• Keine Ergebnisse gefunden

3 RESULTS  AND  DISCUSSION

3.3 SET  UP  FOR  DIVERSE  GAS  ANALYSIS

The  Tenax®  samples  (200  mg)  were  desorbed  (UltrA/  Unity,  Markes  Inc.)  and  detections   were  carried  out  by  mass  spectrometry,  using  GC/  MS,  7890A  GC  and  5975C  MS  (Agilent   Technologies)   and   library   spectra.   Low   aldehydes   were   identified   by   high-­‐performance   liquid  chromatography  (HPLC;  EN  ISO  16000-­‐3).  The  DNPH  cartridges  were  extracted  with   acetonitrile   and   analysed   via   HPLC   using   a   variable   wavelength   detector   (HPLC/   1100   System,  Agilent  Technologies).  The  aldehyde  content  was  automatically  calculated  from   the   obtained   peak   area.   Low   acids   separations   were   performed   with   an   ion   chromatography  system  with  a  conductivity  detector  with  ion  suppression  using  an  ion   exclusion   chromatography   column   (Strömberg   2013).   The   measured   concentration   of   volatile  compounds  (Eq.  2)  in  the  outlet  air  [µg/  m³]  was  converted  (Eq.  3)  into  the  area   specific  emission  rate  [µg/  m²  *  h].  

Concentration  [µg/m3]  =  Peak  area  [ae]  /  (RF  [ae/ng]  x  sample  vol.  [L])  /  RRF     (Eq.  2)   Area  specific  emission  rate  [µg/m2h]  =  Concentration  [µg/m3]  x  0.339     (Eq.  3)  

RF  =     Toluene  equivalent  (value  of  control  sample  from  internal  calibration  setup  of  SP)   RRF  =     Relative  Response  Factor  (relative  to  toluene)  expresses  rate  in  compound  specific  amount   Area  specific  air  flow  rate  (0.339)  

4 RESULTS  AND  DISCUSSION  

The   emissions   obtained   from   the   micro-­‐chamber   measurements   were   described   separately   for   each   species   on   the   first   and   the   third   day   (Fig.3).   Low   aldehydes,   i.e.  

formaldehyde  (FA)  and  acetaldehyde  (AA)  were  detected  in  the  untreated  specimens  of   both  species.  Concerning  the  untreated,  green  samples  of  both  species,  hydrolysed  acids   did  not  emit  in  greater  amounts,  due  to  the  moisture  content  (>70%)  of  the  untreated   samples.  In  addition  the  formation  of  formaldehyde  was  not  catalysed  through  an  acetic   environment.  The  content  of  terpenes  and  aldehydes,  and  thus  the  sum  of  VOCs  (sum  of   aldehydes  >  C2  and  terpenes)  for  the  impregnated  and  thermally  modified  samples,  was   far  greater  than  that  of  the  untreated  samples.  However,  these  compounds  possess  very   little  corrosivity  towards  materials  like  textiles,  paper  and  metals.  

Figure  3:     Means  of  area  specific  emission  rates  of  specimens  (Fir  and  Alder,  n  =  2  /batch)

Contrary   to   expectation,   identified   compounds   were   refound   after   the   thermal   modification  and  drying  process.  However,  all  variants  of  Fir  samples  did  not  show  any   low   acids,   i.e.   acetic   and   formic   acid,   neither   at   the   first   nor   at   the   third   day.  

Unfortunately   the   results   obtained   from   the   Fir   samples   were   not   likely   to   give   information  about  the  influence  of  the  different  modification  parameters  on  the  chemical   compounds.  In  contrast  to  the  Fir  samples,  in  the  impregnated,  thermally  modified  and   kiln-­‐dried  specimens  of  Alder  no  FA  or  AA  values  were  detected.  Due  to  aldehydes  (>  C2),   low  amounts  of  VOC  were  detected  in  all  thermally  treated  and  dried  variants  of  Alder   samples.  As  far  as  the  detection  limits  for  substances  with  high  contamination  potential   for   individual   display   case   construction   materials   were   concerned,   the   low   amount   of   acidity   and   yet   a   missed   formation   of   formaldehyde   in   the   Alder   samples   were   very   positive  results.  

5 CONCLUSIONS  

The   study   considered   direct   emissions   as   well   as   secondary   products,   concerning   the   formation   of   acids   and   aldehydes,   caused   by   thermo-­‐hydrolysis.   It   was   found   that   the   FLEC  is  an  appropriate  instrumentation  for  the  performance  of  the  investigation  of  small-­‐

sized   samples,   with   a   respectively   low   emission   concentration.   Similarly,   the   three   different  methods  of  analysis  (GC/MS,  IC  and  HPLC)  were  essential  for  the  investigations.  

