• Keine Ergebnisse gefunden

CHARACTERIZATION OF MODIFIED WOOD IN RELATION TO WOOD BONDING AND COATING PERFORMANCE

N/A
N/A
Protected

Academic year: 2022

Aktie "CHARACTERIZATION OF MODIFIED WOOD IN RELATION TO WOOD BONDING AND COATING PERFORMANCE"

Copied!
327
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

CHARACTERIZATION  OF  MODIFIED  WOOD   IN  RELATION  TO  WOOD  BONDING  AND  

COATING  PERFORMANCE  

Workshop  Proceedings  

Edited  by  

Dr.  Sergej  Medved  &  Dr.  Andreja  Kutnar  

COST  Action  FP0904  “Thermo–Hydro–Mechanical  Wood  Behaviour  and  Processing”  

and  

COST  Action  FP1006  “Bringing  new  functions  to  wood  through  surface  modification”  

Department  of  Wood  Science  and  Technology    

Biotechnical  Faculty,  University  of  Ljubljana  

  and  

University  of  Primorska,  Andrej  Marušič  Institute  

 

Rogla,  Slovenia,  October  16th  to  18th,  2013    

(2)

modified   wood   in   relation   to   wood   bonding   and   coating   performance,   Rogla,   Slovenia,   October  16th  to  18th  2013  

Editor:   Sergej  Medved,  Andreja  Kutnar  

Publisher:   University   of   Ljubljana,   Biotechnical   Faculty,   Department   of   Wood   Science   and   Technology,   Rožna   dolina,   Cesta   VIII/34,   1000   Ljubljana,   Slovenia.  Phone:  +386  1  320  30  00,  Fax:  +386  1  257  22  97  

  University  of  Primorska,  Andrej  Marušič  Institute,  Muzejski  trg  2,  6000   Koper,  Slovenija.  Phone  +386  5  611  75  00,  Fax:  +386  5  611  75  30  

Edition:   100  copies   Ljubljana,  2013  

CIP  –  Kataložni  zapis  o  publikaciji  

Narodna  in  univerzitetna  knjižnjica,  Ljubljana    674.028.9(082)  

630*82(082)  

 COST  Action  FP0904  Thermo-­‐Hydro-­‐Mechanical  Wood  Behaviour  and  Processing  (2013  ;   Rogla)    

           Characterization   of   modified   wood   in   relation   to   wood   bonding   and   coating   performance   :   workshop   proceedings   /   COST   Action   FP0904   Thermo-­‐Hydro-­‐Mechanical   Wood   Behaviour   and   Processing   and   COST   Action   FP1006   Bringing   New   Functions   to   Wood  through  Surface  Modification,  Rogla,  Slovenia,  October  16th  to  18th,  2013  ;  edited   by   Sergej   Medved   &   Andreja   Kutnar   ;   [organizers]   Department   of   Wood   Science   and   Technology,   Biotechnical   Faculty,   University   of   Ljubljana   and   University   of   Primorska,   Andrej  Marušič  Institute.  -­‐  Ljubljana  :  Biotechnical  Faculty,  Department  of  Wood  Science   and  Technology  ;  Koper  :  University  of  Primorska,  Andrej  Marušič  Institute,  2013    

 ISBN   978-­‐961-­‐6144-­‐37-­‐7   (Biotechnical   Faculty,   Department   of   Wood   Science   and   Technology)    

1.  Gl.  stv.  nasl.  2.  Medved,  Sergej  3.  COST  Action  FP1006  Bringing  New  Functions  to  Wood   through  Surface  Modification  (2013  ;  Rogla)  4.  Biotehniška  fakulteta  (Ljubljana).  Oddelek   za  lesarstvo  5.  Univerza  na  Primorskem  (Koper).  Inštitut  Andrej  Marušič    

269303808    

(3)

All  rights  reserved.  No  parts  of  these  Proceedings  may  be  reproduced  or  transmitted  in   any   form   or   by   any   means,   including   photocopy,   recording,   or   any   information   storage   and  retrieval  system,  without  permission  in  writing  from  publisher.  

Technical  editor:  Sergej  Medved  

Printed  by:   Somaru,  d.o.o.  Rožna  dolina,  Cesta  XV/26,  1000  Ljubljana,  Slovenia  

(4)

The  polymeric  components  of  wood  and  its  porous  structure  allow  its  properties  to  be   modified  under  the  combined  effects  of  temperature,  moisture  and  mechanical  action  –   so-­‐called   Thermo-­‐Hydro-­‐Mechanical   (THM)   treatments.   Various   types   of   processing   techniques,   including   high   temperature   steam   with   or   without   an   applied   mechanical   force,  can  be  utilized  to  enhance  wood  properties,  to  produce  eco-­‐friendly  new  materials   and  to  develop  new  products.  During  these  THM  treatments,  wood  undergoes  mechano-­‐

chemical   transformations,   which   depend   upon   the   processing   parameters   and   material   properties.  An  investigation  of  these  phenomena  requires  collaboration  between  groups   from  different  wood  disciplines;  however,  to  date  research  has  been  rather  fragmented.  

This   COST   Action   aims   to   apply   promising   techniques   in   the   fields   of   wood   mechanics,   wood  chemistry  and  material  sciences  through  an  interdisciplinary  approach  to  improve   knowledge   about   the   chemical   degradation   and   mechanical   behavior   of   wood   during   THM   processing.   This   will   help   overcome   the   challenges   being   faced   in   scaling-­‐up   research   findings,   as   well   to   improving   full   industrial   production,   process   improvement   and  the  enhancement  of  product  properties  and  the  development  of  new  products.  

About  COST  Action  FP1006  

Many   applications   of   products   are   determined   by   their   special   surface   properties,   and   based  on  the  physical,  chemical  and  biological  interchange  of  various  molecules  with  the   materials  surface.  This  is  especially  true  for  the  use  of  wood  and  wood  based  products   due   to   the   special   wood   characteristics   like   anisotropy,   UV-­‐degradation.   Thus,   bringing   new  functions  to  wood  through  surface  modification  is  needed  in  order  to  enhance  the   quality  of  the  existing  wood  products  and  to  open  the  way  to  new  applications,  products   or  markets.  

This  COST  Action  aims  to  provide  the  scientific-­‐based  framework  and  knowledge  required   for   enhanced   surface   modification   of   wood   and   wood   based   products   towards   higher   functionalization   and   towards   fulfillment   of   higher   technical,   economic   and  

(5)

interaction  and  Process  and  Service  life  modelling.  

The   aim   of   this   event   is   to   present   materials,   technologies,   and   characterization   techniques  in  relation  to  wood  bonding  and  coating  performance  of  modified  wood:  

•   Modification  techniques  (new  and/or  improved)  

•   Characterization  of  modified  wood  surface    

•   Formation  and  properties  of  the  bond  line/coating  system  

•   Performance  of  coated  modified  wood  

•   Performance  of  bonded  modified  wood  

•   Performance  of  surface  wood  –  based  panels  made  from/or  in  combination  with   modified  wood  

The  Workshop  has  been  organized  by  the  Department  of  Wood  Science  and  Technology,   Biotechnical   Faculty,   University   of   Ljubljana   and   Andrej   Marušič   Institute,   University   of   Primorska.   Support   and   help   was   also   provided   by   the   Scientific   Committee,   reviewers   and  by  the  COST  FP0904  and  FP1006  Management  Committee.  The  organisers  and  the   editors   would   like   to   thank   to   all   that   help   at   organizing   this   Workshop,   reviewers,   speakers  and  also  session  moderators.  

We  hope  that  you  enjoyed  the  Workshop  and  that  you  will  find  these  papers  useful  in   your  future  work.  

