• Keine Ergebnisse gefunden

antipulse simulation

*

* spice3 pulse2.ps

* run

* plot v(2)

* plot i(VS)

* hardcopy V812Anode.short.ps v(8) v(1) v(2)

*

R1 0 1 600.

R2 0 2 600.

R3 0 3 600.

R4 0 4 600.

R5 0 5 600.

R6 0 6 600.

R7 0 7 600.

R8 0 8 600.

R9 0 9 600.

R10 0 10 600.

R11 0 11 600.

R12 0 12 600.

R13 0 13 600.

R14 0 14 600.

R15 0 15 600.

R16 0 16 600.

R17 0 17 600.

C1B 1 31 100.P IC=400.

C1 1 32 100.P IC=400.

C2 2 32 200.P IC=400.

C3 3 32 200.P IC=400.

C4 4 32 200.P IC=400.

C5 5 32 200.P IC=400.

C6 6 32 200.P IC=400.

C7 7 32 200.P IC=400.

C8 8 32 200.P IC=400.

C9 9 32 200.P IC=400.

C10 10 32 200.P IC=400.

131

C11 11 32 200.P IC=400.

C12 12 32 200.P IC=400.

C13 13 32 200.P IC=400.

C14 14 32 200.P IC=400.

C15 15 32 200.P IC=400.

C16 16 32 200.P IC=400.

C17 17 32 100.P IC=400.

C17B 17 33 100.P IC=400.

IP 8 32 PULSE( 0 2000NA 1N 1N 1N 10N )

.TRAN 0.2N 150N 0N 0.1N UIC

*

* fuer Spannung an Kathode

*.TRAN 1U 10M 0 1U UIC

*.TRAN 1N 250N 0 0.1N UIC

*.TRAN 1N 1500N 0 0.1N UIC

*

*.PRINT TRAN V(16) V(1) V(2)

*.PLOT TRAN V(1) V(4)

1.1 The unitarity triangle . . . 9

1.2 B0–B0mixing . . . 10

1.3 The Golden Decay. . . 15

1.4 The Feynman diagrams of the Golden Decay . . . 15

1.5 Constraints on unitarity triangle . . . 17

2.1 The HERA-B detector. . . 19

2.2 Schematic drawing halo wire target . . . 20

2.3 The principle of first level trigger . . . 23

2.4 A typical HERA-B event . . . 25

3.1 Electrode structure of the first MSGC . . . 28

3.2 Gain versus high voltage . . . 29

3.3 Gain drop due to substrate charge at high rates . . . 29

3.4 Simulated field lines in MSGCs . . . 30

3.5 The electric field strength over the substrate . . . 31

3.6 Cross-section a MSGC on silicon . . . 32

3.7 Cross-section of an overcoated MSGC . . . 33

3.8 The principle of advanced passivation . . . 34

3.9 Advanced passivation . . . 34

3.10 Destroyed advanced passivated MSGC structures . . . 35

3.11 The structure of a GEM-MSGC . . . 36

3.12 The structure of a GEM-MSGC . . . 37

3.13 The electrical field in the GEM holes . . . 38

3.14 Aged aluminium anodes and cathodes . . . 39

List of Figures 133

3.15 Spark probability versus gain . . . 40

3.16 Streamer close to a MSGC-substrate . . . 41

4.1 Floor plan of the clean room . . . 43

4.2 The microscope . . . 45

4.3 A typical anode break . . . 46

4.4 Error distribution online display . . . 47

4.5 Principal of the electrical substrate tester. . . 48

4.6 Picture of the electrical substrate tester. . . 49

4.7 Interconnection between the MSGC substrate pad and the readout electronic 50 4.8 Typical substrate control measurements done with the electrical tester. . . 51

