• Keine Ergebnisse gefunden

Supplementary Figures

differences of fitness- and virulence-relevant genes indicating ecological separation

4.7 Supplementary data

4.7.2. Supplementary Figures

Figure S4.1: Average nucleotide identity of the YeO:3 strain Y1 with other Y. enterocolitica and Y. pseudotuberculosis strains. Nucleotide sequence of the YeO:3 strain Y1 was compared with the Y. enterocolitica serotype O:3 strains Y11 and 1203, and Y. pseudotuberculosis strains YPIII and IP32953. The average nucleotide identity with other strains is indicated in percentage using the pyANI (https://github.com/widdowquinn/pyani) and MUMmer (Kutz et al., 2004) software.

4 Publication 2

87

Figure S4.2: Global identification of mRNA transcriptional start sites (TSSs). (A) Schematic overview of the identified TSS: mTSS for mRNAs, lmTSS for leader less transcripts, sTSS and asTSS for the start site of small trans-acting regulatory RNAs and antisense RNAs. (B) Sequence conservation at the TSSs. Sequence logo computed from 1299 unaligned TSS of YeO:8 strain 8081v and 1076 unaligned TSS regions (TSS is located at position +1) showing nucleotide conservation around the TSSs. The initial nucleotides of transcripts (position +1 to +3) are dominated by purines.

(C) Detected conserved sequence motifs in the -10 promoter region (Pribnow Box). (D) The distribution and frequency of the length of 5’-UTRs is given for all mRNAs of Y1 and 8081v, which start upstream of the annotated TSS. More than 40% of all 5’-UTRs are 20-60 nt in length.

4 Publication 2

88

Figure S4.3: Identification of ncRNAs of YeO:3 Y1 and YeO:8 8081v. Visualization of RNA-seq based cDNA sequencing reads of the Y. enterocolitica sRNA Ysr021 (A, left panel), Ysr060 (B, left panel), and Ysr143 (C, left panel) mapped to the 8081v and Y1 using the IGV genome browser.

Differential expression of the trans-encoded sRNAs Ysr012 (A, right panel), Ysr060 (B, right panel), and Ysr143 (C, right panel) determined by qRT-PCR are shown. For qRT-PCR three independent cultures of YeO:3 Y1 and YeO:8 8081v were grown in LB medium to exponential or stationary growth phase at 25°C or 37°C. qRT-PCR was performed in technical duplicates with DNA-free total RNA (primers are listed in Table S1). The gyrB gene was used for normalization and relative gene expression changes were calculated according to Pfaffl 2001. Black bars: real-time qRT-PCR for Y1;

grew bars: real-time qRT-PCR for 8081v.

4 Publication 2

89

Figure S4.4: Comparison of gene expression changes obtained by RNA-seq and real-time qRT-PCR. Relative gene expression changes were examined for selected genes in response to temperature or growth phase. Three independent cultures of YeO:3 Y1 and YeO:8 8081v were grown in LB medium to exponential or stationary growth phase at 25°C or 37°C. qRT-PCR was performed in technical duplicates with DNA-free total RNA (primers are listed in Table S1). The gyrB gene was used for normalization and relative gene expression changes were calculated according to Pfaffl 2001.

Black bars: real-time qRT-PCR; grew bars: RNA-seq.

4 Publication 2

90

Figure S4.5: Gene expression analysis of stress adaption genes and regulators of YeO:3 and YeO:8. Heatmaps of transcripts encoding stress adaptation genes (A) or regulators (B) which are enriched (red) and depleted (blue) in strain YeO:3 Y1 compared to YeO:8 8081v. Values represent the log2 fold change of indicated conditions (adjusted p-value ≤0.05).

4 Publication 2

91

Figure S4.6: Promoter region of the ystA gene in different Y. enterocolitica strains. A sequence comparison is shown of the ystA promoter region of the YeO:3 strains Y1, Y11, 1203 and the YeO:8 strain 8081v. The coding region is marked with a blue box, and the AT-rich regions with a red box. The identified transcriptional start site is indicated by a broken arrow, and the putative -10 and -35 region are marked with a bar.

4 Publication 2

92

4.8 Acknowledgement

We thank Dr. M. Fenner for helpful discussions. We also thank Bettina Elxnat, Nicole Heyer, Tanja Krause and Simone Severitt for excellent technical assistance.

