• Keine Ergebnisse gefunden

SUMMARY AND FUTURE PROSPECTS

CHAPTER 2. OBSERVATIONS FOR GLOBAL TO CONVECTIVE SCALE MODELS

2.5 SUMMARY AND FUTURE PROSPECTS

Observations continue to be a critical input to NWP models both for assimilation, to define the initial state of the atmosphere/surface, and for verification of the model predictions in close to real-time. Both NWP and climate models are increasingly being compared to observations both to validate the physical processes represented in the models and also to study long term trend analyses in the model climatology. The verification of NWP models is increasingly based on a range of different observation types to validate a wider range of weather parameters (e.g.

rainfall, aerosol optical depth) more relevant to the general public. For climate models metrics are being developed to assess them using observational datasets (Hurk et. al., 2012).

In situ observations are facing a new challenge to provide good coverage and resolution for the new generation of kilometre scale models. This will inevitably involve making use of some form of “crowd sourced” data of lower quality together with higher quality reference networks as described in this paper. Data assimilation systems will need to respond to this challenge.

Modern technology such as smart phones and increasingly instrumented vehicles are providing the platforms for these new mesonets. In parallel accurate ground based

observational techniques are being developed such as lidars and zenith viewing radiometers to provide reference observations. The maintenance of the existing network of SYNOPs and radiosondes is proving challenging for some countries due to increasing financial constraints. A co-ordinated effort is required to maintain some of the more remote stations where few other

observations are available. A global coverage of high quality island radiosonde stations is required to help provide a reference which can determine biases seen in the satellite radiance measurements. The reference GRUAN stations are being set up to contribute to the network for ‘calibrating’ satellite radiance data. The GRUAN sondes and stable (calibrated) radiance measurements from space are complementary so instruments, such as hyperspectral sounders, can serve as a ‘single travelling reference instrument’ for GRUAN sondes. In situ observations in the oceans are expanding with new innovative measurements such as instrumented marine mammals and gliders starting to feed into the operational observations networks.

Polar orbiting satellites with their global coverage now provide the main impact in NWP models with the high resolution infrared sounders (e.g. IASI and CrIS) and microwave temperature sounder (AMSU, ATMS) top of atmosphere radiances providing the most impact in the troposphere

controlling the synoptic scale features. Agreement has now been reached whereby 3 polar orbiters in well-spaced orbital planes will be provided by the USA, Europe and China ensuring a uniform temporal coverage. The GNSS-RO bending angle measurements are also providing a good reference observation of the atmospheric temperature in the upper troposphere and stratosphere between 300-50 hPa (Collard and Healy, 2003). There is potential to retrieve low level humidity and surface pressure information from these data but this remains to be proven in an operational context. The framework for the future operational GNSS-RO constellation of satellites is still being debated by space agencies and commercial companies willing to offer a service to the

Meteorological Services. GNSS reflectometry is a new area of research where measuring the reflection of GNSS signals from the sea surface can potentially provide information about the sea state for use in ocean and atmosphere models. This would help to fill the gaps in the temporal coverage of active scatterometer ocean surface wind measurements which are currently only available from the European polar orbiter. These all-weather ocean wind observations could help to define the location of tropical cyclones and the centres of mid-latitude depressions. Finally, the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is being

proposed to provide a better estimate of the uncertainties in satellite climate data records for monitoring of the Earth system (Anderson et. al., 2004).

Geostationary satellites provide frequently updated imagery used for nowcasting applications, except at high latitudes. The radiances from the imagers are used in NWP models, at both global and regional scales, and also provide a suite of products that are used for a variety of different applications (e.g. AMVs, fog, cloud properties, instability indices, volcanic ash and snow cover). More advanced imagers with more spectral channels are now being launched (Himawari-8, GOES-R, FY-4) to extend the range of products from geostationary imagery and improve their accuracy. AMVs are an important observation for global and regional NWP models and work on improving their height assignment is increasing their impact. Within the next decade high resolution infrared sounders are planned from geostationary orbit to provide more detailed vertical information of the humidity and winds with frequent sampling. To

improve the coverage of satellite observations over the high latitudes of the Arctic a proposal to fly satellites in highly elliptical orbits has been proposed.

