLhcx41,100,890 ‐ 1,3650,825 ‐ 1,4630,665Lhcx45,353,876 ‐ 8,0332,979 ‐ 9,8440UP

Table A.10D,caption on page 140

B. Author Contributions

Chapter 2

First induced plastid genome mutations in an alga with secondary plastids: psbAmutations in the diatomPhaeodactylum tricornutum(Bacillariophyceae) reveal consequences on the reg-ulation of photosynthesis

Arne C. Materna*, Sabine Sturm*, Peter G. Kroth and Johann Lavaud

*A. C. Materna and S. Sturm contributed equally to this work.

Corresponding author, e-mail: johann.lavaud@univ-lr.fr

Conceived and designed the experiments: ACM PGK JL. Performed the experiments: ACM SS JL. Analyzed the data: ACM SS PGK JL. Wrote the manuscript: ACM JL.

Chapter 3

High light photoacclimation of diatom psbA (D1 protein) mutants with an impaired linear electron transport

Sabine Sturm*, Arne C. Materna*, Stefanie Bürger, Sascha Vugrinec, Peter G. Kroth and Johann Lavaud

*S. Sturm and A. C. Materna contributed equally to this work.

Corresponding author, e-mail: johann.lavaud@univ-lr.fr

Conceived and designed the experiments: JL. Performed the experiments: SS ACM SB SV JL. Analyzed the data: SS JL. Wrote the manuscript: JL.

Chapter 4

Silencing of the diadinoxanthin de-epoxidase (DDE) gene inPhaeodactylum tricornutum and its consequence on the physiology of the cells

Arne C. Materna*, Johann Lavaud*, Sabine Sturm, Sascha Vugrinec and Peter G. Kroth

*A. C. Materna and J. Lavaud contributed equally to this work.

Corresponding author, e-mail: peter.kroth@uni-konstanz.de

Conceived and designed the experiments: ACM JL PGK. Performed the experiments: ACM JL SS SV. Analyzed the data: ACM JL PGK. Wrote the manuscript: ACM JL PGK.

Chapter 5

Investigations on transformants ofPhaeodactylum tricornutum overexpressing the diadinoxan-thin de-epoxidase (DDE)

Sabine Sturm, Katrin Leinweber, Peter G. Kroth and Johann Lavaud

Corresponding author, e-mail: sabine.sturm@uni-konstanz.de

Conceived and designed the experiments: SS PGK JL. Performed the experiments: SS KL.

Analyzed the data: SS KL JL. Wrote the manuscript: SS.

Chapter 6

Evolution, cellular localization and dependent transcription of members of the light-harvesting complex (LHC) protein superfamily in the diatom Phaeodactylum tricornutum Sabine Sturm*,, Johannes Engelken*, Ansgar Gruber*, Sascha Vugrinec, Iwona Adamska, Peter G. Kroth and Johann Lavaud

*S. Sturm, J. Engelken and A. Gruber contributed equally to this work.

Corresponding author, e-mail: sabine.sturm@uni-konstanz.de

Conceived and designed the experiments: SS JE AG IA PGK JL. Performed the experiments:

SS JE AG SV JL. Analyzed the data: SS JE AG JL. Wrote the manuscript: SS JE AG.

Chapter 7

Expression of the Lhcx genes under various light conditions inP. tricornutum Sabine Sturm, Peter G. Kroth and Johann Lavaud

Corresponding author, e-mail: sabine.sturm@uni-konstanz.de

Conceived and designed the experiments: SS PGK JL. Performed the experiments: SS. Ana-lyzed the data: SS JL. Wrote the manuscript: SS.