Sergej  Medved   Andreja  Kutnar  

   

(6)

Parviz  Navi  (FP0904  Chair)  

Lone  Ross  Gobakken  (FP1006  Vice  Chair)   Dennis  Jones  (FP0904  Vice  Chair)  

Mark  Hughes  (FP0904  WG1  Leader)   Lennert  Salmen  (FP0904  WG2  Leader)   Peer  Haller  (FP0904  WG3  Leader)   Gerhard  Gruell  (FP1006  WG1  Leader)   Holger  Militz  (FP1006  WG1  Vice-­‐Leader)   Electra  Papadopoulou  (FP1006  WG2  Leader)   Graham  Ormondroyd  (FP1006  WG2  Vice-­‐Leader)   Sergej  Medved  (FP1006  WG3  Leader)  

Jakub  Sandak  (FP1006  WG3  Vice-­‐Leader)   Andreja  Kutnar  (FP0904  member)  

   

(7)

Frederick  A.  Kamke  ...  8   Characterization  of  laser  modified  wood  surfaces  for  resin-­‐free  adhesion  

Scott  Renneckar,  W.  Travis  Church,  Jeffrey  Dolan,  Zhiyuan  Lin,  Charles  E.  Frazier  ...  16   Emissions  of  thermally  modified  timber  products  

Lothar  Clauder,  Maria  Rådemar,  Lars  Rosell,  Marcus  Vestergren,  Alexander  Pfriem  ....  23   Application  of  FT-­‐NIR  for  recognition  of  substances  used  for  conservation  of  wooden   parquets  of  19th  century  manor  houses  located  in  South-­‐Eastern  Poland  

Anna  Rozanska,  Anna  Sandak  ...  32   Gluability  of  thermally  modified  ash  wood  with  EPI  adhesives  

Krystofiak  Tomasz,  Lis  Barbara,  Muszyńska  Monika,  Sobota  Karolina  ...  43   Bondability  of  phenol  formaldehyde  modified  beech  wood  glued  with  phenol  

resorcinol  formaldehyde  and  polyvinyl  acetate  adhesives  

Alireza  Bastani,  Holger  Militz  ...  52   Bonding  properties  of  wood  modified  with  various  siloxanes  and  silanes  

Marcus  Müller,  Markus  Hauptmann,  Christian  Hansmann  ...  61   Viscoelastic  thermal  compressed  wood  as  a  component  in  green  building  composites  

Milan  Sernek,  Aleš  Ugovšek,  Andreja  Kutnar,  Frederick  A.  Kamke  ...  67   Effect  of  heat  treatment  of  spruce  on  adhesive  bond  performance  after  soaking  in   water  

Mirko  Kariz,  Manja  Kitek  Kuzman,  Milan  Sernek  ...  74   Effect  of  treatment  medium  on  the  moisture  uptake  rate  and  colour  change  during   natural  weathering  of  heat  treated  wood  

Miklós  Bak,  Róbert  Németh,  Diána  Csordós,  László  Tolvaj  ...  80   The  Effect  of  Surface  Weathering  on  the  Water  Sorption  Properties  of  Wood  

Callum  Hill  ...  87   Coated  Surface  Densified  Wood:  Water  Vapour  Absorption  and  Desorption  and  

Related  Dimensional  Changes  

Marko  Petrič,  Mark  Hughes,  Borut  Kričej,  Andreja  Kutnar,  Kristiina  Laine,  Sergej  

Medved,  Matjaž  Pavlič,  Lauri  Rautkari  ...  94  

   

(8)

Wood  moisture  analysis  under  THM-­‐conditions  by  employing  scaling  properties  of   room  temperature  moisture  isotherms  

Wim  Willems  ...  116   A  structural  study  of  the  white  rot  biodegraded  lime  wood  coated  with  poly(hydroxy   urethane  acrylate)  

Carmen-­‐Mihaela  Popescu,  Maria-­‐Cristina  Popescu  ...  123   Wax  impregnation  slows  down  photodegradation  processes  of  wood  

Boštjan  Lesar,  Matjaž  Pavlič,  Marko  Petrič,  Miha  Humar  ...  130   Weathering  performance  of  coatings  on  acetylated,  furfurylated  and  heat  treated   wood  at  two  exposure  sites  in  Europe  

Laurence  Podgorski,  Gerhard  Grüll,  Michael  Truskaller,  Jean-­‐Denis  Lanvin,  Véronique   Georges,  Susanne  Bollmus  ...  140   Surface  performance  of  thermally  modified  wood  during  weathering  

Michael  Altgen,  Jukka  Ala-­‐Viikari,  Antti  Hukka,  Timo  Tetri,  Holger  Militz  ...  149   Surface  qualification  of  weathered  wood  

Jean  Strautmann,  Marion  Noël,  Thomas  Volkmer  ...  157   The  Influence  of  the  Sodium  Carbonate  Treatment  of  Narrow-­‐leaved  Ash  on  the  Lap   Shear  Strength  

Jasmina  Popović,  Milanka  Djiporović-­‐Momčilović,  Ivana  Gavrilović-­‐Grmuša,  Mladjan   Popović,  Sergej  Medved  ...  167   Combined  treatment  using  boron  impregnation  and  thermo-­‐modification  to  improve   properties  of  heat  treated  wood  -­‐  Effects  of  additives  on  boron  leachability  

Solafa  Salman,  Anélie  Petrissans,  Marie  France  Thevenon,  Stéphane  Dumarcay,  Benoît   Pollier,  Philippe  Gerardin  ...  175   Superb  wood  surface  finishing  –  SWORFISH  project  approach  

Jakub  Sandak,  Anna  Sandak,  Mariapaola  Riggio,  Ilaria  Santoni  ...  191   Contact  angle  measurement  as  a  method  for  quantitative  analysis  of  wettability  of   plasma  treated  thermal  modified  timber  

Judith  Sinic,  Uwe  Müller  ...  198   Spectral  study  of  hydro-­‐thermal  treated  lime  wood  

Maria-­‐Cristina  Popescu,  Carmen-­‐Mihaela  Popescu  ...  206  

(9)

Exploratory  Thermal-­‐Hydro-­‐Mechanical  Modification  (THM)  of  Moso  Bamboo   (Phyllostachys  pubescens  Mazel)  

K.E.  Semple,  F.A.  Kamke,  A.  Kutnar,  G.D.  Smith  ...  220   The  sorption  properties  of  some  thermally  treated  hardwoods  analysed  by  

thermodynamics,  surface  fractality  and  FT-­‐NIR  spectroscopy  

Aleš  Straže,  Željko  Gorišek,  Stjepan  Pervan,  Anna  Sandak,  Jakub  Sandak  ...  228   Modification  of  wood  acoustic,  hygroscopic  and  colorimetric  properties  due  to  

thermally  accelerated  ageing  

Elham  Karami,  Miyuki  Matsuo,  Iris  Bremaud,  Sandrine  Bardet,  Julien  Froidevaux,  

Joseph  Gril  ...  238   Changes  in  technological  properties  of  thermally  treated  Gympie  messmate  wood  

Pedro  Henrique  Gonzalez  de  Cademartori,  Patrícia  Soares  Bilhalva  dos  Santos,  Darci   Alberto  Gatto,  Jalel  Labidi  ...  246   Changes  in  chemical  composition  occurring  in  wood  during  the  hydrothermal  

treatment  process  

René  Herrera,  Xabier  Erdocia,  Jalel  Labidi  ...  254   Colour  changes  in  coated  hydrothermally  modified  wood  after  artificial  and  outdoor   exposure  

Sansonetti  E.,  Cirule  D.,  Grinins  J.,  Andersone  I.,  Andersons  B.,  ...  261   Characterization  of  wood  surface  degradation  using  activation  spectra  approach  

