• Keine Ergebnisse gefunden

4. ZUSAMMENFASSENDE DISKUSSION

4.4. Schlussbetrachtung und Ausblick

4. Diskussion

__________________________________________________________________________________________________________________________________________________

konstant blieb (siehe T-RFLP-Analyse Ergebnisse 3.1. und 3.2.), und deren Wachstum zusammen mit der Methanogenese an die Temperatur gekoppelt war (siehe Real Time PCR Ergebnisse 3.1.). Eine stenothermale Gemeinschaft steht demnach bei erhöhten Temperaturen unter Stress, produziert aber aufgrund des stärkeren Zellwachstums mehr CH4. Feller and Gerday zeigen, dass psychrophile Enzyme bei niedrigen und moderaten Temperaturen (20-30°C) bis zu zehnmal aktiver sind als ihre mesophilen Homologe. Diese hohe Aktivität kompensiert die durch niedrige Temperaturen induzierte Inhibierung der Reaktionsrate (Feller and Gerday, 2003). Der Kurvenverlauf in Abbildung 4.3.1 könnte damit die Kinetik psychrophiler Enzyme wiederspiegeln.

4. Diskussion

__________________________________________________________________________________________________________________________________________________

zu können, sollen zum einen Anreicherungs-, Co- und Reinkulturen gewonnen werden.

Zum anderen kann das Stable Isotope Probing (SIP), bei dem über den Einbau 13 C-markierter Substrate in die DNA die beteiligten Mikroorganismen nachgewiesen werden können (Manefield et al., 2002), zum Einsatz kommen.

In den Abschnitten 3.1. und 3.2. wurde diskutiert, dass die Methanogenese nicht nur direkt von der Temperatur, sondern auch indirekt über die höhere Verfügbarkeit methanogener Vorstufen stimuliert wird. Der Raten limitierende Schritt des anaeroben Abbaus wird von extrazellulären Enzymen katalysiert, die von Bakterien produziert werden. Als Hauptverursacher der Torfakkumulation in Mooren wird aber nicht die tiefe Temperatur, die geringe Nährstoffverfügbarkeit oder der niedrige pH angesehen, sondern die Inaktivität der Phenole abbauenden Phenoloxidase (Freeman et al., 2001). Unter aneroben Bedingungen ist die Phenoloxidase inaktiv. Im Rahmen der globalen Erwärmung kann es aber zeitweise zu niedrigen Wasserständen in sonst gefluteten Mooren kommen. Der Kontakt mit O2 stimuliert die Phenoloxidasen und kann dann zum Abbau der Phenole führen, die unter anaeroben Bedingungen die Aktivität von Torf abbauenden Hydrolasen hemmen (Freeman et al., 2001). Unter microaerophilen Bedingungen stimuliert auch Fe(II) die Aktivität von Phenoloxidasen (van Bodegom et al., 2005). Das zeigt, wie wichtig Untersuchungen auch an der oxisch-anoxischen Übergangszone in Mooren von sind.

Außerdem hat auch der pH einen Einfluss auf die Aktivität der Phenoloxidase (Pind et al., 1994). Um die regulierenden Faktoren vollständig erfassen zu können, ist es essentiell, in Zukunft die Auswirkungen unterschiedlicher Parameter auf die Enzymaktivititäten zu untersuchen.

5. Literatur

__________________________________________________________________________________________________________________________________________________

5. Literatur

(2005) ACIA, 2005. Arctic Climate Impact Assessment. New York, USA: Cambridge University Press.

Aselmann,I. and Crutzen,P.J. (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8: 307-358.

Avery,G.B., Shannon,R.D., White,J.R., Martens,C.S., and Alperin,M.J. (2003) Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO2

reduction. Biogeochemistry 62: 19-37.

Bartlett,K.B. and Harriss,R.C. (1993) Review and assessment of methane emissions from wetlands.

Chemosphere 26: 261-320.