C. List of Publications

2009

Materna A,Sturm S, Kroth PG and Lavaud J (2009) First induced plastid genome mutations in an alga with secondary plastids: psbAmutations in the diatom Phaeodactylum tricornutum (Bacillariophyceae) reveal consequences on the regulation of photosynthesis. Journal of Phy-cology45: 838–846.

doi:10.1111/j.1529-8817.2009.00711.x

D. Dank

Ich danke allen, die zur Entstehung dieser Arbeit beigetragen haben! Insbesondere:

Prof. Peter Kroth, für die hervorragende Betreuung, das stete Interesse an meiner Arbeit, die konstruktiven Vorschläge, sowie den freundschaftlichen Umgang und die Freiheiten, die ich während meiner Arbeit geniessen durfte.

Prof. Iwona Adamska, für die stets unkomplizierte Zusammenarbeit und die Bereitschaft zur Be-gutachtung dieser Arbeit.

Dr. Johann Lavaud, thank you very much for giving me the opportunity to work on this interesting topic and for the excellent supervision, especially in times where immediate help was needed, be it for preparing talks or writing scientific manuscripts.

Allen Mitgliedern der AG Kroth, für die schöne Zeit und die gute Arbeitsatmosphäre. Ganz be-sonders danken möchte ich hier Ansgar Gruber und Caro Río Bártulos, die stets ein offenes Ohr für meine Probleme hatten und mir mit Rat und Tat zur Seite standen, sowie für die hilfreichen Vorschläge und Kommentare. Ausserdem danke ich Sascha Vugrinec, für die immer unterhaltsamen Gespräche abseits der Wissenschaft und die freundschaftliche Zusammenarbeit.

Den Studenten, die ich betreuen durfte und von denen ich viel gelernt habe.

Den Mitgliedern der AG Adamska, für die stets gute Zusammenarbeit und die immer offenen Türen zu ihren Laboren.

Ich danke meinen Freunden und meiner Familie für die Unterstützung, vor allem:

Matthias, danke für dein stets offenes Ohr, die zahlreichen Ratschläge und die wundervolle Zeit in der Markgrafenstraße.

Tine, was wäre aus mir nur ohne dich im vergangenen Jahr geworden? Ein ziemlich einsames Huhn vermutlich. Ich danke dir, für die Freundschaft und die Dauerbetreuung und Unterstützung in allen Lebenslagen.

Arne, danke für das rege Interesse an meiner Arbeit, auch wenn du Konstanz schon lange verlassen hast, für die Freundschaft und deinen Optimismus, durch den du mir immer den Glauben geschenkt hast, dass ich alles schaffen kann was ich mir vorgenommen habe.

Nadine und Christian mit Amelie und Pauline, danke für die wundervollen, ausgleichenden Urlaube, die wir miteinander verbracht haben und von denen wir hoffentlich noch ein paar gemeinsam verbringen werden und dafür, dass ihr mich immer daran erinnert, dass es sich lohnt weiter zu kämpfen.

Mein ganz besonderer Dank gilt meinem Mann Christian, ohne dessen fortwährende Unterstützung, Verständnis und Liebe diese Arbeit nie entstanden wäre.

Vielen Dank!

Bibliography

[1] Adamska I (1997) ELIPs - Light-induced stress proteins. Physiologia Plantarum100: 794–805.

−→cited on page 82.

[2] Adamska I (2001) The Elip family of stress proteins in the thylakoid membranes of pro-and eukaryota, volume 11. Springer, pp. 487–505.

−→cited on pages 81, 82 and 107.

[3] Adamska I, Kloppstech K, Ohad I (1992) UV light stress induces the synthesis of the early light-inducible protein and prevents its degradation. Journal of Biological Chemistry 267: 24732–24737.

−→cited on pages 82 and 96.

[4] Adamska I, Ohad I, Kloppstech K (1992) Synthesis of the early light-inducible protein is controlled by blue light and related to light stress. Proceedings of the National Academy of Sciences 89: 2610–2613.

−→cited on page 82.

[5] Alfonso M, Pueyo JJ, Gaddour K, Etienne AL, Kirilovsky D, Picorel R (1996) Induced new mutation of D1 serine-268 in soybean photosynthetic cell cultures produced atrazine resistance, increased stability of S2QB-and S3QB- states, S2QB-and increased sensitivity to light stress. Plant Physiology 112: 1499–1508.