Vjekoslav  Živković,  Martin  Arnold,  Klaus  Richter,  Hrvoje  Turkulin  ...  268   Advantage  of  vacuum  versus  nitrogen  to  achieve  inert  atmosphere  during  wood  

thermal  modification  

K.  Candelier,  S.  Dumarçay,  A.  Pétrissans,  P.  Gérardin,  M.  Pétrissans  ...  279   A  Rapid  Method  for  Assessing  Check  Development  in  Veneer  Overlays  

Michael  Burnard,  Lech  Muszyński,  Scott  Leavengood,  Lisa  Ganio  ...  287   The  grindability  of  heat  treated  biomass:  effect  of  treatment  intensity  on  the  

production  of  particles  suitable  for  the  2nd  generation  of  BtL  chain  

F.  Pierre,  P.  Lu,  G.  Almeida,  P.  Perre  ...  296   Stresses  in  the  plans  of  bond  lines  in  reconstituted  solid  wood  under  moisture  

variation:  a  numerical  approach  

Sung-­‐Lam  Nguyen,  Rostand  Moutou  Pitti,  Jean-­‐François  Destrebecq  ...  303  

(10)

Analysis  of  the  effects  of  the  European  oak  natural  variability  on  the  modification  of   the  density  distribution  and  chemical  composition  during  the  heat  treatment  

Joël  Hamada,  Anélie  Petrissans,  Frédéric  Mothe,  Mathieu  Petrissans,  Philippe  Gerardin  ...  317    

(11)

Keynote  paper/presentation  

THM – a Technology Platform or Novelty Product?

Frederick  A.  Kamke  

Dept.  Wood  Science  &  Engineering,  Oregon  State  University,  Corvallis,  Oregon  USA   97331,  fred.kamke@oregonstate.edu  

ABSTRACT  

Thermal-­‐Hydro-­‐Mechanical   (THM)   processing   is   an   old   idea   that   has   arisen   with   a   new   life.   THM   wood   has   impressive   mechanical   and   physical   properties,   but   this   exciting   technology   has   some   serious   challenges   for   commercialization.   This   paper   defines   the   concept   and   scope   of   THM   technology   and   provides   some   examples   of   commercial   application.  Recent  research  in  Europe,  Asia,  and  North  America  has  clearly  demonstrated   that   THM   processing   of   wood   improves   strength,   stiffness,   hardness,   and   moisture   resistance;  and  this  implies  that  the  value  of  wood  is  also  enhanced.  The  broad  array  of   process   parameters   and   unique   conditions   clearly   differentiates   THM   as   a   technology   platform.  However,  THM  adds  cost  to  processing  and  reduces  wood  volume.  THM  wood,   depending  on  the  specific  process  conditions,  may  have  large  potential  for  swelling  when   exposed   to   water.   Technical   challenges   and   process   cost   may   limit   THM   processing   to   novelty   products.   Clever   scientists   and   engineers   can   address   most   of   the   technical   disadvantages  of  THM  processing.  However,  the  challenge  for  an  entrepreneur,  who  has   visions  for  commercialization,  is  to  create  THM  value  that  exceeds  THM  cost.  

Keywords:   wood  modification,  compression,  densification,  thermo-­‐hydro-­‐mechanical.  

1 INTRODUCTION  

Thermo-­‐Hydro-­‐Mechanical  (THM)  processing  is  an  old  idea  that  has  been  given  new  life   via  research  efforts  around  the  world.  It’s  a  very  interesting  concept  –  take  some  wood,   soften  it  with  heat  and  steam,  compress,  and  viola!,  the  result  is  a  high  density  material  

(12)

with   improved   strength,   stiffness,   and   hardness.   The   process   is   simple,   it   requires   no   chemicals,  and  the  properties  of  the  wood  are  dramatically  improved.  So  why  hasn’t  THM   processing   been   readily   adopted?   This   paper   will   provide   some   historical   background,   discuss  challenges  of  commercialization,  and  present  some  personal  observations.      

1.1 BRIEF  THM  HISTORY  

THM   processing   implies   the   strategic   application   of   high   temperature,   moisture,   and   mechanical  compression  toward  the  goal  of  reducing  the  void  space  in  wood,  and  thus   increasing   density.   Prior   to   1960,   researchers   and   practitioners   quickly   recognized   that   temperatures  above  100°C,  along  with  some  moisture,  sufficiently  softens  wood  such  that   it  may  be  compressed  without  catastrophic  failure.  The  moisture  content  was  usually  not   controlled   during   the   densification   process,   and   microscopic   fractures   in   the   cell   wall   were  often  ignored.  Compression  was  performed  in  hydraulic  pressing  systems  that  were   open   to   atmospheric   conditions   (open   systems).   Many   wood   densification   equipment   designs  and  processing  conditions  were  reported.  While  the  details  of  why  this  process   worked  were  perhaps  not  clearly  understood,  the  efforts  produced  wood  products  with   interesting   characteristics.   For   the   purpose   of   the   present   discussion,   the   use   of   high   temperature   and   mechanical   compression,   in   the   presence   of   significant   moisture,   and   with  the  intent  to  increase  density,  will  be  called  THM  processing.      

Previous   reviews   of   THM   wood,   also   called   “compressed   wood”   or   “densified   wood”,   reveal  that  a  significant  amount  of  research  and  some  commercialization  has  occurred  in   Europe  and  the  United  States  (Kollman  1936,  Morsing  2000,  Sandberg  et  al.  2012)  prior  to   1960.   Kollman   (1936)   described   the   state-­‐of-­‐the-­‐art   for   compressed   wood,   and   even   mentioned  some  investigations  in  Germany  in  the  late  19th  century.  Seborg  and  Stamm   (1941)   reported   results   from   some   early   investigations   of   compressed   wood   that   was   performed   at   the   U.S.   Forest   Products   Laboratory   in   Madison,   Wisconsin.   Readers   are   referred  to  these  previous  reviews  for  more  information  about  early  THM  processing.  

Research   in   the   U.S.   led   to   very   limited   commercial   application.   In   1943   the   Formica   Insulation   Company   (Cincinnati,   Ohio)   marketed   Pregwood,   which   was   a   phenol-­‐

(13)

formaldehyde   impregnated,   laminated,   veneer   product   that   was   processed   with   50%  

degree  of  compression.  Pregwood  was  designed  for  the  hub  of  aircraft  propeller  blades   with   length   up   to   5m   (Weick   1939).   Pregwood   was   produced   from   parallel-­‐laminated   maple  veneer,  with  density  of  1300  kg/m3,  MOE  of  24  GPa,  and  MOR  of  330  MPa.  Resin   impregnation  was  needed  to  overcome  the  greatest  technical  challenge  for  THM  wood,   namely  moisture-­‐induced  dimensional  instability.  Other  early  applications  of  THM  wood   for   commercial   products   were   bobbins,   picker   sticks,   and   shuttles   used   in   the   textile   industry;   as   well   as   machine   dyes,   antenna   masts   and   knife   handles.   Most   of   these   products  were  resin-­‐impregnated  (presumed  for  dimensional  stabilization).  

Since   1990   there   has   been   renewed   interest   in   developing   THM   products.   Research   in   Japan   explored   surface   densification   of   lumber   (Inoue   et   al.   1990),   shape-­‐forming   of   round  wood  into  prismatic  shapes  (Ito  et  al.  1998),  and  fixation  of  set  recovery  by  hydro-­‐

thermal  and  chemical  treatment  (Inoue  et  al.  1993a,  Inoue  et  al.  1993b).    In  Europe,  one   critical  area  of  focus  was  the  problem  of  shape  recovery  upon  exposure  to  water  (Navi  et   al.  1997,  Tomme  et  al.  1998).  For  more  details  refer  to  Sandberg  et  al.  (2012).  The  current   COST  Action  FP0904  is  further  evidence  of  renewed  research  interest  in  THM  processing,   however,  commercial  application  is  still  very  limited.  