Basiliko,N., Yavitt,J.B., Dees,P.M., and Merkel,S.M. (2003) Methane biogeochemistry and methanogen communities in two northern peatland ecosystems, New York State. Geomicrobiol J 20: 563-577.

Bidle,K.A., Kastner,M., and Bartlett,D.H. (1999) A phylogenetic analysis of microbial communities associated with methane hydrate containing marine fluids and sediments in the cascadia margin (odp site 892b). FEMS Microbiol Lett 177: 101-108.

Billings,W.D. (1987) Carbon Balance of Alaskan Tundra and Taiga Ecosystems - Past, Present and Future.

Quaternary Science Reviews 6: 165-177.

Braker,G. and Tiedje,J.M. (2003) Nitric Oxide Reductase (norB) Genes from Pure Cultures and Environmental Samples. Appl Environ Microbiol 69: 3476.

Bräuer,S.L., Cadillo-Quiroz,H., Yashiro,E., Yavitt,J.B., and Zinder,S.H. (2006) Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442: 192-194.

Brown, J., Ferrians Jr., O. J., Heginbottom, J. A., and Melnikov, E. V. Circum-Arctic map of permafrost and ground-ice conditions. 1998. International Permafrost Association. U.S. Geol. Surv. Circum-Pac. CP-45, 1:10,000,000.

Ref Type: Map

Cadillo-Quiroz,H., Bräuer,S., Yashiro,E., Sun,C., Yavitt,J., and Zinder,S. (2006) Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York, State. Environ Microbiol 8: 1428-1440.

Cavicchioli,R. (2006) Cold-adapted archaea. Nature Rev Microbiol 4: 331-343.

Chasar,L.S., Chanton,J.P., Glaser,P.H., Siegel,D.I., and Rivers,J.S. (2000) Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatland.. Global Biogeochem Cycles 14: 1095-1108.

Chauhan,A., Reddy,K.R., and Ogram,A.V. (2006) Syntrophic-archaeal associations in a nutrient-impacted freshwater marsh. J Appl Microbiol 100: 73-84.

Cherepanov,D.A., Mulkidjanian,A.Y., and Junge,W. (1999) Transient accumulation of elastic energy in proton translocating ATP synthase. FEBS Letters 449: 1-6.

Chong,S.C., Liu,Y.T., Cummings,M., Valentine,D.L., and Boone,D.R. (2002) Methanogenium marinum sp nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. Antonie Van Leeuwenhoek Int J Gen Molec Microbiol 81: 263-270.

5. Literatur

__________________________________________________________________________________________________________________________________________________

Christensen,H., Olsen,R.A., and Bakken,L.R. (1995) Flow cytometric maesurements of cell volumes and DNA contents during culture of indigenous soil bacteria. Microbiol Ecol 29: 49-62.

Christensen, T. R., Lloyd, D., Svensson, B., Martikainen, P. J., Harding, R., Oskarsson, H. et al. Biogenic controls on trace gas fluxes in northern wetlands. 2001.

Ref Type: Report

Cicerone,R.J. and Oremland,R.S. (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2: 299-327.

Coates,J.D. and Achenbach,L.A. (2002) The biogeochemistry of aquifer systems. In Manual of Environmental Microbiology. Hurst,J.C., Knudsen,G.R., McInermey,M.J., and Stetzenbach,L.D. (eds).

Washington, DC: ASM Press.

Conrad,R. (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28: 193-202.

Conrad,R., Bak,F., Seitz,H.J., Thebrath,B., Mayer,H.P., and Schutz,H. (1989) Hydrogen Turnover by Psychrotrophic Homoacetogenic and Mesophilic Methanogenic Bacteria in Anoxic Paddy Soil and Lake Sediment. FEMS Microbiol Ecol 62: 285-294.

Conrad,R. and Wetter,B. (1990) Influence of temperature on the energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch Microbiol 155: 94-98.

Cummings,D.E., Snoeyenbos-West,O.L., Newby,D.T., Niggemyer,A.M., Lovley,D.R., Achenbach,L.A., and Rosenzweig,R.F. (2003) Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microb Ecol 46: 257-269.