4.9 Number of broken anodes . . . 53

4.10 Substrate efficiency . . . 53

4.11 Resistance of the wafers . . . 54

5.1 Transverse cross section of the test-chamber . . . 57

5.2 Sparks induced by a hair and an anode-break . . . 58

5.3 Destruction of a MSGC-structure by sparks . . . 58

5.4 Material deposition on neighbor cathodes . . . 59

5.5 Experimental setup . . . 60

5.6 Rate and integrated rate . . . 61

5.7 Beam-profile . . . 62

5.8 Resistance-plot over the testing period . . . 63

5.9 Short time resistance plot. . . 63

5.10 Cancer-like structures on the MSGC-substrate . . . 64

6.1 The readout electronics . . . 67

6.2 Diagram of the Helix readout chip . . . 68

6.3 The readout electronics . . . 70

6.4 A Helix chip raw data sample . . . 72

6.5 The different corrections . . . 75

6.6 Helix chip cell correction . . . 76

6.7 Channel correction . . . 76

6.8 Cell to cell variationminuschannel to channel variation . . . 77

6.9 Column corrections . . . 78

6.10 cell correction - channel correction - column correction . . . 78

6.11 Parameters for the fit to the time dependent offset . . . 80

6.12 The column number amplitudes of one chamber . . . 81

6.13 Raw data noise . . . 81

6.14 Noise of the corrected and fully corrected data . . . 83

6.15 Noise after all corrections divided by noise before corrections . . . 83

7.1 Experimental setup at the PSI October 1998 . . . 87

7.2 Event with two particle tracks . . . 88

7.3 Track residuals of chamber M5 and M8 . . . 89

7.4 The multiplicity divided by the efficiency . . . 90

7.5 Charge distributions of chamber M5 for a threshold of 4 and 5 . . . 91

7.6 Efficiency versus threshold for chamber M5 . . . 92

7.7 Efficiency versus threshold for chamber M6 and M8 . . . 93

7.8 Noise estimations . . . 94

7.9 Noise of the fully corrected signals . . . 94

7.10 Charge distribution of chamber M5 in units of noise . . . 95

7.11 The Landau distributions of chambers M6 and M8 . . . 96

7.12 An event with strong crosstalk . . . 98

7.13 Scheme of the circuit simulated in spice . . . 99

7.14 Simulated crosstalk . . . 99

7.15 Crosstalk measurements . . . 101

7.16 The average crosstalk . . . 102

7.17 Crosstalk versus channel . . . 102

8.1 Experimental layout at the PSI July 1999 . . . 104

8.2 Grounding scheme . . . 106

8.3 Grounding scheme transverse section . . . 107

8.4 Noise . . . 107

8.5 Horizontal scans of the PSI test July 99 . . . 108

8.6 Wrong readout timing of the Helix chip 3.0 . . . 110

8.7 DataValidbursts of the Helix chip 3.0 due to wrong timing . . . 110

List of Figures 135

8.8 Event with a signal in all three chambers. . . 111

8.9 Event with a noisy chamber 0 . . . 112

8.10 Wiremap and efficiency of the bad chamber 0 . . . 113

8.11 Beam divergence . . . 113

8.12 Multiplicity / Efficiency versus threshold of chamber 1 . . . 115

8.13 Wire maps for different thresholds . . . 116

8.14 Peak distributions of anode groups . . . 117

8.15 Charge distributions of anode groups . . . 117

8.16 Charge distributions of single channels . . . 118

8.17 Efficiency for every single channel . . . 119

8.18 Efficiency versus threshold. . . 119

8.19 Mean charge value for every single channel . . . 120

8.20 Mean charge value for groups of 16 anodes . . . 121

8.21 Charge mean value alongy-axis. . . 122

8.22 Charge mean value for groups of 16 anodes,xy-view . . . 122

8.23 Cluster width . . . 123

[1] P. F. Harrison and H. R. Quinn (editors), The BaBar Physics Book, SLAC Report 504, October 1998 7

[2] A. Ali, B Decays – Introduction and Overview, in Sheldon Stone (edt.), B Decays, World Scientific Publishing, 1994 10,11,11

[3] HERA-B Proposal, DESY-PRC 94/02 16,18,26

[4] F. J. Gilman, K. Kleinknecht, B. Renk, The Cabbibo-Kobayashi-Maskawa Quark-Mixing Matrix, Review of Particle Physics, Eur. Phys. J. C 15 (2000) 112 16, 17, 21

[5] T. Affolder et al., Phys. Rev. D61 (2000) 072005 17

[6] Plenary talks given by H. Aihara (Belle) and D. Hitlin (BaBar) at Int. Conf. on High-Energy Physics (ICHEP 2000), Osaka (July 2000); to appear in the proceedings 17, 17

[7] S. Mele, Phys. Rev. D59 (1999) 113011; for a recent update see also: Determination of the CKM unitarity triangle parameters by end of 1999, F. Caravaglios, F. Parodi, P. Roudeau, and A. Stocchi, preprint hep-ph/0002171 17

[8] HERA-B Design Report, DESY-PRC 95/01, January 95 18,26

[9] HERA-B Report on Status and Prospects October 2000, DESY-PRC 00/04 October 2000 18,124

[10] Michael Funke, Alignment der HERA-B Targetmechanik, Diploma Thesis Univer-sit¨at Dortmund 1999 20

[11] Sven Visbeck, Untersuchung von Prototypen der Mikrostreifen-Gaskammern (MSGC) des inneren Spurkammersystems des HERA-B Experimentes, Diploma Thesis, Physikalisches Institut der Universit¨at Heidelberg, September 1996 26,40 [12] B. Schmidt et al., MSGC Development for HERA-B, (physics/9804035), Proc. 36th