Over the past 40 years observations of the Earth’s atmosphere and surface have become more accurate and, thanks to increasing amounts of satellite data, provide much improved coverage of our planet. The next 40 years will see a consolidation of the global observing system with the conventional reference observations better co-ordinated worldwide and in parallel new innovative measurements reaching maturity by being assimilated into NWP models. The constellation of current satellites will be maintained both for NWP and climate monitoring. Improvements in technology will allow some measurements to be made with much smaller instruments allowing their deployment on small satellites reducing costs. Conversely new instruments will be developed to improve and expand the measurements made from space which will be exploited to better monitor the Earth-Atmosphere system in the future.

2.6 ACKNOWLEDGEMENTS

The notes taken by the young scientists during the Open Science Conference, in Montreal during the Observations and Data Assimilation Theme Sessions helped to contribute and clarify various aspects of this paper. Also ECMWF is acknowledged for providing Figure 4.

REFERENCES

AMAP: Arctic Monitoring and Assessment Programme, http://www.amap.no

Anderson, J., J. Dykema, R. Goody, H. Hu and D. Kirk-Davidoff, 2004: Absolute, spectrally resolved, thermal radiance: A benchmark for climate monitoring from space, Journal of Quantitative Spectroscopy & Radiative Transfer, 85(3-4), 367-383,

doi:10.1016/S0022-4073(03)00232-2.

Baker, W.E., R. Atlas, C. Cardinali, A. Clement, G.D. Emmitt, B.M. Gentry, R.M. Hardesty, E.

Källén, M.J. Kavaya, R. Langland, Z. Ma, M. Masutani, W. McCarty, R.B. Pierce, Z. Pu, L.P.

Riishojgaard, J. Ryan, S. Tucker, M. Weissmann and J.G. Yoe, 2013: Lidar-Measured Wind Profiles - The Missing Link in the Global Observing System. Bulletin of the American

Meteorological Society, 95, 543-564.

Benedetti, A., P. Lopez, P. Bauer and E. Moreau, 2005: Experimental use of TRMM precipitation radar observations in 1D+4D−Var assimilation. Quarterly Journal of the Royal

Meteorological Society, 131, 2473-2495. doi: 10.1256/qj.04.89.

Benjamin, S.G., B.E. Schwartz, S.E. Koch and E.J. Szoke, 2004: The Value of Wind Profiler Data in U.S. Weather Forecasting. Bulletin of the American Meteorological Society, 85, 1871-1886.

doi: http://dx.doi.org/10.1175/BAMS-85-12-1871.

Brenninkmeijer, C.A.M., P. Crutzen, F. Boumard, T. Dauer, B. Dix, R. Ebinghaus, D. Filippi, H.

Fischer, H. Franke, U. Frieβ, J. Heintzenberg, F. Helleis, M. Hermann, H.H. Kock, C.

Koeppel, J. Lelieveld, M. Leuenberger, B.G. Martinsson, S. Miemczyk, H.P. Moret, H.N.

Nguyen, P. Nyfeler, D. Oram, D. O'Sullivan, S. Penkett, U. Platt, M. Pupek, M. Ramonet, B.

Randa, M. Reichelt, T.S. Rhee, J. Rohwer, K. Rosenfeld, D. Scharffe, H. Schlager, U.

Schumann, F. Slemr, D. Sprung, P. Stock, R. Thaler, F. Valentino, P. van Velthoven, A.

Waibel, A. Wandel, K. Waschitschek, A. Wiedensohler, I. Xueref-Remy, A. Zahn, U. Zech and H. Ziereis, 2007: Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system, Atmospheric Chemistry and Physics, 7, 4953-4976, doi:10.5194/acp-7-4953-2007.

Cohn, S.A., T. Hock, P. Cocquerez, J. Wang, F. Rabier, D. Parsons, P. Harr, C.-C. Wu, P.

Drobinski, F. Karbou, S. Vénel, A. Vargas, N. Fourrié, N. Saint-Ramond, V. Guidard, A.