Dean,J.A. and Lange,N.A. (1992) Lange's handbook of chemistry. New York: McGraw-Hill.

DeDuve,C. (1991) Blueprint for a Cell; The Nature and Origin of Life. Neil Patterson Publishers.

Dise,N.B. (1993) Methane emission from Minnesota peatlands: Spatial and seasonal variability. Global Biogeochem Cycles 7: 123-142.

Duddleston,K.N., Kinney,M.A., Kiene,R.P., and Hines,M.E. (2002) Anaerobic microbial biogeochemistry in a northern bog: Acetate as a dominant metabolic end product. Glob Biogeochem Cyc 16: 11-1-11-9.

Engelbrecht,S. and Junge,W. (1997) ATP synthase: A tentative structural model. FEBS Letters 414: 485-491.

Feller,G. and Gerday,C. (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Micro 1: 200-208.

Feller,G., Narinx,E., Arpigny,J.L., Zekhnini,Z., Swings,J., and Gerday,C. (1994) Temperature-Dependence of Growth, Enzyme-Secretion and Activity of Psychrophilic Antarctic Bacteria. Appl Microbiol Biotechnol 41: 477-479.

Felsenstein,J. (1989) PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5: 164-166.

Fey,A., Chin,K.J., and Conrad,R. (2001) Thermophilic methanogens in rice field soil. Environ Microbiol 3:

5. Literatur

__________________________________________________________________________________________________________________________________________________

Franzmann,P.D., Liu,Y.T., Balkwill,D.L., Aldrich,H.C., de Macario,E.C., and Boone,D.R. (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47: 1068-1072.

Franzmann,P.D., Stringer,N., Ludwig,W., Conway de Macario,E., and Rohde,M.A. (1992) Methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov.. Syst Appl Microbiol 15: 573-581.

Freeman,C., Fenner,N., Ostle,N.J., Kang,H., Dowrick,D.J., Reynolds,B. et al. (2004) Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430: 195-198.

Freeman,C., Ostle,N., and Kang,H. (2001) An enzymic 'latch' on a global carbon store - A shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature 409: 149.

Frenzel,P. and Bosse,U. (1996) Methyl fluoride, an inhibitor of methane oxidation and methane production.

FEMS Microbiol Ecol 21: 25-36.

Fung,I., John,J., Lerner,J., Matthews,E., Prather,M., Steele,L.P., and Fraser,P.J. (1991) Three-dimensional model synthesis of the global methane cycle. J Geophys Res 96: 13033-13065.

Galand,P.E., Fritze,H., Conrad,R., and Yrjala,K. (2005) Pathways for Methanogenesis and Diversity of Methanogenic Archaea in Three Boreal Peatland Ecosystems. Appl Environ Microbiol 71: 2195-2198.

Galand,P.E., Fritze,H., and Yrjala,K. (2003) Microsite-dependent changes in methanogenic populations in a boreal oligotrophic fen. Environ Microbiol 5: 1133-1143.

Galand,P.E., Saarnio,S., Fritze,H., and Yrjala,K. (2002) Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol Ecol 42: 441-449.

Galchenko,V.F. (1994) Sulfate reduction, methane production, and methane oxidation in various water bodies of Bunger Hills Oasis of Antarctica. Mikrobiologya 63: 683-698.

Garcia,J.L., Patel,B.K.C., and Ollivier,B. (2000) Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6: 205-226.

Goodwin,S. and Zeikus,J.G. (1987) Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments. Appl Environ Microbiol 53: 57-64.

Gorham,E. (1991) Northern peatlands - role in the carbon cycle and probable responses to climatic warming.

Ecol Applications 1: 182-195.

Hales,B.A., Edwards,C., Ritchie,D.A., Hall,G., Pickup,R.W., and Saunders,J.R. (1996) Isolation and identification of methanogen-specific DNA from blanket bog feat by PCR amplification and sequence analysis. Appl Environ Microbiol 62: 668-675.