1.2 COMMERCIAL  PRODUCTS  

Solid   THM   wood   products   are   rare   to   find   on   the   commercial   market.   Calignum   (Gothenburg,  Sweden),  who  developed  a  densified  solid  wood  via  an  isostatic  membrane   press,  liquidated  its  assets  in  2012.  The  Calignum  technology  was  acquired  by  the  Tarkett   Company   (Nanterre   Cedex,   France),   who   also   announced   their   intension   to   produce   a   densified  eucalyptus  flooring  product  in  2011.  Apparently,  this  has  not  occurred.    There   are   some   commercial   operations   in   Japan.   However,   information   has   been   difficult   to   obtain.  MyWood2  Corporation  (Iwakura,  Aichi,  Japan)  manufactures  densified  solid  cedar   wood  products.  Their  primary  market  is  flooring  in  Japan  and  China,  and  products  are  sold   for  use  in  furniture.  The  MyWood2  product  is  impregnated  with  a  proprietary  polymer  to   provide  resistance  to  water,  and  compression  is  approximately  50  percent.  

(14)

Electric   transmission   support   components   made   from   THM   wood   are   typically   resin-­‐

impregnated,   laminated   veneer.   Low   molecular   weight   resins   (typically   phenol-­‐

formaldehyde)  are  used  to  impregnate  veneer,  which  is  then  partially  cured  in  an  oven.  A   billet  is  then  formed  from  the  laminas,  with  orientation  of  the  veneer  dependent  on  the   intended   application.   The   billets   are   compressed   in   a   heated   press   (open   system)   to   density  of  approximately  1300  kg/m3.  This  line  of  products  is  desired  for  high  electrical   resistivity,   high   dimensional   stability,   and   high   strength   to   weight   ratio.   Another   application   or   resin-­‐impregnated   veneer   THM   is   liquid   natural   gas   (LNG)   storage   containers   and   associated   support   structures.   A   laminated   design   permits   components   with  wide  dimensions  that  could  not  be  achieved  with  THM  lumber.  For  this  application,   low  thermal  conductivity,  high  dimensional  stability,  and  high  strength  to  weight  ratio  are   important.  Other  applications  for  resin-­‐impregnated  veneer  THM  include  wear  plates  for   machinery  and  transportation  vehicles,  machine  pattern  molds,  bulletproof  barriers,  and   some   structural   building   components.   There   are   several   products   in   this   market,   including,  but  not  limited  to,  Insulam®  by  CK-­‐Composites  (Mount  Pleasant,  Pennsylvania   USA),   Lignostone®   by   Röchling   (Harren,   Gemany)   and   Lignostone®   (Ter   Apel,     Netherlands),   dehonit®   by   Deutsche   Holzveredelung   Schmeing   GmbH   &   Co.   KG   (Kirchhundem/Würdinghausen,  Germany),  and  Ranprex®  by  Rancan  Srl  (Vincenza,  Italy).    

The  PureTimber  company  (Gig  Harbor,  Washington  USA)  produces  a  cold  bendable  wood   product  that  was  patented  by  the  Danish  Technical  Institute  (Hansen  et  al.  1993).  Other   companies   have   licensed   the   technology   (e.g.   Compwood   Products,   Hungary).   The   method   employs   THM   techniques   to   compress   wood   elements   (approx.   2.5   m)   in   the   longitudinal  direction.  Length  is  reduced  approximately  20%  in  process,  but  recovers  to   approximately   90%   of   original   dimension   when   complete.   The   wood   moisture   content   must  be  above  25%.  Side  restraint  prevents  buckling,  however,  the  cell  walls  buckle,  and   partial  shear  failure  between  adjacent  cell  wall  layers  probably  occurs.  While  the  wood  is   still  wet,  it  may  be  bent  in  one  or  two  axes  with  little  mechanical  force.  Once  dried,  the   wood   is   no   longer   bendable.   Applications   include   architectural   woodwork,   furniture,  

(15)

musical  instruments,  and  boat  hulls.  Retail  cost  is  approximately  $19,000/m3,  so  this  is  an   example  of  very  high  value  and  low  production  volume  THM  wood.      

2 CHALLENGES  FOR  COMMERCIALIZATION  

The  greatest  challenges  for  expanded  commercialization  of  THM  technology  are:  1)  scale-­‐

up   from   laboratory   processes,   2)   loss   of   volume   yield,   3)   swelling   potential,   and   4)   profitability.  All  of  these  challenges  are  related  in  some  way,  and  any  one  of  them  may  be   overcome  with  clever  engineering  or  the  right  product  application.    

The   challenge   of   scale   depends   on   the   industrial   application.   If   the   application   is   high   value,  a  simple  batch  process,  with  moderate  capital  investment,  may  be  adequate.  One   must   also   consider   the   physics   of   heat   and   mass   transfer,   as   well   as   the   compression   forces  required  for  a  large  THM  device.  The  time  required  for  a  specific  temperature  or   moisture   content   change   via   unsteady-­‐state   heat   and   mass   transfer   is   approximately   proportional   to   the   second   power   of   the   principal   thickness   of   the   material   being   processed.   If   one   doubles   the   thickness,   the   processing   time   required   to   achieve   the   desired   change   in   temperature   or   moisture   content   increases   by   a   factor   of   four.   For   example,  a  THM  process  step  that  requires  10  minutes  in  a  small  laboratory  device  may   require  100  minutes  to  produce  a  larger  commercial  product.    The  impact  on  production   capacity  is  devastating.  Compression  force  (e.g.  N,  not  N/mm2)  on  a  small  laboratory  test   sample   increases   in   proportion   to   the   area   normal   to   the   direction   of   applied   force.  

Consequently,  hydraulic  pumps  and  press  frames  in  a  commercial  THM  device  must  be   sized  accordingly,  with  significant  impact  on  capital  investment.      

Most   wood   processing   companies   closely   monitor   the   volume   of   wood   that   enters   the   factory   and   the   volume   of   production   that   leaves   the   factory.   Productivity   is   often   expressed   as   percentage   of   volume   yield.   Most   THM   technologies   dramatically   reduce   volume,   perhaps   by   50%   or   more.   Traditional   wood   processing   mentality   resists   any   change  that  reduces  volumetric  productivity,  even  if  the  process  is  profitable.  

The  moisture-­‐induced  swelling  potential  of  wood  is  proportional  to  its  density.  Swelling  of   untreated  wood  is  reversible,  but  most  swelling  of  THM  wood  is  not  reversible.  Additional  

(16)

process  steps  may  be  used  to  reduce  THM  swelling,  such  as  hydro-­‐thermal  treatment  or   some  chemical  treatment.  However,  additional  treatment  adds  cost  to  the  final  product,   and  may  cause  undesirable  characteristics,  such  as  darker  color  and  embrittlement.  

Processing   cost   is   not   the   critical   factor   for   THM   wood.   Profitability   determines   commercial  success.  All  of  the  technical  challenges  may  be  overcome,  and  indeed  have   been  achieved  as  demonstrated  by  numerous  research  reports.  If  the  value  of  the  final   product  significantly  exceeds  the  cost  of  production,  then  the  commercial  enterprise  will   be   viable.   As   researchers,   we   provide   technical   solutions   to   problems.   However,   sometimes  we  must  define  the  problem  within  the  limitations  of  commercial  reality.  