Reasonable   adjustments   were   achieved   in   applying   the   appropriate   method.   With   this   advanced  modification  process,  especially  the  suppressed  formation  of  formaldehyde  and   the  minimized  amount  of  acids,  the  applicability  of  thermally  modified  timber  products  in   sensitive  environments,  e.g.  health  care  institutions  or  museums,  could  be  achieved.  

6 REFERENCES  

Birkeland  M.J.,  Lorenz  L.,  Wescott  J.M.,  Frihart  C.R.  2010:  Determination  of  native  (wood   derived)  formaldehyde  by  the  desiccator  method  in  particelboards  generated  during   panel  production.  Holzforschung,  Vol.  64,pp.  429-­‐433,  Walter  de  Gruyter,  Berlin,  New   York.  

Carlson  F.E.,  Phillips  E.K.,  Tenhaeff  S.C.,  Detlefsen  W.D.  1995:  Study  of  formaldehyde  and   other   organic   emissions   from   pressing   of   laboratory   oriented   strandboard.   Forest   Products  Journal  J.45,  71-­‐77.  

Englund   F.   2010:   Neutral   materials   in   the   museum   environment:   Emissions   from   materials,  SP  Technical  Research  Institute  of  Sweden,  Stockholm.  

Roffael   E.,   Hameed   M.,   Kraft   R.   2007:   Bildung   von   Formaldehyd,   Furfural   und   Ameisensäure   bei   der   thermohydrolytischen   Behandlung   von   einigen   monomeren   Zuckern   (Xylose,   Arabinose   und   Ga-­‐lactose),   Beitrag   zu   Entstehung   von   flüchtigen   organischen   Verbindungen   (VOC)   beim   Holzaufschluss   für   die   MDF-­‐Herstellung,   Holztechnologie,  Bd.  48,  Nr.  2,  S.  15-­‐18.  

Schäfer   M.,   Roffael   E.   2000:   On   the   formaldehyde   release   of   wood.   Holz   als   Roh-­‐   und   Werkstoff  58,  S.  321-­‐322.  

Stamm  A.J.  1964:  Wood  and  cellulose  science.  Ronald  Press,  New  York.  

Strömberg   N.   2013:   SP   Method   for   carboxylic   acids   in   air,   SP   Chemistry   and   Materials   Technology,  Borås,  Sweden.  

ASTM  D  5582-­‐00  2006:  Bestimmung  der  Formaldehydkonzentrationen  aus  Holzprodukten   mit  einem  Exsikkator,  Ausgabedatum:  2000,  reapproved:  2006,  Beuth,  Berlin.  

CARB  2008:  California  Air  Resources  Board,  California  Environmental  Protection  Agency.  

State  of  California,  USA.  

DIN   EN   717-­‐1   2004:   Holzwerkstoffe   -­‐   Bestimmung   der   Formaldehydabgabe   -­‐   Teil   1:  

Formaldehydabgabe  nach  der  Prüfkammer-­‐Methode,  Beuth,  Berlin.  

DIN   EN   717-­‐2   1994:   Holzwerkstoffe   -­‐   Bestimmung   der   Formaldehydabgabe   -­‐   Teil   2:  

Formaldehydabgabe  nach  der  Gasanalyse-­‐Methode,  Beuth,  Berlin.    

EN   120   1993:   Holzwerkstoffe   -­‐   Bestimmung   des   Formaldehydgehaltes   -­‐  

Extraktionsverfahren  (genannt  Perforatormethode),  Beuth,  Berlin.  

ISO  16000-­‐10  2006:  Indoor  air  -­‐-­‐  Part  10:  Determination  of  the  emission  of  volatile  organic   compounds   from   building   products   and   furnishing   -­‐   Emission   test   cell   method,   SIS   Förlag  AB,  118  80  Stockholm.  

   

Application of FT-NIR for recognition of substances used for conservation of wooden parquets of 19th century manor

houses located in South-Eastern Poland

Anna  Rozanska1,  Anna  Sandak2  

1  PhD  student,  Warsaw  University  of  Life  Sciences  (SGGW),  Nowoursynowska  166,  02-­‐787   Warsaw,  Poland,  annamaria.rozanska@gmail.com  

2  IVALSA  Tree  and  Timber  Institute,  via  Biasi  75,  38010  San  Michele  all’Adige  (TN),  Italy,   anna.sandak@ivalsa.cnr.it  

ABSTRACT  

In  antique  palaces  and  manor  houses,  traditional  surface  finishing  techniques  were  used.  