Hattori,S., Kamagata,Y., Hanada,S., and Shoun,H. (2000) Thermacetogenium phaeum gen. nov., sp nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50: 1601-1609.

Hattori,S., Galushko,A.S., Kamagata,Y., and Schink,B. (2005) Operation of the CO Dehydrogenase/Acetyl Coenzyme A Pathway in both Acetate Oxidation and Acetate Formation by the Syntrophically Acetate-Oxidizing Bacterium Thermacetogenium phaeum. J Bacteriol 187: 3471-3476.

Hayes,J.M. (1993) Factors Controlling C-13 Contents of Sedimentary Organic- Compounds - Principles and Evidence. Mar Geol 113: 111-125.

Hines,M.E., Duddleston,K.N., and Kiene,R.P. (2001) Carbon flow to acetate and C1 compounds in northern wetlands. Geophys Res Lett 28: 4251-4254.

5. Literatur

__________________________________________________________________________________________________________________________________________________

Hoehler,T.M., Alperin,M.J., Albert,D.B., and Martens,C.S. (2001) Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol Ecol 38: 33-41.

Hoj,L., Olsen,R.A., and Torsvik,V.L. (2005) Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78 degrees N) as characterized by 16S rRNA gene fingerprinting. FEMS Microbiol Ecol 53: 89-101.

Hoj,L., Rusten,M., Haugen,L.E., Olsen,R.A., and Torsvik,V.L. (2006) Effects of water regime on archaeal community composition in Arctic soils. Environ Microbiol 8: 984-996.

Horn,M.A., Matthies,C., Küsel,K., Schramm,A., and Drake,H.L. (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69: 74-83.

Hornibrook,E.R.C., Longstaffe,F.J., and Fyfe,W.S. (1997) Spatial distribution of microbial methane production pathways in temperate zone wetland soils: Stable carbon and hydrogen isotope evidence.

Geochim Cosmochim Acta 61: 745-753.

Hornibrook,E.R.C., Longstaffe,F.J., and Fyfe,W.S. (2000) Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim Cosmochim Acta 64: 1013-1027.

IPCC (1996) Climate Change 1995. The science of climate change. Cambridge: Cambridge University press.

IPCC (2001) In Climate Change 2001: The Scientific Basis. Summary for Policimakers and Technical Summary of the Working Group I Report. Cambridge: pp. 63.

Jakosky,B.M., Nealson,K.H., Bakermans,C., Ley,R.E., and Mellon,M.T. (2003) Subfreezin activity of microorganisms and the potential habitability of Mars' polar regions. Astrobiology 3: 343-350.

Janssen,P.H. and Frenzel,P. (1997) Inhibition of methanogenesis by methyl fluoride: studies on pure and defined mixed cultures of anaerobic bacteria and archaea. Appl Environ Microbiol 63: 4552-4557.

Jukes,T.H. and Cantor,C. (1969) Evolution of protein molecules. In Mammalian Protein Metabolism.

Munro,M.N. (ed). New York: Academic Press, pp. 21-132.

Juniper,S.K., Cambon,M.A., Lesongeur,F., and Barbier,G. (2001) Extraction and purification of DNA from organic rich subsurface sediments (ODP Leg 169S). Mar Geol 174: 241-247.

Juottonen,H., Galand,P.E., Tuittila,E.S., Laine,J., Fritze,H., and Yrjala,K. (2005) Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol 7:

1547-1557.

Karakashev,D., Batstone,D.J., Trably,E., and Angelidaki,I. (2006) Acetate Oxidation Is the Dominant Methanogenic Pathway from Acetate in the Absence of Methanosaetaceae. Appl Environ Microbiol 72:

5138-5141.

Karofeld,E. (1998) The dynamics of formation and development of hollows in raised Bogs in Estonia.

Holocene 8: 697-704.

5. Literatur

__________________________________________________________________________________________________________________________________________________

Kotsyurbenko,O.R., Chin,K.J., Glagolev,M.V., Stubner,S., Simankova,M.V., Nozhevnikova,A.N., and Conrad,R. (2004) Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ Microbiol 6: 1159-1173.