4.9 Funding

This work was supported by the Helmholtz Association and the Leibniz Association, C.

Schmuehl was supported within the Ph.D. program ’Animal and Zoonotic Infections’ of the University of Veterinary Medicine Hannover by a Lichtenberg fellowship 'Niedersächsische Ministerium für Wissenschaft und Kultur (MWK)'. P. Dersch is supported by the German Center of Infection Research (DZIF).

4.10 References

Abreu-Goodger, C., and Merino, E. (2005). RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements. Nucleic Acids Res. 33, W690-692.

Altschul, S. F., Madden, T. L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J.

(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

Nucleic Acids Res. 25, 3389–3402.

Amman, F., Wolfinger, M. T., Lorenz, R., Hofacker, I.L., Stadler, P.F., and Findeiß, S. (2014).

TSSAR: TSS annotation regime for dRNA-seq data. BMC Bioinformatics 15, 89.

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169.

Anisimov, R., Brem, D., Heesemann, J., and Rakin, A. (2005). Molecular mechanism of YbtA-mediated transcriptional regulation of divergent overlapping promoters ybtA and irp6 of Yersinia enterocolitica. FEMS Microbiol. Lett. 250, 27–32.

Aronesty, E. (2011). http://code.google.com/p/ea-utils

Atlung, T., and Ingmer, H. (1997). H-NS: a modulator of environmentally regulated gene expression.

Mol. Microbiol. 24, 7–17.

Bailey, T.L., and Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2, 28–36.

4 Publication 2

93

Batzilla, J., Antonenka, U., Höper, D., Heesemann, J., and Rakin, A. (2011). Yersinia enterocolitica palearctica serobiotype O:3/4--a successful group of emerging zoonotic pathogens. BMC Genomics 12, 348.

Beauregard, A., Smith, E.A., Petrone, B.L., Singh, N., Karch, C., McDonough, K.A., and Wade, J.T. (2013). Identification and characterization of small RNAs in Yersinia pestis. RNA Biol 10, 397–

405.

Böhme, K., Steinmann, R., Kortmann, J., Seekircher, S., Heroven, A.K., Berger, E., Pisano, F., Thiermann, T., Wolf-Watz, H., Narberhaus, F., et al. (2012). Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog. 8, e1002518.

Bottone, E.J. (1997). Yersinia enterocolitica: the charisma continues. Clin. Microbiol. Rev. 10, 257–

276.

Breaker, R.R. (2011). Prospects for riboswitch discovery and analysis. Mol. Cell 43, 867–879.

Brock, J. E., Pourshahian, S., Giliberti, J., Limbach, P.A., and Janssen, G.R. (2008). Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5’-terminal AUG. RNA 14, 2159–

2169.

Cathelyn, J. S., Crosby, S. D., Lathem, W.W., Goldman, W.E., and Miller, V.L. (2006). RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc. Natl. Acad. Sci.

U.S.A. 103, 13514–13519.

Crooks, G. E., Hon, G., Chandonia, J.-M., and Brenner, S.E. (2004). WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190.

Dame, R. T., Luijsterburg, M.S., Krin, E., Bertin, P.N., Wagner, R., and Wuite, G.J.L. (2005). DNA bridging: a property shared among H-NS-like proteins. J. Bacteriol. 187, 1845–1848.

D’Arrigo, I., Bojanovič, K., Yang, X., Holm Rau, M., and Long, K.S. (2016). Genome-wide mapping of transcription start sites yields novel insights into the primary transcriptome of Pseudomonas putida.

Environ. Microbiol. 18, 3466–3481.

Delor, I., and Cornelis, G.R. (1992). Role of Yersinia enterocolitica Yst toxin in experimental infection of young rabbits. Infect. Immun. 60, 4269–4277.

Delor, I., Kaeckenbeeck, A., Wauters, G., and Cornelis, G.R. (1990). Nucleotide sequence of yst, the Yersinia enterocolitica gene encoding the heat-stable enterotoxin, and prevalence of the gene among pathogenic and nonpathogenic yersiniae. Infect. Immun. 58, 2983–2988.