Workshop of the Eloisatron Project of New Detectors, (Erice, Italy, 1997) 270 26,40

Bibliography 137

[13] Malte Hildebrandt, Alterungs- und Strahltests von GEM-MSGC Detektoren f ¨ur HERA-B, Talk presented at the DPG in Freiburg, march 1998 26,39

[14] Fabio Sauli et al., The Gas Electron Multiplier (GEM), presented by F. Sauli at the IEEE1996 Nuclear Science Symposium and Medical Imaging Conference Anaheim, November 3–9 1996, CERN-PPE/96-177 26

[15] Fabio Sauli, The Gas Electron Multiplier (GEM), Nucl. Instr. and Meth. A 386 (1997) 531-534 26

[16] A. Oed, Position-sensitive detector with microstrip anodes for electron multiplica-tion with gases, Nucl. Instr. and Meth. A263 (1988) 351 28,28,29

[17] R. Bouclier et al., High flux operation of microstrip gas chambers on glass and plastic supports, Nucl. Instr. and Meth. A323 (1992) 240 29,30,30

[18] F. Angelini et al., The microstrip gas chamber, Nucl. Phys. B (Proc. Suppl.) 23A (1991) 254 29

[19] R. Bouclier et al., Development of microstrip gas chambers on thin plastic supports, Nucl. Instr. and Meth. A315 (1992) 521 30

[20] J. J. Florent et al., The electrostatic field in microstrip chambers and its influence on detector performance, Nucl. Instr. and Meth. A329 (1993) 125 30,31,31,31

[21] R. Bouclier et al., Ageing of microstrip gas chambers: problems and solutions, CERN-PPE=96-033 (1996) 30,39

[22] P. Savard et al., An a-Si:H gas microstrip detector, Nucl. Instr. and Meth. A337 (1994) 387 30,32

[23] F. Angelini et al., A microstrip gas chamber on a silicon substrate, Nucl. Instr. and Meth. A314 (1992) 450 31,32

[24] F. Angelini et al., Results from the first use of microstrip gas chamber in a high-energy physics experiment, Nucl. Instr. and Meth. A315 (1992) 21 31

[25] B. Bomiska et al., Investigation of Discharge Limits in Diamond Coated Microstrip Gas Chambers, CMS NOTE 1996/016 32

[26] M. R. Bishai, Microstrip gas chambers overcoated with carbon, hydrogenated amor-phous silicon, and glass, Nucl. Instr. and Meth. A400 (1997) 233 32,32,33

[27] M. R. Bishai, Performance of microstrip gas chambers passivated by thin semicon-ducting glass and plastic films, Nucl. Instr. and Meth. A365 (1995) 54 32

[28] R. Bellazzini et al., The CMS Micro-strip Gas Chamber project — Development of a high resolution tracking detector for harsh radiation environments, Submitted for publication to Nuclear Instruments and Method 33,34,34

[29] R. Bellazzini et al., Substrate-less, spark-free micro-strip gas counters, Nucl. Instr.

and Meth. A409 (1998) 14 33

[30] R. Bellazzini et al., Technique for the characterization of discharges in mirco-strip gas chambers, Nucl. Instr. and Meth. A398 (1997) 426 33,33

[31] Thomas Hott, Entwicklung und Test großfl¨achiger Mikro-Streifen-Gas-Kammern f ¨ur das innere Spurkammersystem von HERA-B, Thesis, Physikalisches Institut der Universit¨at Heidelberg, May 1997 33,35

[32] B. Schmidt, Short Summary on Tests with ’advanced passivated’ chambers at Heidelberg, 1997,

http://www.physi.uni-heidelberg.de/groups/herab/text/Bellazini report.ps.gz 33

[33] Malte Hildebrandt, Entwicklung und Bau der Detektoren f ¨ur das Innere Spurkam-mersystem bei HERA-B, Thesis Universit¨at Heidelberg 1999 35,38

[34] Fraunhofer-Institut f ¨ur Schicht- und Oberfl¨achentechnik, Bienroder Weg 54 E, D-38108 Braunschweig 35

[35] U. Werthenbach, Systematische Untersuchungen zur Funktion von Mikrostrei-fenz¨ahlern, Thesis, Universit¨at Siegen, 1994 35,82

[36] IMT Masken und Teilungen AG, Im Langacher, CH-8606 Greifensee 35,42,52 [37] Marcus Ziegler, Untersuchungen von Detektorprototypen f ¨ur das innere

Spurkam-mersystem des HERA-B Experimentes, Diploma Thesis, Physikalisches Institut der Universit¨at Heidelberg, March 1998 36