The   surfaces   of   antique   wooden   parquets   were   soaked   with   wax   or   with   oils.   Those   substances  preserve  wood  and  have  a  major  influence  on  its  durability.  FT-­‐NIR  spectral   analysis  of  the  surface  of  wood  samples  obtained  from  19th  century  manor  houses  are   one  of  the  aspects  of  the  ongoing  research  on  antique  parquet  surface  properties.  The   goal   of   this   study   was   to   verify   if   FT-­‐NIR   is   useful   technique   for   recognition   of   natural   substances  used  for  the  wooden  floor  conservation.    

Spectroscopy   highlighted   differences   between   different   natural   surfaces   finishing   methods.   Even   if   algorithm   works   well   for   classification   of   contemporary   wood,   evaluation  of  antique  floor  was  problematic  and  is  under  detailed  investigation.  

Keywords:   FT-­‐NIR  spectroscopy,  surface  finishing:  waxing  and  varnishing,  surface  quality,   antique  wooden  parquets  

1 SCIENTIFIC  BACKGRAUND  

The   floor   is   an   architectural   element   that,   together   with   the   walls   and   the   ceiling,   constitutes   an   integral   part   of   the   interior.   It   is   as   a   valuable   element   of   interior   decoration.   Unfortunately,   due   to   the   introduction   of   collective   property   and   the  

appropriation   of   manor   houses   after   World   War   II,   the   parquets   were   irreversibly   destroyed  together  with  other  elements  of  interior  furnishing.  There  is  an  urgent  need  to   carry  out  assessment  and  to  document  the  buildings  that  have  been  preserved.  Moreover   such  work  might  be  useful  to  recreate  the  designs  and  structure  of  non-­‐existing  parquets   and   in   consequence   to   preserve   part   of   national   heritage.   It   is   therefore   necessary   to   develop   the   knowledge   related   to   their   chemical,   physical   and   mechanical   properties,   which  will  become  the  basis  for  their  conservation  programme.  

2 SURFACE  FINISHING  

In  antique  palaces  and  manor  houses,  traditional  surface  finishing  techniques  were  used.  

The  parquet  had  to  be  placed  evenly  and  well  levelled.  After  the  wooden  parquets  were   installed,   they   were   scraped   with   a   hand   scraper   along   the   fibres.   Before   manual   smoothing,   subsequent   parts   of   the   parquet   were   wetted   with   hot   water   and   after   smoothing  were  polished  with  steel  shavings.  Consequently  the  surface  was  soaked  with   wax   or   with   oils.   The   parquet   finishes   has   a   major   influence   on   its   durability,   since   finishing   techniques   improves   its   resistance   to   abrasion   (Rozanska   et   al.   2012a;   2012b;  

2013).  

3 PROJECT  DESCRIPTION  

3.1 FOURIER  TRANSFORM  NEAR  INFRARED  SPECTROSCOPY  

It  has  been  found  that  the  energy  of  infrared  is  exciting  particular  parts  of  molecules  in   the  surface  of  the  matter  and  part  of  the  energy  are  also  absorbed.  Different  molecule   combinations   (such   as   C-­‐H,   O-­‐H   or   N-­‐H)   are   stimulated   to   vibrations   depending   on   the   molecular  structure,  chemical  composition  or  physical  properties  of  the  surface  measured   (Coates   2000,   Pasquini   2003,   Tsuchikawa   2007).   As   an   effect   of   this   phenomenon   the   infrared   radiation   reflected   from   the   surface   can   be   used   for   estimation   of   the   physical/chemical  structure  of  the  surface  what  has  been  a  base  for  the  measurements   performed  in  this  project.  Advantage  of  FT-­‐NIR  is  non-­‐destructive  character  and  relatively   fast   measurement,   while   the   complex   process   of   result   interpretation   is   often  

problematic.  For  this  reason,  the  experiences  of  the  IVALSA/CNR  research  centre  (Trees   and  Timber  Institute/National  Research  Council  of  Italy)  were  necessary  to  evaluate  data.  

3.2 GOAL  OF  THE  PROJECT  

FT-­‐NIR  spectroscopy  was  used  for  recognition  of  traditional  finishing  substances  applied   on   antique   wooden   parquets   of   19th   century   manor   houses   located   in   South-­‐Eastern   Poland.  The  other  task  was  to  create  spectral  database  of  substances  commonly  applied   in   19th   century.   Finally   verification   of   effectiveness   of   FT-­‐NIR   as   a   tool   supporting   conservation  decisions  was  evaluated.    