3 PROPOSED  APPLICATIONS  AND  OBSERVATIONS  

THM  processing  is  a  technology  platform.  There  are  several  process  parameters  that  may   be   manipulated   to   create   intermediate   or   final   products   with   a   broad   range   of   application.     With   a   robust   menu   of   products,   a   manufacturer   may   readily   adapt   to   changing   markets   and   price   volatility.   The   long-­‐term   success   of   the   manufacturers   of   resin-­‐impregnated   veneer   THM   products   is   due   to   the   many   high   value   product   applications.  The  same  capital  equipment  is  used  to  produce  products  for  the  tool  and   dye   industry,   electrical   power   distribution,   and   cryogenic   fluid   storage   and   transport   industries.  The  manufacturer  manipulates  density,  resin  content,  and  veneer  orientation   to   effectively   support   each   of   these   industries.   Solid   THM   wood   flooring   is   the   target   market  for  MyWood2  and  Tarkett.  I  believe  an  engineered  composite  would  be  more  cost   effective   and   a   more   efficient   use   of   raw   materials   in   flooring   applications.   My   own   research  has  examined  the  use  of  THM  wood  veneer  in  laminated  veneer  lumber  (LVL)  for   building  construction.  Profitability  for  commodity  building  products  depends  on  low  cost.  

THM-­‐LVL   has   been   demonstrated   to   have   superior   mechanical   properties   than   conventional   LVL,   but   processing   cost   is   higher.   Therefore,   THM-­‐LVL   can’t   compete   against   current   LVL   products.   Either   higher   value   LVL   applications   are   needed   or   raw   material  cost  must  be  lower.  The  key  to  commercial  success  is  to  establish  a  technology  

(17)

platform,   where   one   facility   has   the   capability   to   manufacture   a   broad   range   of   THM   products  as  the  market  evolves.          

4 REFERENCES  

Hansen   O.,   Ljorring   J.,   Thomassen   T.   1993.   Method   and   apparatus   for   compressing   a   wood  sample,  US  Patent  No.  5190088A.  

Inoue,  M.,  Norimoto,  M.,  Otsuka,  Y.,  Yamada,  T.  1990.  Surface  compression  of  coniferous   lumber,  I.  A  new  technique  to  compress  the  surface  layer.  Mok.  Gak.  36(11):969-­‐975.  

Inoue,  M.,  Norimoto,  M.,  Tanahashi,  M.  1993a.  Steam  or  heat  stabilization  of  compressed   wood.  Wood  and  Fiber  Sci.  25(3):  224-­‐235.  

Inoue,   M.,   Norimoto,   M.,   Tanahashi,   M.,   Rowell,   M.   1993b.   Steam   or   heat   fixation   of   compressed  wood.  Wood  and  Fiber  Sci.,  25(3),  224-­‐235.  

Inoue,  M.,  Norimoto,  M.,  Tanahashi,  M.,  Rowell,  M.  1993c.  Fixation  of  compressed  wood   using  melamine-­‐formaldehyde  resin.  Wood  and  Fiber  Sci.  25  (4):  404-­‐410.    

Ito,   Y.,   Tanahashi,   M.,   Shigematsu,   M.,   Shinoda,   Y.   and   Otha,   C.   1998.   Compressive-­‐

molding   of   wood   by   high-­‐pressure   steam-­‐treatment:   Part   1.   Development   of   compressively  molded  squares  from  thinnings.  Holzforschung  52:  211-­‐216.  

Kollmann,  F.  1936.  Technologie  des  Holzes.  Springer-­‐Verlag,  Berlin.  

Morsing,   N.   2000.   Densification   of   wood:   The   influence   of   hygrothermal   treatment   on   compression   of   beech   perpendicular   to   the   grain.   Dept.   Structural   Engineering   and   Materials,  Technical  University  of  Denmark,  Series  R,  No.  79.,  Lyngby,  Denmark.  

Navi,  P.,  Huguenin,  P.,  Girardet,  F.  1997.  Development  of  synthetic-­‐free  plastified  wood   by  thermohygromechanical  treatment.  In:  Proc.  The  Use  of  Recycled  Wood  and  Paper   in  Building  Applications.  For.  Prod.  Soc.  Proc.  No.  7286,  Madison,  Wisc.  P.  168-­‐171.  

Seborg,  R.M.,  Stamm,  A.J.  1941.  The  compression  of  wood.  US  For.  Prod.  Lab.  Rep.  No.  

R1258,  Madison,  Wisc.  USA.    

(18)

Tomme,   F-­‐P.,   Girardet,   F.,   Gfeller,   B.,   Navi,   P.   1998.   Densified   wood:   an   innovative   product   with   highly   enhanced   characteristics.   In:   Proc.   World   Conf.   on   Timber   Engineering,  Eds.  Natterer,  J.,  Sandoz,  J-­‐L.,  Swiss  Fed.  Inst.  Tech.,  August  17-­‐20,  1998.  

 

(19)

Keynote  paper/presentation  

Characterization of laser modified wood surfaces for resin- free adhesion

Scott  Renneckar1,  W.  Travis  Church2,  Jeffrey  Dolan1,  Zhiyuan  Lin1,  Charles  E.  Frazier1  

1  Department  of  Sustainable  Biomaterials,  230  Cheatham  Hall,  Virginia  Tech,  Blacksburg,     VA  24060,  USA,  srenneck@vt.edu  

2  5919  New  Albany  Rd  W,  New  Albany,  OH  43054,  USA   ABSTRACT  

Laser  irradiation  of  wood  is  a  new  method  of  bonding  two  wood  substrates.  Irradiating   the   surface   of   wood   with   laser   light,   within   an   optimal   set   of   parameters,   causes   the   wood   surface   to   change   and   subsequently   undergo   bonding   when   hot-­‐pressed.   Light   microscopy  and  scanning  electron  microscopy  were  utilized  for  surface  topology  analysis.    

Dependent   upon   the   amount   of   energy   density,   laser   modification   created   a   grooved   surface   or   a   flat   surface.   Chemical   analysis   of   the   residue   after   laser-­‐modification   was   conducted   and   the   polysaccharide   and   Klason   lignin   content   of   the   extracted   products   were   evaluated   using   ion   chromatography.   Additionally,   chemical   analysis   of   the   wood   surface   was   performed   using   FTIR   spectroscopy.   The   surface   of   wood   after   laser   light   exposure  was  decorated  with  a  “glass-­‐like”  layer,  which  consists  of  modified  lignin  with   some   polysaccharide   degradation   products,   and   evidence   of   cellulose   melting.  

Subsequently,  wood  samples  with  modified  surfaces  were  hot-­‐pressed  together  creating   a   wood   composite.   Screening   of   multiple   factors   that   would   contribute   to   surface   modification   and   adhesion   was   performed   utilizing   mechanical   testing.     Laser   light   modified  wood  composites  were  tested  in  shear  for  mechanical  strength,  using  a  design   of  an  experiment  (DOE)  approach  to  optimize  hot-­‐pressing  parameters.    It  was  found  via   initial  screening  and  DOE  experiments  that  laser  power  density  as  well  as  and  hot  press   pressure   were   significant   factors   to   optimize   bonding.   Laser-­‐modified   3-­‐ply   veneer  

(20)

samples   had   values   that   were   comparable   to   control   samples   created   using   phenol   formaldehyde  resins.  The  data  suggests  that  laser-­‐activated  bonding  of  wood  can  yield  a   wood  composite  requiring  no  liquid  adhesives  as  the  wood  itself  serves  the  dual  role  of   adhesive  and  substrate.    

Keywords:   CO2  laser,  wood  surface  chemistry,  plywood,  auto-­‐adhesion  

1 INTRODUCTION  

Wood   surfaces   are   complex   arising   from   the   destruction   of   the   cell   wall   material,   migration  of  water  and  extractive  components  to  the  surface,  and  the  contamination  of   the  surface  with  dust  and  other  air-­‐borne  materials.    Additionally,  heat  is  generated  at  the   surface   during   cutting   operations   and   subsequent   elevated   temperatures   during   drying   can  alter  the  type  and  quantity  of  functional  groups  at  the  surface  (Sernek  et  al.  2005).  