Dugar, G., Herbig, A., Förstner, K. U., Heidrich, N., Reinhardt, R., Nieselt, K., and Sharma, C.M.

(2013). High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet. 9, e1003495.

Durfee, T., Nelson, R., Baldwin, S., Plunkett, G., 3rd, Burland, V., Mau, B., Petrosino, J.F., Qin, X., Muzny, D.M., Ayele, M. et al. (2008) The complete genome sequence of Escherichia coli DH10B:

insights into the biology of a laboratory workhorse. J Bacteriol, 190, 2597-2606

4 Publication 2

94

ECDC. (2015). http://www.ecdc.europa.eu Vol. 2015.

Ellison, D.W., and Miller, V.L. (2006). H-NS represses inv transcription in Yersinia enterocolitica through competition with RovA and interaction with YmoA. J. Bacteriol. 188, 5101–5112.

Fredriksson-Ahomaa, M., Stolle, A., Siitonen, A., and Korkeala, H. (2006a). Sporadic human Yersinia enterocolitica infections caused by bioserotype 4/O  : 3 originate mainly from pigs. J. Med.

Microbiol. 55, 747–749.

Fredriksson-Ahomaa, M., Stolle, A., and Korkeala, H. (2006b). Molecular epidemiology of Yersinia enterocolitica infections. FEMS Immunol. Med. Microbiol. 47, 315–329.

Gao, H., Zhang, Y., Han, Y., Yang, L., Liu, X., Guo, Z., Tan, Y., Huang, X., Zhou, D., and Yang, R.

(2011). Phenotypic and transcriptional analysis of the osmotic regulator OmpR in Yersinia pestis. BMC Microbiol. 11, 39.

Gürtler, M., Alter, T., Kasimir, S., Linnebur, M., and Fehlhaber, K. (2005). Prevalence of Yersinia enterocolitica in fattening pigs. J. Food Prot. 68, 850–854.

Hammarlöf, D.L., Kröger, C., Owen, S.V., Canals, R., Lacharme-Lora, L., Wenner, N., Schager, A.E., Wells, T.J., Henderson, I.R., Wigley, P., et al. (2018). Role of a single noncoding nucleotide in the evolution of an epidemic African clade of Salmonella. Proc. Natl. Acad. Sci. U.S.A. 115, E2614–

E2623.

Henkin, T.M. (2008). Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev. 22, 3383–3390.

Heroven, A.K., Nagel, G., Tran, H.J., Parr, S., and Dersch, P. (2004). RovA is autoregulated and antagonizes H-NS-mediated silencing of invasin and rovA expression in Yersinia pseudotuberculosis.

Mol. Microbiol. 53, 871–888.

Inoue, T., Okamoto, K., Moriyama, T., Takahashi, T., Shimizu, K., and Miyama, A. (1983). Effect of Yersinia enterocolitica ST on cyclic guanosine 3’,5’-monophosphate levels in mouse intestines and cultured cells. Microbiol. Immunol. 27, 159–166.

Jones, T.F., Buckingham, S.C., Bopp, C.A., Ribot, E., and Schaffner, W. (2003). From pig to pacifier: chitterling-associated yersiniosis outbreak among black infants. Emerging Infect. Dis. 9, 1007–1009.

Kalvari, I., Nawrocki, E.P., Argasinska, J., Quinones-Olvera, N., Finn, R.D., Bateman, A., and Petrov, A.I. (2018a). Non-Coding RNA Analysis Using the Rfam Database. Curr Protoc Bioinformatics 62, e51.

Kalvari, I., Argasinska, J., Quinones-Olvera, N., Nawrocki, E.P., Rivas, E., Eddy, S.R., Bateman, A., Finn, R.D., and Petrov, A.I. (2018b). Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 46, D335–D342.

Kim, D., Hong, J.S.-J., Qiu, Y., Nagarajan, H., Seo, J.-H., Cho, B.-K., Tsai, S.-F., and Palsson, B.Ø. (2012). Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling. PLoS Genet. 8, e1002867.

4 Publication 2

95

Koboldt, D.C., Zhang, Q., Larson, D.E., Shen, D., McLellan, M.D., Lin, L., Miller, C.A., Mardis, E.R., Ding, L., and Wilson, R.K. (2012). VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576.