Doerenbecher, H.-H. Hsu, P.-H. Lin, M.-D. Chou, J.-L. Redelsperger, C. Martin, J. Fox, N.

Potts, K. Young, and H. Cole, 2013: Driftsondes: Providing In Situ Long-Duration Dropsonde Observations over Remote Regions. Bulletin of the American Meteorological Society, 94, 1661-1674. doi: http://dx.doi.org/10.1175/BAMS-D-12-00075.1

Collard, A.D. and S.B. Healy, 2003: The combined impact of future space-based atmospheric sounding instruments on numerical weather-prediction analysis fields: A simulation study.

Quarterly Journal of the Royal Meteorological Society, 129: 2741-2760.

doi: 10.1256/qj.02.124

Cotton, J., 2013: Assimilating Scatterometer Winds from Oceansat-2: Impact on Met Office Analyses and Forecasts, Met Office FRTR 572

http://www.metoffice.gov.uk/media/pdf/7/j/FRTR572.pdf

Donlon, C.J., I. Robinson, K.S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. Gentemann, D. May, P. LeBorgne, J. Piollé, I. Barton, H. Beggs, D.J.S. Poulter, C.J. Merchant, A.

Bingham, S. Heinz, A. Harris, G. Wick, B. Emery, P. Minnett, R. Evans, D. Llewellyn-Jones, C. Mutlow, R.W. Reynolds, H. Kawamura and N. Rayner, 2007: The Global Ocean Data Assimilation Experiment High-resolution Sea Surface Temperature Pilot Project. Bulletin of the American Meteorological Society, 88, 1197-1213.

Dorigo, W.A., A. Xaver, M. Vreugdenhil, A. Gruber, A. Hegyiová, A.D. Sanchis-Dufau, D. Zamojski, C. Cordes, W. Wagner and M. Drusch, 2013: Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network, Vadose Zone Journal.

12, doi:10.2136/vzj2012.0097.

Eyre, J.R., 1994: Assimilation of radio occultation measurements into a numerical weather prediction system. ECMWF Tech. Memo. 199.

http://old.ecmwf.int/publications/library/ecpublications/_pdf/tm/001-300/tm199.pdf Figa-Saldaña, J., J.J.W. Wilson, E. Attema, R. Gelsthorpe, M.R. Drinkwater and A. Stoffelen,

2002:The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers, Canadian Journal of Remote Sensing, 28, No. 3, June 2002.

Folger, K., and M. Weissmann, 2014: Height Correction of Atmospheric Motion Vectors Using Satellite Lidar Observations from CALIPSO. Journal of Applied Meteorology and Climatology, 53, 1809-1819.

Gao, F, X. Zhang, N.A. Jacobs, X-Y. Huang, X. Zhang, P.P. Childs, 2012: Estimation of TAMDAR Observational Error and Assimilation Experiments. Weather Forecasting, 27, 856-877.

doi: http://dx.doi.org/10.1175/WAF-D-11-00120.1

García-Pereda, J. and R. Borde, 2014: The Impact of the Tracer Size and the Temporal Gap between Images in the Extraction of Atmospheric Motion Vectors. Journal of Atmospheric and Oceanic Technology, 31, 1761-1770.

Goldberg, M., G. Ohring, J. Butler, C. Cao, R. Datla, D. Doelling, V. Gärtner, T. Hewison, B.

Iacovazzi , D. Kim, T. Kurino, J. Lafeuille, P. Minnis, D. Renaud, J. Schmetz, D. Tobin, L.

Wang, F. Weng, X. Wu, F. Yu, P. Zhang and T. Zhu, 2011: The Global Space-Based Inter-Calibration System, Bulletin of the American Meteorological Society., 92, 467-475.

Goodman, S.J., R.J. Blakeslee, W.J. Koshak, D. Mach, J. Bailey, D. Buechler, L. Carey, C. Schultz, M. Bateman, E. McCaul Jr., G. Stano, 2013: The GOES-R Geostationary Lightning Mapper (GLM), Atmospheric Research, 125-126, 34-49,

http://dx.doi.org/10.1016/j.atmosres.2013.01.006.