−→cited on pages 25 and 39.

[6] Allakhverdiev SI, Klimov VV, Carpentier R (1997) Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound. Bio-chemistry 36: 4149–4154.

−→cited on page 38.

[7] Allen AE, LaRoche J, Maheswari U, Lommer M, Schauer N,et al.(2008) Whole-cell response of the pennate diatomPhaeodactylum tricornutum to iron starvation. Proceedings of the National Academy of Sciences of the United States of America105: 10438–10443.

−→cited on page 9.

[8] Allen AE, Vardi A, Bowler C (2006) An ecological and evolutionary context for integrated nitrogen metabolism and related signaling pathways in marine diatoms. Current Opinion in Plant Biology 9: 264–

273.

−→cited on page 9.

[9] Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z,et al.(1997) Gapped BLAST and PSI-BLAST:

a new generation of protein database search programs. Nucleic Acids Research25: 3389–3402.

−→cited on page 83.

[10] Ambros V (2004) The functions of animal microRNAs. Nature 431: 350–355.

−→cited on page 47.

[11] Andersson U, Heddad M, Adamska I (2003) Light Stress-Induced One-Helix Protein of the Chlorophyll a/b-binding family associated with photosystem I. Plant Physiology132: 811–820.

−→cited on pages 81 and 107.

[12] Apt KE, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatomPhaeodactylum tricornutum. Molecular Genomics and Genetics252: 572–579.

−→cited on pages 4, 49 and 84.

[13] Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459: 185–192.

−→cited on pages 2, 106, 107 and 108.

[14] Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, et al. (2004) The Genome of the Diatom Thalassiosira pseudonana: Ecology, Evolution, and Metabolism. Science306: 79–86.

−→cited on pages 4, 9, 83, 93, 99 and 131.

[15] Aro EM, Virgin I, Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1143: 113–134.

−→cited on page 34.

[16] Arsalane W, Rousseau B, Duval JC (1994) Influence of the pool size of the xanthophyll cycle on the effects of light stress in a diatom: competition between photoprotection and photoinhibition. Photochemistry and Photobiology60: 237–243.

−→cited on pages 33, 35, 47, 62, 67, 99 and 120.

[17] Baroli I, Do AD, Yamane T, Niyogi KK (2003) Zeaxanthin Accumulation in the Absence of a Functional Xanthophyll Cycle ProtectsChlamydomonas reinhardtii from Photooxidative Stress. Plant Cell 15: 992–

1008.

−→cited on pages 67, 76 and 106.

[18] Bartel D (2004) MicroRNAsGenomics, Biogenesis, Mechanism, and Function. Cell116: 281–297.

−→cited on page 47.

[19] Baulcombe DC (1996) RNA as a target and an initiator of post-transcriptional gene silencing in trangenic plants. Plant Molecular Biology 32: 79–88.

−→cited on page 47.

[20] Beer A, Gundermann K, Beckmann J, Büchel C (2006) Subunit Composition and Pigmentation of Fucoxanthin-Chlorophyll Proteins in Diatoms: Evidence for a Subunit Involved in Diadinoxanthin and Dia-toxanthin Binding.Biochemistry 45: 13046–13053.

−→cited on pages 4, 41, 106 and 108.

[21] Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0.Journal of Molecular Biology 340: 783–795.

−→cited on page 131.

[22] Bhaya D, Dufresne A, Vaulot D, Grossman A (2002) Analysis of thehligene family in marine and freshwater cyanobacteria. FEMS Microbiology Letters 215: 209–219.

−→cited on page 81.

[23] Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Research14: 988–995.

−→cited on page 83.

[24] Bonente G, Passarini F, Cazzaniga S, Mancone C, Buia MC, et al. (2008) The occurrence of the psbS gene product inChlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching. Photochemistry and Photobiology 84: 1359–1370.

−→cited on page 99.

[25] Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K,et al.(2008) ThePhaeodactylumgenome reveals the evolutionary history of diatom genomes.Nature 456: 239–244.