Koo, J.T., Alleyne, T.M., Schiano, C.A., Jafari, N., and Lathem, W.W. (2011). Global discovery of small RNAs in Yersinia pseudotuberculosis identifies Yersinia-specific small, noncoding RNAs required for virulence. Proc. Natl. Acad. Sci. U.S.A. 108, E709-717.

Kortmann, J., and Narberhaus, F. (2012). Bacterial RNA thermometers: molecular zippers and switches. Nat. Rev. Microbiol. 10, 255–265.

Kröger, C., Dillon, S.C., Cameron, A.D.S., Papenfort, K., Sivasankaran, S.K., Hokamp, K., Chao, Y., Sittka, A., Hébrard, M., Händler, K., et al. (2012). The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc. Natl. Acad. Sci. U.S.A. 109, E1277-1286.

Kröger, C., MacKenzie, K.D., Alshabib, E.Y., Kirzinger, M.W.B., Suchan, D.M., Chao, T.-C., Akulova, V., Miranda-CasoLuengo, A.A., Monzon, V.A., Conway, T., et al. (2018). The primary transcriptome, small RNAs and regulation of antimicrobial resistance in Acinetobacter baumannii ATCC 17978. Nucleic Acids Res.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359.

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

Lund, P., Tramonti, A., and De Biase, D. (2014). Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol. Rev. 38, 1091–1125.

Manoil, C. and Beckwith, J. (1986) A genetic approach to analyzing membrane protein topology.

Science, 233, 1403-1408.

McNally, A., Thomson, N.R., Reuter, S., and Wren, B.W. (2016). “Add, stir and reduce”: Yersinia spp. as model bacteria for pathogen evolution. Nat. Rev. Microbiol. 14, 177–190.

Mikulskis, A.V., Delor, I., Thi, V.H., and Cornelis, G.R. (1994). Regulation of the Yersinia enterocolitica enterotoxin Yst gene. Influence of growth phase, temperature, osmolarity, pH and bacterial host factors. Mol. Microbiol. 14, 905–915.

Miller, J.H. (1992) A short course in bacterial genetic: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Habor, New York.

4 Publication 2

96

Nagel, G., Lahrz, A., and Dersch, P. (2001). Environmental control of invasin expression in Yersinia pseudotuberculosis is mediated by regulation of RovA, a transcriptional activator of the SlyA/Hor family. Mol. Microbiol. 41, 1249–1269.

Navarro-Garcia, F. (2014). Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E.

coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence. Microbiol Spectr 2.

Nuss, A.M., Heroven, A.K., Waldmann, B., Reinkensmeier, J., Jarek, M., Beckstette, M., and Dersch, P. (2015). Transcriptomic profiling of Yersinia pseudotuberculosis reveals reprogramming of the Crp regulon by temperature and uncovers Crp as a master regulator of small RNAs. PLoS Genet.

11, e1005087.

Nuss, A.M., Beckstette, M., Pimenova, M., Schmühl, C., Opitz, W., Pisano, F., Heroven, A.K., and Dersch, P. (2017). Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host-pathogen transcriptomes. Proc. Natl. Acad. Sci. U.S.A. 114, E791–E800.

Pan, X., Yang, Y., and Zhang, J.-R. (2014). Molecular basis of host specificity in human pathogenic bacteria. Emerg Microbes Infect 3, e23.

Pereira, C.S., Thompson, J.A., and Xavier, K.B. (2013). AI-2-mediated signalling in bacteria. FEMS Microbiol. Rev. 37, 156–181.

Petersen, L., Larsen, T.S., Ussery, D.W., On, S.L.W., and Krogh, A. (2003). RpoD promoters in Campylobacter jejuni exhibit a strong periodic signal instead of a -35 box. J. Mol. Biol. 326, 1361–

1372.

Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR.

Nucleic Acids Res. 29, e45.

Portnoy, D.A., Moseley, S.L. and Falkow, S. (1981) Characterization of plasmids and plasmid-associated determinants of Yersinia enterocolitica pathogenesis. Infect Immun, 31, 775-782.

Qu, Y., Bi, L., Ji, X., Deng, Z., Zhang, H., Yan, Y., Wang, M., Li, A., Huang, X., Yang, R., et al.