Moreover,   wood   surfaces   can   be   purposefully   modified   through   exposure   to   different   forms  of  energy.  One  of  the  oldest  and  classic  examples  is  the  flame  treatment  of  wood   for  storage  of  food  and  drink.    Due  to  the  high  quantity  of  energy  transferred,  in  a  short   period   of   time,   lasers   are   able   to   modify   wood   differently   than   other   modification   methods   with   slower   heat   rates.   Laser   light   interaction   with   wood   results   in   charring,   ablation,   and   melting,   depending   on   a   multitude   of   variables   that   are   related   to   wood   properties  and  laser  parameters.  Laser  light  affects  the  irradiated  area  and  the  resulting   laser   modification   is   described   in   3   levels,   which   are   cumulatively   known   as   the   heat   affected   zone,   or   HAZ.   This   zone   can   be   up   to   100   microns   thick,   depending   on   wood   variables,  laser  variables,  and  their  interaction.  Parameswaran  (1982)  described  the  first   level  as  a  black,  smooth  laser  cut  surface  that  is  approximately  25  microns  thick.  Softening   and  melting  as  a  result  of  laser  light  and  wood  interaction  suggests  the  process  is  such   that   kinetics   of   softening   and   melting   can   surpass   the   kinetics   of   thermal   degradation   (Schroeter  and  Felix  2005).    

Past   research   indicated   that   the   laser   modification   of   wood   affects   the   lignin   and   hemicellulose   components   to   the   greatest   extent,   while   effecting   cellulose   to   a   lesser   degree   (Kubovsky   2009).   It   was   found   that   laser   modification   primarily   caused  

(21)

degradation  of  hemicellulose  and  lignin  (Kubovsky  2009).    Specifically  the  hemicellulose   underwent   deacetylation,   while   bond   cleavage   occurred   in   lignin,   specifically   the   aryl-­‐

alkyl  ether  bonds  in  lignin  were  broken.  This  bond  cleavage  induced  further  condensation   reactions.  Other  research  indicated  that  the  modification  of  components  was  preferential   towards   reducing   the   methoxy   side   groups   of   lignin   (Walinder   et   al.   2009).     Additional   studies  have  investigated  laser  modification  specific  to  cellulose.  The  studies  were  based   on  the  concept  of  applying  enough  energy,  induced  by  a  combination  of  frictional  heat   and  via  laser,  in  order  to  chemically  and/or  physically  change  viscose  grade  wood  pulp,   which  is  noted  to  have  a  high  α-­‐cellulose  content,  into  clear  films.  A  calculation  was  made   for  the  amount  of  energy  required  to  “weaken  and  unlock”  the  intermolecular  hydrogen   bonds  in  cellulose.  It  was  found  that  this  energy  would  need  to  be  20kJ/mol,  or  3.3*10-­‐20  J   per  bond,  which  is  equivalent  to  1  photon  with  a  wavelength  of  6  microns  (Schroeter  and   Felix  2005).    Although  the  IR  spectra  indicated  little  change,  qualitatively  it  was  evident   that   the   material   changed   from   a   fibrous   opaque   structure   to   a   transparent   smooth   structure.  With  these  results  the  researchers  concluded  they  were  able  to  melt  cellulose.  

Previous  researchers  have  observed  the  “melting”  of  lignocellulosic  materials  with  laser   modification,  some  suggesting  lasers  melting  only  related  to  a  specific  component,  with   other  suggesting  that  all  wood  components  can  undergo  thermal  softening  and  melting.    

In  the  current  research,  we  examine  the  surface  of  laser  modified  wood  with  a  variety  of   chemical   analysis   techniques   to   understand   chemical   changes   induced   by   the   laser   modification   as   well   as   investigate   the   parameters   that   lead   to   strong   bondlines   when   two  laser  modified  surfaces  are  hot  pressed  together.    

2 MATERIALS  AND  METHODS    

2.1 MATERIALS  

3.2  mm  thick  “Grade  A”  Yellow-­‐poplar  (Liriodendron  tulipifera)  and  southern  yellow  pine   (Pinus   spp.)   rotary-­‐peeled   veneer   were   obtained   from   a   southeastern   US   laminated   veneer  mill.  The  as-­‐received  60x60cm  samples  were  conditioned  to  12%  moisture  content   in  a  walk-­‐in  environmental  humidity  controlled  room.    

(22)

2.2 METHODS    

Wood  veneer  samples  were  modified  utilizing  a  ULS-­‐V460  60W  carbon  dioxide  laser  with   high  power  density  focusing  optics,  resulting  a  circular  spot  size  with  a  minimum  diameter   of  approximately  50  μm.  Laser  wattages  of  3  to  60W  were  utilized,  with  the  laser  moving   at  a  speed  of  0.1  m/s  to  0.5  m/s,  at  40,000  pulses  per  meter.  Specific  parameters  utilized   in   the   ULS   print   driver   included   a   maximum   image   density   of   6,   tuning   of   zero,   while   utilizing   vector   mode.   The   trajectory   of   the   laser   was   designed   in   AutoCAD,   using   the   smallest  resolution  usable  by  the  laser  between  lines,  0.002  in  (50.4  μm)  to  irradiate  the   surface.  Laser  modified  samples  were  placed  in  contact  matching  their  irradiated  surfaces   and  subsequently  hot  pressed  together  utilizing  a  MP2000  mini  hot  press  at  200 °C  (Fig.  

1).  The  time  between  laser  modification  and  hot  pressing  ranged  from  5  min  to  weeks;  

with   no   detectable   difference   in   bond   strength.     Pulse   Amperometric   Detection   Ionic   chromatography   (IC)   was   used   for   sugar   analysis   of   the   laser   modified   poplar   versus   remaining  bulk  wood.  

 

Figure  1:     Process  segments  for  laser  modified  wood  bonding;    (left)  Autocad  file  for  read/write  laser   modification  of  wood  surface,  (center)  laser  modification  of  southern  yellow  pine  veneer,   (right)  hotpress  system  used  to  make  test  specimens.  

3 RESULTS  AND  DISCUSSION  

In  Fig.  2,  a  3-­‐D  light  microscopy  image  indicates  a  distinct  difference  of  the  laser-­‐modified   wood  surface.    The  samples  appear  to  have  a  glossy,  reflective  surface  with  dark  spots   that  speckle  the  surface.    The  sides  of  the  sample  reveal  that  laser  modification  is  limited  

(23)

show  earlywood  tracheids  are  modified  on  average  of  19.7  micrometers  in  depth,  while   latewood  tracheids  are  modified  on  average  of  8.1  micrometers.      Fiber  tracheids  and  ray   parenchyma  have  approximately  11  micrometers  of  modification.    Others  have  reported   that   the   density   variations   in   the   wood   greatly   impact   depth   of   treatment,   as   cell   wall   thickness  directly  impacts  the  laser  ablation  process.      

 

Figure  2:     3-­‐D  light  microscopy  image  of  laser  modified  yellow-­‐poplar.  

The  spacing  of  the  line  and  the  focus  of  the  laser  spot  size  were  controlled  to  manipulate   surface  geometries  from  a  flat  surface  to  a  highly  grooved  surface.    As  the  in-­‐focus  laser   spot   size   was   smaller   than   the   resolution   of   the   laser's   motion   system,   ridges   develop   between  laser  lines  during  laser  modification  (Figure  3a).    In  addition  the  Gaussian  shape   of  the  power  of  the  laser  beam  creates  a  spot  size  with  additional  energy  in  the  center.    

As  mechanical  interlock  of  ridges  may  promote  adhesion,  the  presence  of  the  ridges  was   thought  to  have  a  substantial  positive  effect  on  the  bonding  (Fig.  3b).  However,  for  laser   bonding  to  occur,  mechanical  interlock  “micro-­‐finger  joints”,  was  not  required  (Fig.  3c,d).    