[38] Sebastian Hausmann, Das Auslesesystem der Inneren Spurkammern bei HERA-B, Thesis, Physikalisches Institut der Universit¨at Heidelberg, December 1998 37,67 [39] R. Bouclier et al., Performance of gas microstrip chambers of glass substrata with

electronic conductivity, Nucl. Instr. and Meth. A332 (1993) 100 39

[40] Carola Richter et al., Discharges in Micro Strip Gas Chambers Part I: Induced Dis-charges in Hadronic Beams, Elsevier Preprint 40

[41] J. M. Meek, Theory of spark discharge, Phys. Rev 57 (1940) 722 40

[42] V. Peskov et al., Feedback and breakdowns in microstrip gas counters, Nucl. Instr.

and Meth. A 397 (1997) 243 40,41

[43] Positionieren aus dem Baukasten, Technische Information Festo Pneumatic, 3/95 44

[44] Installations & Betriebshandbuch, Baldor Motors and Drives, 4/94 44,45

Bibliography 139

[45] User’s Manual ND920, Heidenhain, 5/95 44

[46] PC-DIO24 User Manual, National Instruments, 9/95 46 [47] LabVIEW User Manual, National Instruments, 9/92 47,49,57

[48] Peter Robmann, Peter Tru¨ol, and Thomas Walter, Electrical Methods to Control the Quality of Microstructures for Gaseous Detectors (MSGC), in preparation 49 [49] Karl Esslinger, A nA current monitoring and measurement system,

Wissenschaft-licher Jahresbericht des Physik-Institutes der Universit¨at Z ¨urich, chapter 14 57 [50] Y.-H. Chang et. al., Nucl. Instr. and Meth. A 311 (1992) 490 66

[51] http://www.nikhef.nl/pub/departments/et/zeus/mvd 67

[52] Wolfgang Fallot-Burghardt et al., Helix128-x User Manual V2.1, Asic Labor Heidel-berg 68,68,69

[53] Peter Robmann, University of Zurich, private communications 73,96

[54] Martin Gerlowski, Die Slow Control des HERA-B Inner Trackers und Auswertung von Testmessungen mit kompletter Auslesekette, Diploma Thesis, PhysikalischesIn-stitut der Universit¨at Heidelberg, January 1999 79

[55] D. E. Groom and S. R. Klein, Passage of particles through matter, Review of Particle Physics, Eur. Phys. J. C 15 (2000) 163 89

[56] Rene Brun, Adaption of the CERNLIB routine G110 denlan, November 1998, http://root.cern.ch/root/html/src/TMath.cxx.html#TMath:Landau 90

[57] Peter Robmann, The central innerz-chamber of the H1 experiment, Thesis, Univer-sity of Zurich, 1994 90,93

[58] Peter Cwetanski, Studies on detector prototypes for the inner tracking system of LHCb, Diploma Thesis, University of Heidelberg, March 29, 2000 93,123

[59] E. E. E. Hoefer et H. Nielinger, SPICE, Springer-Verlag, 1985 97

[60] Paul Scherrer Institute, Users’s Guide / Accelerator Facilities, July 1994 104

[61] H.-B. Dreis et al., Operation of a large GEM-MSGC detector in a high intensity hadronic test beam using fully pipelined readout electronics, LHCb internal note TRAC-98/060, HERA-B internal note 98-149, HERA-B Inner Tracker 98-020, Oct 6th, 1998 106

[62] PSIπM1 beam line information,

http://www1.psi.ch/˜fereydoun/beam pim1.html 114

First I would like to thank Prof. Dr. P. Tru¨ol for giving me the chance to participate in the HERA-B experiment. The great trust he has put in me allowed me to define many of my aims myself.

While doing this work I was continuously and strongly supported by Dr. Peter Robmann.

Without his profound experimental knowledge and experience I would never have been able to complete this work.

Many thanks to the whole workshop, especially to Kurt B ¨osiger and Stefan Steiner. With their mechanical expertise they supported us building the excellent testing apparatus and strengthened GEM-MSGC.

It was a pleasure to work in the HERA-B collaboration. Especially remembered are the fruitful discussions during the night shift at the PSI with all the colleagues from the uni-versities of Heidelberg and Siegen.

I have experienced a very enjoyable and most interesting time at the Physik Institut.

Many thanks to all the members creating this friendly atmosphere.

Not forgotten should be my physics teacher Prof. Dr. H. Aeppli, who awaked my curios-ity and fired me with enthusiasm for physics.

Last but not least I want to thank my parents and Birgit for their continuous support and love.

This work has been supported by the Swiss National Science Foundation.