(2012). Identification by cDNA cloning of abundant sRNAs in a human-avirulent Yersinia pestis strain grown under five different growth conditions. Future Microbiol 7, 535–547.

Rakin, A., Schneider, L., and Podladchikova, O. (2012). Hunger for iron: the alternative siderophore iron scavenging systems in highly virulent Yersinia. Front Cell Infect Microbiol 2, 151.

Reuter, S., Thomson, N.R., and McNally, A. (2012). Evolutionary dynamics of the Yersinia enterocolitica complex. Adv. Exp. Med. Biol. 954, 15–22.

Reuter, S., Connor, T.R., Barquist, L., Walker, D., Feltwell, T., Harris, S.R., Fookes, M., Hall, M.E., Petty, N.K., Fuchs, T.M., et al. (2014). Parallel independent evolution of pathogenicity within the genus Yersinia. Proc. Natl. Acad. Sci. U.S.A. 111, 6768–6773.

Reuter, S., Corander, J., de Been, M., Harris, S., Cheng, L., Hall, M., Thomson, N.R., and McNally, A. (2015). Directional gene flow and ecological separation in Yersinia enterocolitica. Microb Genom 1, e000030.

4 Publication 2

97

Revell, P.A., and Miller, V.L. (2000). A chromosomally encoded regulator is required for expression of the Yersinia enterocolitica inv gene and for virulence. Mol. Microbiol. 35, 677–685.

Righetti, F., Nuss, A.M., Twittenhoff, C., Beele, S., Urban, K., Will, S., Bernhart, S.H., Stadler, P.F., Dersch, P., and Narberhaus, F. (2016). Temperature-responsive in vitro RNA structurome of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. U.S.A. 113, 7237–7242.

Rosner, B.M., Stark, K., and Werber, D. (2010). Epidemiology of reported Yersinia enterocolitica infections in Germany, 2001-2008. BMC Public Health 10, 337.

Saha, S., Chowdhury, P., Mazumdar, A., Pal, A., Das, P., and Chakrabarti, M.K. (2009). Role of Yersinia enterocolitica heat-stable enterotoxin (Y-STa) on differential regulation of nuclear and cytosolic calcium signaling in rat intestinal epithelial cells. Cell Biol. Toxicol. 25, 297–308.

Sambrook, J. (2001) Molecular Cloning: A Laboratory Manual,. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY.

Schaake, J., Kronshage, M., Uliczka, F., Rohde, M., Knuuti, T., Strauch, E., Fruth, A., Wos-Oxley, M., and Dersch, P. (2013). Human and animal isolates of Yersinia enterocolitica show significant serotype-specific colonization and host-specific immune defense properties. Infect. Immun. 81, 4013–

4025.

Schaake, J., Drees, A., Grüning, P., Uliczka, F., Pisano, F., Thiermann, T., von Altrock, A., Seehusen, F., Valentin-Weigand, P., and Dersch, P. (2014). Essential role of invasin for colonization and persistence of Yersinia enterocolitica in its natural reservoir host, the pig. Infect.

Immun. 82, 960–969.

Schiano, C.A., Koo, J.T., Schipma, M.J., Caulfield, A.J., Jafari, N., and Lathem, W.W. (2014).

Genome-wide analysis of small RNAs expressed by Yersinia pestis identifies a regulator of the Yop-Ysc type III secretion system. J. Bacteriol. 196, 1659–1670.

Schlüter, J.-P., Reinkensmeier, J., Barnett, M.J., Lang, C., Krol, E., Giegerich, R., Long, S.R., and Becker, A. (2013). Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti 1021. BMC Genomics 14, 156.

Schröder, O., and Wagner, R. (2002). The bacterial regulatory protein H-NS--a versatile modulator of nucleic acid structures. Biol. Chem. 383, 945–960.

Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069.

Serganov, A., and Nudler, E. (2013). A decade of riboswitches. Cell 152, 17–24.

Sharma, C.M., Hoffmann, S., Darfeuille, F., Reignier, J., Findeiss, S., Sittka, A., Chabas, S., Reiche, K., Hackermüller, J., Reinhardt, R., et al. (2010). The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250–255.