Surprisingly,   smooth   surfaces   showed   higher   compressive   shear   strengths   than   the   grooved  samples  (6.2  MPa  vs.  3.5  MPa,  respectively).    Highest  shear  strengths  were  found   for  samples  with  the  most  pressure  during  bonding  (2  MPa).    This  data  suggests  that  the   laser-­‐modified   surfaces   are   limited   by   their   inability   to   bridge   differences   in   surface   roughness.      When  appropriate  conditions  were  used  for  bonding,  3-­‐ply  specimens  had  a   bending  modulus  between  7  and  10  GPa  and  bending  strength  60  to  80  MPa.  

(24)

 

Figure  3:     (a)  SEM  image  of  laser  modified  wood  with  high  concentrated  energy  causing  grooves  in   surface;  (b)  image  of  bondline  of  two  specimens  from  (a);  (c)  SEM  image  of  laser  modified   wood  with  low  concentrated  energy  resulting  in  relative  flat  surface  topography;  and  (d)   image  of  bondline  of  two  specimens  from  (b)  

Surface   material   of   laser   treated   wood   was   isolated   through   extraction.     A   number   of   solvents  were  evaluated  for  their  ability  to  refresh  the  surface,  removing  all  residues  from   the   surface.     Solvents   tested   were   the   following:   alcohols   like   methanol   and   ethanol;  

acetone;  selective  lignin  solvents  like  aqueous  dioxane;  dimethylsulfoxide  (DMSO),  0.1  M   NaOH,   and   water.   Dimethylsulfoxide   was   successful   in   removing   the   primary   heat   affected   zone   of   the   surface.     The   DMSO   extract   was   evaluated   by   precipitating   the   polymeric   materials   with   acidic   ethanol,   followed   by   a   two-­‐step   acid   hydrolysis   for   composition  analysis  of  these  materials.    This  data  provided  the  monomeric  carbohydrate   component   percentage   related   to   the   wood   polysaccharides   extracted   as   well   as   the   Klason   lignin   content.       It   was   found   that   the   cellulose   content   increased   from   47.7   to   61.9%  and  the  lignin  content  of  the  surface  increased  from  21.1  to  27.9%,  and  the  xylan   content   was   greatly   reduced   to   less   than   4%.   Analysis   of   the   water   extracted   surface   material  revealed  a  large  amount  of  xylose,  as  well  as  monomeric  degradation  products   such   as   hydroxymethyl-­‐furfural,   levoglucosan,   xylitol   and   sorbitol.     While   a   number   of   possible  compounds  were  found  to  be  present  that  could  be  reactive,  no  specific  reactive   chemistry   was   detected   suggesting   bonding   occurred   because   of   intimate   contact   of   surfaces  during  hot-­‐pressing.      

a   b  

c   d  

(25)

4 CONCLUSIONS  

CO2   laser   modification   of   wood   ablates   the   surface   of   wood   leaving   a   residue   on   the   wood  surface.    Dependent  upon  the  laser  energy  density,  the  surface  topology  changes   from  a  grooved  surface  to  a  relatively  flat  surface.    The  residue  remaining  on  the  wood   surface  is  composed  of  the  native  wood  polymers  and  degradation  products.    This  residue   alone  provides  adequate  adhesion  to  form  composite  materials  when  two  specimens  are   bonded  together  under  pressure  and  heat.      

5 REFERENCES  

Buschbeck  L.,  Kehr  E.,  Jensen  U.  1961a.  Untersuchungen  über  die  Eignung  verschiedener   Holzarten  und  Sortimente  zur  Herstellung  von  Spanplatten  –  1.  Mitteilung:  Rotbuche   und  Kiefer.  Holztechnologie,  2,  2:  99–110  

Kubovsky,   I.,   2009.   FT-­‐IR   Study   of   Maple   Wood   Changes   due   to   CO2   Laser   Irradiation.  

Cellulose  Chemistry  and  Technology,  43(7-­‐8):  p.  235-­‐40.    

Parameswaran,  N.,  1982.  Feinstrukturelle  Veränderungen  an  durch  laserstrahl  getrennten   Schnittflächen  von  Holz  und  Holzwerkstoffen.  European  Journal  of  Wood  and  Wood   Products,  40(11):  p.  421-­‐428.    

Schroeter,  J.  and  F.  Felix,  2005.  Melting  cellulose.  Cellulose,  12(2):  p.  159-­‐165.    

Sernek,   M.,   Kamke,   F.A.   and   Glasser,   W.G.,   2004.   Comparative   analysis   of   inactivated   wood  surfaces.  Holzforschung,  58:22-­‐31  

Walinder,  M.,  et  al.,  2009.Micromorphological  studies  of  modified  wood  using  a  surface   preparation  technique  based  on  ultraviolet  laser  ablation.  Wood  Material  Science  and   Engineering,  4(1):  p.  46  -­‐  51.  

   

(26)

Emissions of thermally modified timber products

Lothar  Clauder1,  Maria  Rådemar2,  Lars  Rosell2,  Marcus  Vestergren2,  Alexander  Pfriem1  

1  Eberswalde  University  for  Sustainable  Development,  Friedrich-­‐Ebert-­‐Straße  28,  16225   Eberswalde,  Germany,  lothar.clauder@hnee.de  

2  SP  Technical  Research  Institute  of  Sweden,  Box  857,  SE-­‐501  15  Borås,  Sweden,   marcus.vestergren@sp.se  

ABSTRACT  

In  this  study  the  applicability  of  wood  in  the  museum  environment  was  investigated.  The   applied  method  focused  on  an  appropriate  selection  of  materials  and  adequate  control  of   their  noxious  compounds  as  keys  to  achieve  compatibility  between  display  materials  and   artworks.   Therefore   specimens   of   fresh-­‐sawn   Fir   (Abies   alba,   Mill.)   and   Alder   (Alnus   glutinosa,  (L.)  Gaertn.)  were  pre-­‐treated  with  a  buffer-­‐solution  and  heat-­‐treated  at  low   temperatures.  The  Field  and  Laboratory  Emission  Cell  (FLEC)  were  applied  for  measuring   the  volatile  organic  compounds  (VOC)  and  the  formaldehyde  (FA)  emissions  from  wood.  

The  emissions  were  characterised  by  using  gas  chromatography  (GC)  in  combination  with   mass-­‐spectra   (MS)   and   flame   ionization   detection   (FID),   ion   chromatography   (IC)   and   high-­‐performance  liquid  chromatography  (HPLC).  Compared  to  samples  of  green  Fir,  the   formaldehyde   emissions   increased   in   the   kiln-­‐dried   samples.   However   these   emissions   were  decreased  in  the  impregnated  and  thermally  modified  samples.  Thermally  treated   and   dried   variants   of   Alder   samples   showed   low   amounts   of   VOC,   in   particular   due   to   aldehydes  (>C2).  The  low  amount  of  acidity  and  decreased  formaldehyde  formation  in  the   Alder   samples   increased   the   positive   trend.   Concerning   the   detection   limits   for   substances   with   high   contamination   potential   for   individual   display   case   construction   materials,  this  study  gives  a  first  hint  on  how  the  VOC  emissions  of  thermally  modified   timber  could  be  minimized  by  using  a  buffer  solution  before  the  heat  treatment.  

Keywords:   thermally   modified   timber,   gas   chromatography,   high-­‐performance   liquid  

(27)

1 INTRODUCTION  

Wood   emits   volatile   organic   compounds   (VOC).   Thus,   the   applicability   of   wood   in   the   museum  environment,  e.g.  as  material  for  the  construction  of  display  cabinets,  is  almost   entirely   restricted   due   to   the   required   controlled   climate   and   air   purity,   which   is   very   different   from   normal   indoor   air,   e.g.   in   dwellings,   offices,   schools   etc.   The   desire   to   preserve   exhibits,   constituted   by   all   imaginable   materials,   from   deterioration   allows   in   principle  only  low  levels  of  air  pollutants  with  possible  detrimental  effects  (Englund  2010).  