−→cited on pages 4, 9, 83, 99, 107 and 131.

[26] Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, et al.(2007) Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science315: 612–617.

−→cited on page 2.

[27] Büchel C, Wilhelm C (1993)In-vivo analsysis of slow chlorophyll fluorescence induction kinetics in algae -progress, problems and perspectives. Photochemistry and Photobioloy58: 137–148.

−→cited on pages 12, 18, 27, 31, 33, 110 and 123.

[28] Bugos RC, Chang SH, Yamamoto HY (1999) Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light. Plant Physiology 121: 207–214.

−→cited on page 41.

[29] Caron L, Mortainbertrand A, Jupin H (1988) Effect of photoperiod on photosynthetic characteristics of two marine diatoms. Journal of Experimental Marine Biology and Ecology 123: 211–226.

−→cited on page 62.

[30] Casper-Lindley C, Björkman O (1998) Fluorescence quenching in four unicellular algae with different light-harvesting and xanthophyll-cycle pigments. Photosynthesis Research56: 277–289.

−→cited on pages 4 and 62.

[31] Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends in Plant Science 5:

174–182.

−→cited on page 114.

[32] Cermeño P, Dutkiewicz S, Harris RP, Follows M, Schofield O, Falkowski PG (2008) The role of nutricline depth in regulating the ocean carbon cycle.Proceedings of the National Academy of Sciences of the United States of America105: 20344–20349.

−→cited on page 108.

Bibliography

[33] Coesel S, Oborník M, Varela J, Falciatore A, Bowler C (2008) Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. PloS one3: e2896.

−→cited on pages 49 and 53.

[34] Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K,et al.(2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science311: 1768–1770.

−→cited on page 81.

[35] Cserzö M, Wallin E, Simon I, Von Heijne G, Elofsson A (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method.Protein Engineering 10: 673–676.

−→cited on pages 83 and 134.

[36] DallaChiesa M, Friso G, Deak Z, Vass I, Barber J, Nixon P (1997) Reduced turnover of the D1 polypeptide and photoactivation of electron transfer in novel herbicide resistant mutants ofSynechocystissp. PCC 6803.

European Journal of Biochemistry 248: 731–740.

−→cited on pages 20, 25 and 39.

[37] Darko E, Varadi G, Dulai S, Lehoczki E (1996) Atrazine-resistant biotypes ofConyza canadensishave altered fluorescence quenching and xanthophyll cycle pattern. Plant Physiology and Biochemistry 34: 843–852.

−→cited on pages 37 and 40.

[38] Darko E, Varadi G, Lemoine Y, Lehoczki E (2000) Defensive strategies against high light stress in wild and D1 protein mutant biotypes ofErigeron canadensis. Australian Journal of Plant Physiology 27: 325–333.

−→cited on pages 37 and 40.

[39] De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A (2009) Gene silencing in the marine diatomPhaeodactylum tricornutum. Nucleic Acids Research37: e96.

−→cited on pages 48, 54 and 56.

[40] Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants.

Biochimica et Biophysica Acta (BBA) - Bioenergetics 1706: 12–39.

−→cited on page 81.

[41] Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. The American Naturalist154: S164–S177.

−→cited on page 114.

[42] Demmig-Adams B, Adams III WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science1: 21–26.

−→cited on pages 47 and 67.

[43] Demmig-Adams B, Gilmore AM, Adams III WW (1996) Carotenoids. 3.In vivo functions of carotenoids in higher plants. The FASEB Journal 10: 403–412.

−→cited on page 47.

[44] Denman K (2008) Climate change, ocean processes and ocean iron fertilization. Marine Ecology Progress Series 364: 219–225.

−→cited on page 2.

[45] Dolganov NAM, Bhaya D, Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins in higher plants: Evolution and regulation. Proceedings of the National Academy of Sciences92: 636–640.

−→cited on pages 81 and 96.

[46] Dougherty WG, Parks TD (1995) Transgenes and gene suppression: telling us something new? Current Opinion in Cell Biology 7: 399–405.