Sheppard, S.K., Didelot, X., Meric, G., Torralbo, A., Jolley, K.A., Kelly, D.J., Bentley, S.D., Maiden, M.C.J., Parkhill, J., and Falush, D. (2013). Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc. Natl. Acad. Sci. U.S.A.

110, 11923–11927.

4 Publication 2

98

Tauxe, R.V. (2002). Emerging foodborne pathogens. Int. J. Food Microbiol. 78, 31–41.

Thomson, N.R., Howard, S., Wren, B.W., Holden, M.T.G., Crossman, L., Challis, G.L., Churcher, C., Mungall, K., Brooks, K., Chillingworth, T., et al. (2006). The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet. 2, e206.

Uliczka, F., and Dersch, P. (2012). Unique virulence properties of Yersinia enterocolitica O:3. Adv.

Exp. Med. Biol. 954, 281–287.

Uliczka, F., Pisano, F., Schaake, J., Stolz, T., Rohde, M., Fruth, A., Strauch, E., Skurnik, M., Batzilla, J., Rakin, A., Heeseman, J. and Dersch, P. (2011a). Unique cell adhesion and invasion properties of Yersinia enterocolitica O:3, the most frequent cause of human Yersiniosis. PLoS Pathog.

7, e1002117.

Uliczka, F., Pisano, F., Kochut, A., Opitz, W., Herbst, K., Stolz, T., and Dersch, P. (2011b).

Monitoring of gene expression in bacteria during infections using an adaptable set of bioluminescent, fluorescent and colorigenic fusion vectors. PLoS ONE 6, e20425.

Valentin-Weigand, P., Heesemann, J., and Dersch, P. (2014). Unique virulence properties of Yersinia enterocolitica O:3--an emerging zoonotic pathogen using pigs as preferred reservoir host. Int.

J. Med. Microbiol. 304, 824–834.

Viana, D., Comos, M., McAdam, P.R., Ward, M.J., Selva, L., Guinane, C.M., González-Muñoz, B.M., Tristan, A., Foster, S.J., Fitzgerald, J.R and Penadés, J. R. (2015). A single natural nucleotide mutation alters bacterial pathogen host tropism. Nat. Genet. 47, 361–366.

Wurtzel, O., Yoder-Himes, D.R., Han, K., Dandekar, A.A., Edelheit, S., Greenberg, E.P., Sorek, R., and Lory, S. (2012). The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature. PLoS Pathog. 8, e1002945.

Yan, Y., Su, S., Meng, X., Ji, X., Qu, Y., Liu, Z., Wang, X., Cui, Y., Deng, Z., Zhou, D., Jiang, W., Yang, R. and Han, Y. (2013). Determination of sRNA expressions by RNA-seq in Yersinia pestis grown in vitro and during infection. PLoS ONE 8, e74495.

5 Discussion

99

5 Discussion

RNA-sequencing has been well established and improved in recent years. This method provides an unbiased high-throughput sequencing approach that can capture global transcriptional responses in a strand-specific manner. It has been successfully applied to several bacterial pathogens, such as Pseudomonas aeruginosa, Campylobacter jejuni, Vibrio cholerae and Yersinia pseudotuberculosis. (Butcher and Stintzi, 2013; Dötsch et al., 2012;

Mandlik et al., 2011; Nuss et al., 2015).

Here, RNA-sequencing was used to compare the transcriptional profiles of Y. enterocolitica serotypes O:8 (YeO:8) and O:3 (YeO:3). YeO:8 strain 8081v is a well characterized representative of this serotype, which most knowledge about Y. enterocolitica is derived from. YeO:3 strain Y1 is a recent human stool isolate from an outbreak in Germany. The strains were grown under different in vitro conditions (25°C and 37°C, exponential and stationary growth phase) to obtain sequencing samples. These conditions are commonly used to mimic different temperatures and nutritional environments that enteropathogenic Yersinia encounter during their lifecycle. Additionally, the transcriptional profile of Y. pseudotuberucolis strain IP32953 grown at these conditions was compared to bacteria from in vivo samples 3 days post infection from murine Peyer’s Patches. As a result, this study provides novel in-depth information on the transcriptional landscape and the repertoire of novel regulatory and sensory RNAs of enteropathogenic Yersinia as well as global maps of TSS for both Yersinia species.