Haeffelin, M., F. Angelini, Y. Morille, G. Martucci, S. Frey, G.P. Gobbi, S. Lolli, C.D. Dowd, L. Sauvage, I. Xueref-Rémy, B. Wastine, D.G. Feist, 2012: Evaluation of Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated Networks in Europe, Boundary-Layer Meteorology, 143(1), 49-75,

http://dx.doi.org/10.1007/s10546-011-9643-z

Hamill, T.F. Yang, C. Cardinali and S.J. Majumdar, 2013: Impact of Targeted Winter Storm Reconnaissance Dropwindsonde Data on Midlatitude Numerical Weather Predictions.

Monthly Weather Revue, 141, 2058-2065. doi:

http://dx.doi.org/10.1175/MWR-D-12-00309.1

Hand, E., 2012: Microsatellites aim to fill weather-data gap: Commercial network would use radio-sounding system, Nature News, 491, 650-651, doi:10.1038/491650a

Hardesty, R.M., R.M. Hoff, F.T. Carr, T. Weckwerth, S. Koch, A. Benedetti, S. Crewell, D. Cimini, D.

Turner, W. Feltz, B. Demoz, V. Wulfmeyer, D. Sisterson, T. Ackerman, F. Fabry, K. Knupp, R.E. Carbone, R.J. Serafin, 2012: Thermodynamic Profiling Technologies Workshop Report to the National Science Foundation and the National Weather Service, Ed. R. Michael Hardesty and Raymond M. Hoff, editors and co-chairs, National Center for Atmospheric Research (U.S.), Research Earth Observing Laboratory Thermodynamic Profiling Technologies Workshop Boulder, CO April 12-14, 2011.

Hernandez-Carrascal, A., and N. Bormann, 2013: Atmospheric Motion Vectors from Model Simulations. Part II: Interpretation as Spatial and Vertical Averages of Wind and Role of Clouds. Journal of Applied Meteorology and Climatology, 53, 65-82.

Hirsikko, A., E.J. O'Connor, M. Komppula, K. Korhonen, A. Pfüller, E. Giannakaki, C.R. Wood, M.

Bauer-Pfundstein, A. Poikonen, T. Karppinen, H. Lonka, M. Kurri, J. Heinonen, D. Moisseev, E. Asmi, V. Aaltonen, A. Nordbo, E. Rodriguez, H. Lihavainen, A. Laaksonen, K.E.J.

Lehtinen, T. Laurila, T. Petäjä, M. Kulmala and Y. Viisanen, 2014: Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network, Atmospheric Measurement Techniques, 7, 1351-1375, 2014,

doi:10.5194/amt-7-1351-2014

Hilton, F., R. Armante, T. August, C. Barnet, A.E. Bouchard, C. Camy-Peyret, V. Capelle, L.

Clarisse, C. Clerbaux, P. Coheur, A. Collard, C. Crevoisier, G. Dufour, D. Edwards, F.

Faijan, N. Fourrié, A. Gambacorta, M. Goldberg, V. Guidard, D. Hurtmans, S. Illingworth, N.

Jacquinet-Husson, T. Kerzenmach er, D. Klaes, L. Lavanant, G. Masiello, M. Matricardi, A.

McNally, S. Newman, E. Pavelin, S. Payan, E. Péquignot, S. Peyridieu, T. Phulpin, J.

Remedios, P. Schlüssel, C. Serio, L. Strow, C. Stubenrauch , J. Taylor, D. Tobin, W. Wolf and D. Zhou, 2012: Hyperspectral Earth Observation From IASI - Five Years of

Accomplishments. Bulletin of the American Meteorological Society, 93, 347-370.

Hurk, B.J.J.M. van den, P. Braconnot, V. Eyring, P. Friedlingstein, P. Gleckler, R. Knutti and J.

Teixeira, 2012: Assessing the reliability of climate models, CMIP5. In Climate Science for Serving Society, (Editor: J. Hurrell), AGU Monographs.

Iguchi,T., T. Kozu, J. Kwiatkowski, R. Meneghini, J. Awaka, K. Okamoto, 2009: Uncertainties in the Rain Profiling Algorithm for the TRMM Precipitation Radar. Journal of the Meteorological Society of Japan, 87A, 1-30, doi:10.2151/jmsj.87A.1.