−→cited on page 47.

[47] Doyle JJ, L DJ (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12: 13–15.

−→cited on page 10.

[48] Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. Journal of Molecular Evolution48: 59–68.

−→cited on page 81.

[49] Edgar RC (1994) MUSCLE: a multiple sequence alignment method with reduced time and space complexity.

BioMedCentral Bioinformatics5: 113.

−→cited on page 114.

[50] Edgar RC (1994) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research32: 1792–1797.

−→cited on page 114.

[51] Eisenstadt D, Ohad I, Keren N, Kaplan A (2008) Changes in the photosynthetic reaction centre II in the diatomPhaeodactylum tricornutum result in non-photochemical fluorescence quenching. Environmental Microbiology 10: 1997–2007.

−→cited on pages 15, 17 and 19.

[52] Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols 2: 953–971.

−→cited on pages 83 and 131.

[53] Emanuelsson O, Nielsen H, Von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science8: 978–984.

−→cited on page 83.

[54] Engelken J, Brinkmann H, Adamska I (submitted) Evolution of the extended LHC (light-harvesting complex) antenna protein superfamily .

−→cited on pages 81, 82, 83, 86, 93 and 107.

[55] Eppard M, Krumbein WE, Haeseler A, Rhiel E (2000) Characterization offcp4 andfcp12, Two Additional Genes Encoding Light Harvesting Proteins ofCyclotella cryptica(Bacillariophyceae) and Phylogenetic Anal-ysis of this Complex Gene Family. Plant Biology 2: 283–289.

−→cited on pages 99 and 104.

[56] Eppard M, Rhiel E (1998) The genes encoding light-harvesting subunits ofCyclotella cryptica (Bacillario-phyceae) constitute a complex and heterogeneous family.Molecular and General Genetics 260: 335–345.

−→cited on page 104.

[57] Erickson JM, Pfister K, Rahire M, Togasaki RK, Mets L, Rochaix JD (1989) Molecular and biophysical analysis of herbicide-resistant mutants ofChlamydomonas reinhardtii: structure-function relationship of the photosystem II D1 polypeptide. Plant Cell 1: 361–371.

−→cited on page 21.

[58] Eskling M, Arvidsson PO, Akerlund HE (1997) The xanthophyll cycle, its regulation and components.

Physiologia Plantarum100: 806–816.

−→cited on pages 4 and 47.

[59] Etienne AL, Ducruet JM, Ajlani G, Vernotte C (1990) Comparative studies on electron transfer in pho-tosystem II of herbicide-resistant mutants from different organisms. Biochimica et Biophysica Acta 1015:

435–440.

−→cited on page 21.

[60] Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA,et al.(2004) The evolution of modern eukaryotic phytoplankton. Science305: 354–360.

−→cited on pages 9, 44 and 67.

[61] Felsenstein J (1993) PHYLIP-Phylogeny Inference Package. distributed by the Author, Department of Genetics, University of Washington, Seattle, USA.

−→cited on page 85.

[62] Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrat-ing terrestrial and oceanic components.Science281: 237–240.

−→cited on page 2.

[63] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA inCaenorhabditis elegans. Nature 391: 806–811.

−→cited on page 47.

[64] Force L, Critchley C, van Rensen JJS (2003) New fluorescence parameters for monitoring photosynthesis in plants. Photosynthesis Research78: 17–33.

−→cited on page 111.

[65] Förster B, Barry Osmond C, Boynton JE (2001) Very high light resistant mutants of Chlamydomonas reinhardtii: Responses of Photosystem II, nonphotochemical quenching and xanthophyll pigments to light and CO2. Photosynthesis Research67: 5–15.

−→cited on pages 25, 37 and 39.

Bibliography

[66] Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiologia Plantarum92: 696–

717.

−→cited on page 67.

[67] Frankart C, Eullaffroy P, Vernet G (2003) Comparative effects of four herbicides on non-photochemical fluorescence quenching inLemna minor. Environmental and Experimental Botany 49: 159–168.