The   purpose   of   this   study   was   to   develop   and   test   a   suitable   method   to   minimize   the   emissions.   Schäfer   and   Roffael   (2000)   proposed   reaction   mechanisms   of   FA   formation   from  wood  and  demonstrated  an  increase  of  FA  emission  at  elevated  temperatures  and   prolonged  heating  times  during  panel  production.  Especially  during  the  pressing  step  at   elevated  temperatures  increased  FA  and  VOC  emissions  were  detected  in  the  absence  of   any   resin   (Carlson   et   al.   1995).   Even   at   temperatures   below   100°C,   as   during   the   kiln   drying   of   the   wood,   the   hydrolysis   of   cell   wall   components   cellulose,   polyose   (hemicellulose)  and  lignin  leads  to  formation  of  furfural,  formaldehyde  and  very  volatile   acids   (VVOC,   e.g.   formic   acid).   The   approach   was   to   reduce   the   emissions   of   thermally   modified  timber  products,  based  on  impregnation  with  a  sodium-­‐boric-­‐buffer-­‐solution.  

2 EXPERIMENTAL  

Alder  (Alnus  glutinosa,  (L.)  Gaertn.),  which  is  low  emitting,  and  Fir  (Abies  alba,  Mill.)  were   selected.  Sample  preparation  was  performed  at  the  Eberswalde  University  for  Sustainable   Development.   The   fresh-­‐sawn   specimens   (210×210×20   mm³)   were   taken   out   of   two   stems,   each   approximately   60   years   old,   harvested   in   Northeast   Germany.   The   experimental  test  set-­‐up  consisted  of  2  samples  for  each  variant  of  treatment  (Table  1).  

   

(28)

Table  1:     Experimental  test  set-­‐up  

Specimen  [n]   Treatment  

2   untreated  

2   kiln  dried  

2   modified  

2   impregnated  kiln  dried  

2   impregnated  modified  

3 METHODS  

3.1 SET  UP  FOR  pH  VALUE  MEASUREMENTS  

In  general,  wood  species  range  in  pH  from  3.0  to  5.5  (Stamm  1964).  A  pH  range  of  4.00  to   5.86  for  hardwoods,  e.g.  5.52  for  Alder  and  4.02  to  5.82  for  softwoods,  e.g.  4.02  for  Fir   was  found  (Johns  1980).  The  impregnation  with  the  buffer  solution  was  performed  in  a   Pressure   Impregnation   plant.   After   impregnation,   small   samples   were   dissolved   in   distilled   water   then   pH-­‐value   measurements   were   carried   out   with   a   WTW   pH   meter,   Model  inoLab  by  using  an  electrode  to  measure  the  extracts.  To  determine  the  potential   of  the  buffer  solution  with  a  pH-­‐value  of  9.4,  the  following  equilibrium  equation  (Eq.1)   was  used,  e.g.  to  calculate  the  amount  of  protonated  acetic  acid  molecules  inside  the  pre-­‐

treated  wood.  

pH  =  pKa  +  lg  [b]/  [a]   (Eq.  1)  

[b]  =  base  (e.g.  sodium  acetate);  [a]  =  acid  (e.g.  acetic  acid);  pKa  =  negative  logarithm  of  the  equilibrium  constant  (e.g.  acetic  acid  &  sodium  acetate)  

3.2 SET  UP  FOR  FIELD  AND  LABORATORY  EMISSION  CELL  

A  variety  of  test  methods  for  determining  FA  emissions  from  wood  and  wood  products   have  evolved  over  time.  As  reference  methods  the  American  National  Standards  (ANSI),   e.g.   for   particleboard   (A.208.1   2009),   as   the   emission   standards   of   the   California   Air   Resources  Board  (CARB  2008)  and  the  chamber  method  according  to  DIN  EN  717-­‐1  (2004)   specify   large   chamber   tests.   The   large   chamber   test   is   expensive,   time   consuming   and   needs   a   large   amount   of   samples.   Therefore   it   is   impractical   for   quality   assurance   in  

(29)

commercial   production   (Birkeland   et   al.   2010).   Due   to   reliable   correlation   to   these   reference   methods,   derived   and   approved   secondary   methods,   e.g.   the   perforator   method   (EN   120   1993),   gas   analysis   method   (EN   717-­‐2   1994)   and   desiccator-­‐test,   as   described  in  ASTM  D  5582-­‐00  (2006)  have  been  established.  For  this  reason  in  this  study   the  measurements  of  the  emissions  from  wood  were  performed  according  to  ISO  16000-­‐

10  (2006)  with  a  Field  and  Laboratory  Emission  Cell  (FLEC),  which  provides  a  simulation  of   realistic  indoor  air  conditions  with  respect  to  temperature  and  relative  humidity  (Fig.  1   and  2).  In  contrast  to  real  air  conditions,  the  air  exchange  rate  in  the  FLEC  is  higher  (171   times/hour).   This   emission   cell   is   designed   to   measure   area   specific   emission   rates   of   general  VOCs  and  separately  the  lowest  aldehydes,  formaldehydes  and  acetaldehyde,  as   well  as  the  lowest  carboxylic  acids,  formic  acid  and  acetic  acid.  

1  air  inlet   2  air  outlet   3  channel  

4  sealing  material   5  slit  

1  Specimen  is  located  in  the  subunit  (stainless  steel  cylinder)   2  Sorbent  tubes  (e.g.  stainless  steel  tubes  filled  with  Tenax  TA®)

Figure  1:Schematic  of  Field  and  Laboratory   Emission  Cell  (FELC)  (EN  ISO  16000-­‐10  Test  cell   method)  

Figure  2:  Application  of  the  Field  and  Laboratory  Emission   Cell  (FELC)  combined  with  a  subunit  containing  the   specimen  

Before  each  measurement  on  the  specimen,  a  background  air  sample  of  the  test  chamber   was   performed,   to   quantify   any   contribution   of   organic   compounds   from   the   clean   air   system  and  the  empty  cell.  The  samples  were  prepared  according  to  EN  ISO  16000-­‐11,   formatted  (Ø14.8  cm)  and  stored  in  a  conditioning  room  (23  ±  2°C  and  50  ±  5%).  Prior  to   the  tests  fresh  surfaces  were  planed  and  the  edges  were  sealed  with  an  alloy  tape.  The   stainless  steel  cell  and  subunit  allowed  a  controlled  climate  at  23  ±  1°C  and  50  ±  3%  RH.  

1 2

Referenzen

ÄHNLICHE DOKUMENTE

A simplified wood budget approach was applied – at the temporal scale of the design flood event – for the estimation of LW volumes, wherein it was assumed that LW potentially

In detail, the steps involved in the project were the following: estimation of LW volumes at the reach scale both from the hillslopes (using a stochastic model for

“We want to find out how the environmental conditions affect tree-ring formation and the characteristics of the wood cells, such as the thickness of the cell walls,” explains

Moreover, from the point of view of forest management, where the forest edge is the system boundary, every tree stem that is removed from the forest reduc- es the carbon stock in

Keywords: wood phenology, cambium, phenological models, chilling temperatures, forcing.. The seasonality of physiological processes is an essential component of

For the creation of this illustration data was used from various sources, such as the Federal Ministry for Sustainability and Tourism (BMNT), the cooperation platform Forest Wood

Pour cette étude, nous avons utilisé du bois dur tel que le hêtre ou le frêne, qui sont aujourd’hui peu utilisés dans l’industrie de la construction à cause de leur

In an earlier study by Navi and Gigardet (2000), spruce wood was compressed by 68% resulting in Brinell hardness values that were significantly higher (more than 60 N/mm 2 ) than