Illingworth, A., D. Cimini, C. Gaffard, M. Haeffelin, V. Lehmann, U. Loehnert, E. O'Connor and D. Ruffieux, 2015: Exploiting existing ground-based remote sensing networks to improve high resolution weather forecasts. Bulletin of the American Meteorological Society doi:10.1175/BAMS-D-13-00283.1, in press.

Immler, F.J., J. Dykema, T. Gardiner, D.N. Whiteman, P.W. Thorne and H. Vömel, 2010: Reference Quality Upper-Air Measurements: guidance for developing GRUAN data products,

Atmospheric Measurement Techniques, 3, 1217-1231, doi:10.5194/amt-3-1217-2010.

Ingleby, B., 2014: Global assimilation of air temperature, humidity, wind and pressure from surface stations. Quarterly Journal of the Royal Meteorological Society 141: 504-517

doi: 10.1002/qj.2372.

Joly, M. and V.-H. Peuch, 2012: Objective classification of air quality monitoring sites over Europe, Atmos. Env., 47, 111-123, doi:10.1016/j.atmosenv.2011.11.025.

Kostka, P., M. Weissmann, R. Buras, B. Mayer and O. Stiller, 2014: Observation operator for visible and near-infrared satellite reflectances, Journal of Atmospheric and Oceanic Technology, 31, 1216-1233.

Laj, P., J. Klausen, M. Bilde, C. Plass-Duelmer, G. Pappalardo, C. Clerbaux, U. Baltensperger, J.

Hjorth, D. Simpson, S. Reimann, P.-F. Coheur, A. Richter, M. de Mazière, Y. Rudich, G.

McFiggans, K. Torseth, A. Wiedensohler, S. Morin, M. Schulz, J. Allan, J.- L. Attié, I. Barnes, W. Birmilli, P. Cammas, J. Dommen, H.-P. Dorn, D. Fowler, J. Fuzzi, M. Glasius, C. Granier, M. Hermann, I. Isaksen, S. Kinne, I. Koren, F. Madonna, M. Maione, A. Massling, O.

Moehler, L. Mona, P. Monks, D. Müller, T. Müller, J. Orphal, V.-H. Peuch, F. Stratmann, D.

Tanré, G. Tyndall, A. A. Rizi, M. Van Roozendael, P. Villani, B. Wehner, H. Wex and A.A. Zardini, 2009: Measuring atmospheric composition change, Atmospheric Environment, 43, 5351-5414.

Lamarque, J.-F., D.T. Shindell, B. Josse, P. J. Young, I. Cionni, V. Eyring, D. Bergmann, P.

Cameron-Smith, W.J. Collins, R. Doherty, S. Dalsoren, G. Faluvegi, G. Folberth, S.J. Ghan, L.W. Horowitz, Y. H. Lee, I.A. MacKenzie, T. Nagashima, V. Naik, D. Plummer, M. Righi, S.T. Rumbold, M. Schulz, R.B. Skeie, D.S. Stevenson, S. Strode, K. Sudo, S. Szopa, A.

Voulgarakis and G. Zeng, 2013: The Atmospheric Chemistry and Climate Model

Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics, Geoscientific Model Development, 6, 179-206,

doi:10.5194/gmd-6-179-2013.

Lahoz, W.L., V.-H. Peuch, J. Orphal, J.-L. Attié, K. Chance, X. Liu, D. Edwards, H. Elbern, J.-M.

Flaud, M. Claeyman and L. El Amraoui, 2012: Monitoring Air Quality from Space: the case for the geostationary platform, Bulletin of the American Meteorological Society, 93(2), 221-233, doi: 10.1175/BAMS-D-11-00045.1.

Löhnert, U. and O. Maier, 2012: Operational profiling of temperature using ground-based

microwave radiometry at Payerne: prospects and challenges, Atmospheric Measurement Techniques, 5, 1121-1134, doi:10.5194/amt-5-1121-2012.