3.3 PROJECT  WORKING  PLAN  

The  project  was  carried  out  by  two  institutions  (WULS-­‐SGGW  and  IVALSA/CNR).  Research   tasks  were  divided  into  five  working  packages:  1.  Preparation  of  samples  acquired  from   antique   wooden   parquets   and   reference   samples   made   of   contemporary   wood;   2.  

Soaking   contemporary   wood   samples   with   wax   and   varnish;   3.   FT-­‐NIR   measureemnt   of   contemporary   and   antique   samples;   4.   Analysis   of   results   by   means   of   chemometric   methods   (development   of   models   for   contemporary   wood   and   their   verification;   5.  

Assessment  of  chemical  substances  used  for  surface  finishing.  

3.4 CONTEMPORARY  WOOD  SAMPLES  PREPARATION  

Samples   of   different   wood   species:   oak   -­‐Quercus   sp,   elm   –Ulmus   sp,   ash-­‐   Fraximus   excelsior  L  and  pine-­‐  Pinus  sylvestris  L.  were  utilized  for  specimens  preparation.  To  receive   more   objective   results,   contemporary   wood   from   the   same   region   of   Poland   as   the   antique  wood  was  selected.  Additionally  wood  was  selected  taking  into  account  similar   growth  ring  width,  type  of  anatomical  section  and  wood  density.  

The   wood   was   cut   into   samples   with   dimensions   of   about   100x100x15mm.   Before   applying  the  coatings,  the  surface  of  samples  was  prepared  by  polishing  with  sand  paper   with  grit  of  ca.  50-­‐  100-­‐  150.  This  task  was  performed  manually,  to  avoid  the  changes  to  

the  properties  of  wood  surface  that  occur  as  a  result  of  high  temperature  that  is  created   during  mechanical  processing  (Sandak  et  al.  2009).    

Such   prepared   wood   was   soaked   with   varnish   and   wax.   Natural   bee   wax   was   obtained   from  a  bee  yard  in  honeycombs.  Wax  was  applied  by  pressing  wax  bars  (made  of  melted   bee  wax)  against  the  surface  and  then  it  was  rubbed  into  it  by  polishing  with  a  piece  of   felt.   Linseed   varnish   (containing   of   98%   linseed   oil   and   2%   siccatives)   was   prepared   according  to  traditional  recipe  (Kinney  1971,  Frid  1981).  Varnish  was  applied  hot,  with  the   help  of  a  brush,  until  the  surface  was  entirely  saturated.  Samples  prepared  in  that  way   served  as  reference  data  for  determining  the  chemical  substances  applied  for  the  antique   parquet.   Depth   of   finishing   layer   penetration   also   was   investigated,   since   hot   wax   and   varnish  applied  are  not  film-­‐forming  substances.  All  the  measurement  were  carried  out   six   month   after   the   application   of   finishes   to   assure   hardening   of   varnish.   Before   the   tests,  samples  were  acclimatised  in  standard  climate  conditions  (±  20°C,  ±  60%  of  relative   air  humidity).  

3.5 ANTIQUE  WOOD  SAMPLES  PREPARATION  

The  antique  parquets  come  from  buildings  located  in  South-­‐Eastern  Poland.  They  date  to   the  beginning  of  the  19th  century  –  in  case  of  the  manor  houses  in  Tarnowiec  –  and  to  the   second   half   of   the   19th   century   –   in   case   of   the   manor   house   in   Falejówka.   All   the   parquets   have   been   preserved   on   site   in   their   original   state   and   did   not   undergo   comprehensive  maintenance  in  the  past.  They  are  made  of  various  wood  species:  oak  or   oak  in  combination  with  elm  in  case  of  3  parquets  from  the  Tarnowiec  manor  house  and   oak   in   case   of   a   panel   parquet   from   the   Falejówka   manor   house.   The   antique   parquet   samples  were  taken  from  floors  with  different  kinds  of  structure.  In  each  room,  samples   were   taken   from   three   points:   external   corner   of   the   room,   traffic   path   and   internal   corner  of  the  room.  Ten  samples  were  taken  from  each  parquet  floor  (Table  1).  Surface  of   the  samples  were  refreshed  (handy  sanding)  in  order  to  remove  layer  of  dirt  and  assure   flatness  of  the  samples.  

   

Table  1:   Characteristics  of  samples