−→cited on page 37.

[68] Fufezan C, Gross CM, Sjodin M, Rutherford AW, Krieger-Liszkay A, Kirilovsky D (2007) Influence of the redox potential of the primary quinone electron acceptor on photoinhibition in photosystem II. Journal of Biological Chemistry 282: 12492–12502.

−→cited on pages 9, 25 and 39.

[69] Funk C, Vermaas W (1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry38: 9397–9404.

−→cited on page 81.

[70] Gibbs S (1970) Comparative Ultrastructure of algal Chloroplast. Annals of the New York Academy of Sciences175: 454–473.

−→cited on page 3.

[71] Gilbert M, Wagner H, Weingart I, Skotnica J, Nieber K,et al.(2004) A new type of thermoluminometer:

A highly sensitive tool in applied photosynthesis research and plant stress physiology. Journal of Plant Physiology 161: 641–651.

−→cited on pages 12 and 17.

[72] Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiologia Plantarum99: 197–209.

−→cited on page 47.

[73] Gleiter HM, Ohad N, Koike H, Hirschberg J, Renger G, Inoue Y (1992) Thermoluminescence and flash-induced oxygen yield in herbicide resistant mutants of the D1 protein inSynechococcusPCC7942. Biochim-ica et BiophysBiochim-ica Acta1140: 135–143.

−→cited on pages 19, 20 and 21.

[74] Goss R, Annpinto E, Wilhelm C, Richter M (2006) The importance of a highly active and∆pH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae. Journal of Plant Physiology 163: 1008–1021.

−→cited on pages 4, 37, 38, 64, 75 and 126.

[75] Green BR (2001) Was ‘molecular opportunism’ a factor in the evolution of different photosynthetic light-harvesting pigment systems? Proceedings of the National Academy of Sciences 98: 2119–2121.

−→cited on page 81.

[76] Green BR (2003) The Evolution of Light-Harvesting Antennas, chapter I.4. Springer, pp. 129–168.

−→cited on page 99.

[77] Green BR, Durnford DG (1996) The Chlorophyll-Carotenoid Proteins of Oxygenic Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 47: 685–714.

−→cited on pages 3 and 99.

[78] Green BR, Kühlbrandt W (1995) Sequence conservation of light-harvesting and stress-response proteins in relation to the three-dimensional molecular structure of LHCII. Photosynthesis Research44: 139–148.

−→cited on pages 82 and 107.

[79] Green RR, Pichersky E (1994) Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors.Photosynthesis Research39: 149–162.

−→cited on page 81.

[80] Grimm B, Kruse E, Kloppstech K (1989) Transiently expressed early light-inducible thylakoid proteins share transmembrane domains with light-harvesting chlorophyll binding proteins. Plant Molecular Biology 13:

583–593.

−→cited on page 82.

[81] Grossman AR, Bhaya D, Apt KE, Kehoe DM (1995) Light-harvesting complexes in oxygenic photosynthesis:

diversity, control, and evolution. Annual Review of Genetics 29: 231–288.

−→cited on page 81.

[82] Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions.Microbiological Reviews 57: 725–749.

−→cited on page 81.

[83] Grouneva I, Jakob T, Wilhelm C, Goss R (2006) Influence of ascorbate and pH on the activity of the diatom xanthophyll cycle-enzyme diadinoxanthin de-epoxidase. Physiologia Plantarum126: 205–211.

−→cited on page 58.

[84] Gruber A, Vugrinec S, Hempel F, Gould S, Maier UG, Kroth P (2007) Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif.Plant Molecular Biology 64: 519–530.

−→cited on pages 83 and 84.

[85] Gschloessl B, Guermeur Y, Cock JM (2008) HECTAR: A method to predict subcellular targeting in het-erokonts. BMC Bioinformatics 9: 393.

[85] Gschloessl B, Guermeur Y, Cock JM (2008) HECTAR: A method to predict subcellular targeting in het-erokonts. BMC Bioinformatics 9: 393.