Machida, T., H. Matsueda, Y. Sawa, et al., 2008: Worldwide measurements of atmospheric CO2 and other trace gas species using commercial airlines, Journal of Atmospheric And Oceanic Technology, 25(10), 1744-1754, doi: 10.1175/2008JTECHA1082.1.

Majumdar, S.J., S.D. Aberson, C.H. Bishop, C. Cardinali, J. Caughey, A. Doerenbecher, P.

Gauthier, R. Gelaro, T.M. Hamill, R.H. Langland, A.C. Lorenc, T. Nakazawa, F. Rabier, C.A.

Reynolds, R. Saunders, Y. Song, Z. Toth, C. Velden, M. Weissmann and C.-C. Wu, 2011:

Targeted Observations for Improving Numerical Weather Prediction: An Overview. World Weather Research Programme / THORPEX Publication No. 15, 37.

Majumdar, S.J., M.J. Brennan and K. Howard, 2013: The Impact of Dropwindsonde and

Supplemental Rawinsonde Observations on Track Forecasts for Hurricane Irene (2011).

Weather Forecasting, 28, 1385-403. doi: http://dx.doi.org/10.1175/WAF-D-13-00018.1 Manobianco, J. and J. Zack, 2014: Next generation wireless sensor system for environmental

monitoring, Patent, US 20140043172 A1.

Marenco, A., et al., 1998: Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview, Journal of Geophysical Research, 103(D19), 25631-25642, doi:10.1029/98JD00977.

Mass, C. F. and L. E. Madaus, 2014: Surface Pressure Observations from Smartphones: A Potential Revolution for High-Resolution Weather Prediction? Bulletin of the American Meteorological Society, 95, 1343-1349. doi: http://dx.doi.org/10.1175/BAMS-D-13-00188.1.

Natraj, V., X. Liu, S. Kulawik, K. Chance, R. Chatfield, D. P. Edwards, A. Eldering, G. Francis, T.

Kurosu, K. Pickering, R. Spurr and H. Worden, 2011: Multi-spectral Sensitivity Studies for the Retrieval of Tropospheric and Lowermost Tropospheric Ozone from Simulated Clear-sky GEO-CAPE Measurements, Atmospheric Environment, 45(39), 7151-7165,

doi: 10.1016/j.atmosenv.2011.09.014.

Rabier, F., S. Cohn, P. Cocquerez, A. Hertzog, L. Avallone, T. Deshler, J. Haase, T. Hock, A.

Doerenbecher, J. Wang, V. Guidard, J-N. Thépaut, R. Langland, A. Tangborn, G. Balsamo, E. Brun, D. Parsons, J. Bordereau, C. Cardinali, F. Danis, J-P. Escarnot, N. Fourrié, R.

Gelaro, C. Genthon, K. Ide, L. Kalnajs, C. Martin, L-F. Meunier, J-M. Nicot, T. Perttula, N.

Potts, P. Ragazzo, D. Richardson, S. Sosa-Sesma and A. Vargas, 2013: The Concordiasi Field Experiment over Antarctica: First Results from Innovative Atmospheric Measurements.

Bulletin of the American Meteorological Society, 94, ES17-ES20.

doi: http://dx.doi.org/10.1175/BAMS-D-12-00005.1

Rodger, C.J., S.W. Werner, J.B. Brundell, N.R. Thomson, E.H. Lay, R.H. Holzworth and R.L.

Dowden 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study, Annals of Geophysics, 24, 3197-3214.

SAON: Sustaining Arctic Observing Networks, http://www.arcticobserving.org.

Saunders, R., Matricardi, M. and Brunel, P., 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quarterly Journal of the Royal Meteorological Society, 125: 1407-1425. doi: 10.1002/qj.1999.49712555615.

Schmetz, J., R. Borde, K. Holmlund and M. König, 2005: Upper tropospheric divergence in tropical convective systems from Meteosat-8, Geophysical Research Letters, 32, L24804,

doi:10.1029/2005GL024371.

Schmit, T., M. Gunshor, W.P. Menzel, J. Gurka, J. LI and A.S. Bachmeier, 2005: Introducing the next generation Advanced Baseline Imager on GOES-R, Bulletin of the American

Meteorological Society, 86 1079-1096.

Stoffelen, A., et al., 2014: Scatterometer Winds for Mesoscale Dynamics. Proceedings of the 12th International Winds Workshop, Copenhagen, Denmark, available at:

http://cimss.ssec.wisc.edu/iwwg/iww12/talks/03_Wednesday/0900_Mesoscale.pdf Stoffelen, A., J. Pailleux, E. Källén, J.M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E.

Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann and P. Ingmann, 2004: The Atmospheric Dynamics Mission for Global Wind Field Measurement. Bulletin of the

American Meteorological Society, 86, 73-87.

Stuhlmann, R., A. Rodriguez, S. Tjemkes, J. Grandell, A. Arriaga, J.-L. Bezy, D. Aminou, P. Bensi, 2005: Plans for EUMETSAT’s Third Generation Meteosat geostationary satellite

programme, Advances in Space Research 36, 975-981.

Tan, D.G.H., E. Andersson, J. de Kloe, G.-J. Marseille, A. Stoffelen, P. Poli, M-L. Denneulin, A.

Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille and H. Nett, 2008: The ADM-Aeolus wind retrieval algorithms. Tellus, 60A, 191-205.

Teixeira, J., D. Waliser, R. Ferraro, P. Gleckler, T. Lee and G. Potter, 2014: Satellite Observations for CMIP5: The Genesis of Obs4MIPs. Bulletin of the American Meteorological Society, 95, 1329-1334.doi: http://dx.doi.org/10.1175/BAMS-D-12-00204.1

Turner, D.D. and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). Journal of Applied Meteorology and Climatology, 53, 752-771, doi:10.1175/JAMC-D-13-0126.1.

Valkonen, T., 2014: Impact Studies of ASCAT Wind Assimilation in Storm Cases Using the Harmonie NWP System. Proceedings of the 12th International Winds Workshop, Copenhagen, Denmark, available at:

http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_

CONF_P61_S7_03_VALKONEN_V&RevisionSelectionMethod=LatestReleased&Rendition

=Web

Velden, C.S. and K.M. Bedka, 2008: Identifying the Uncertainty in Determining Satellite-Derived Atmospheric Motion Vector Height Attribution. Journal of Applied Meteorology and Climatology, 48, 450-463.

Velden, C.S., J. Daniels, D. Stettner, D. Santek, J. Key, J. Dunion, K. Holmlund, G. Dengel, W. Bresky and P. Menzel, 2005: Recent Innovations in Deriving Tropospheric Winds from Meteorological Satellites. Bulletin of the American Meteorological Society, 86, 205-223.

Vivekanandan, W.-C. Lee, E. Loew, J. L. Salazar, V. Grubišić, J. Moore, and P. Tsai, 2014: The next generation airborne polarimetric Doppler weather radar, Geoscientific Instrumentation, Methods and Data Systems., 3, 111-126,

www.geosci-instrum-method-data-syst.net/3/111/2014/

Volz, A. and D. Kley, 1988: Evaluation of the Montsouris series of ozone measurements made in the nineteenth century, Nature, 332, 240-242, doi:10.1038/332240a0.

WHO, 2014: Burden of disease from Household Air Pollution for 2012,

http://www.who.int/phe/health_topics/outdoorair/databases/FINAL_HAP_AAP_BoD_24Mar ch2014.pdf?ua=1.

Wu, T.C., H. Liu, S. Majumdar, C. Velden and J. Anderson, 2014: Influence of Assimilating Satellite-Derived Atmospheric Motion Vector Observations on Numerical Analyses and Forecasts of Tropical Cyclone Track and Intensity. Monthly Weather Revue, 42, 49-71.

Yan, X., V. Ducrocq, G. Jaubert, P. Brousseau, P. Poli, C. Champollion, C. Flamant and K.

Boniface, 2009: The benefit of GPS zenith delay assimilation to high-resolution quantitative precipitation forecasts: a case-study from COPS IOP 9. Quarterly Journal of the Royal Meteorological Society, 135, 1788-1800. doi: 10.1002/qj.508.

________