Kotsyurbenko,O.R., Glagolev,M.V., Nozhevnikova,A.N., and Conrad,R. (2001) Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature. FEMS Microbiol Ecol 38: 153-159.

Krumböck,M. and Conrad,R. (1991) Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment. FEMS Microbiol Ecol 85: 247-256.

Lansdown,J.M., Quay,P.D., and King,S.L. (1992) CH4 production via CO2 reduction in a temperate bog : a source of 13C-depleted CH4. Geochim Cosmochim Acta 56: 3493-3503.

Lawrence,D.M. and Slater,G. (2005) A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett 32: L24401.

Leaphart,A.B., Friez,M.J., and Lovell,C.R. (2003) Formyltetrahydrofolate Synthetase Sequences from Salt Marsh Plant Roots Reveal a Diversity of Acetogenic Bacteria and Other Bacterial Functional Groups. Appl Environ Microbiol 69: 693-696.

Leaphart,A.B. and Lovell,C.R. (2001) Recovery and Analysis of Formyltetrahydrofolate Synthetase Gene Sequences from Natural Populations of Acetogenic Bacteria. Appl Environ Microbiol 67: 1392-1395.

Lee,M.J. and Zinder,S.H. (1988a) Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic coculture. Appl Environ Microbiol 54: 1457-1461.

Lee,M.J. and Zinder,S.H. (1988b) Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl Environ Microbiol 54: 124-129.

Ljungdahl,L.G. (1986) 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40: 415-450.

Lloyd,D., Thomas,K.L., Hayes,A., Hill,B., Hales,B.A., Edwards,C. et al. (1998) Micro-ecology of peat:

minimally invasive analysis using confocal laser scanning microscopy, membrane inlet mass spectrometry and PCR amplification of methanogen-specific gene sequences. FEMS Microbiol Ecol 25: 179-188.

Lovell,C.R. and Hui,Y. (1991) Design and testing of a functional groupspecific DNA probe for the study of natural populations of acetogenic bacteria. Appl Environ Microbiol 57: 2602-2609.

Lovell,C.R., Przybyla,A., and Ljungdahl,L.G. (1990) Primary Structure of the Thermostable Formyltetrahydrofolate Synthetase from Clostridium-Thermoaceticum. Biochemistry 29: 5687-5694.

Lovley,D.R. and Phillips,E.J.P. (1987) Rapid Assay for Microbially Reducible Ferric Iron in Aquatic Sediments. Appl Environ Microbiol 53: 1536-1540.

Ludwig,W., Strunk,O., Klugbauer,S., Klugbauer,N., Weizenegger,M., Neumaier,J. et al. (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19: 554-568.

Lueders,T., Chin,K.J., Conrad,R., and Friedrich,M. (2001) Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3: 194-204.

Lueders,T. and Friedrich,M.W. (2003) Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl Environ Microbiol 69: 320-326.

5. Literatur

__________________________________________________________________________________________________________________________________________________

Maestrojuan,G.M. and Boone,D.R. (1991) Characterization of Methanosarcina barkeri MST and 227 Methanosarcina mazei S-6T and Methanosarcina vacuolata Z-761T. Int J Syst Bacteriol 41: 267-274.

Maidak,B.L., Olsen,G.J., Larsen,N., Overbeek,R., McCaughey,M.J., and Woese,C.R. (1997) The RDP (Ribosomal Database Project). Nucleic Acids Res 25: 109-110.

Manefield,M., Whiteley,A.S., Griffiths,R.I., and Bailey,M.J. (2002) RNA Stable Isotope Probing, a Novel Means of Linking Microbial Community Function to Phylogeny. Appl Environ Microbiol 68: 5367-5373.

Matthews,E. (1984) Vegetation, land-use and seasonal albedo data sets: Documentation of archived data sets.

NASA Technical Memorandum (original not seen) No. 86107.

Matthews,E. and Fung,I. (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem Cycles 1: 61-86.

McDonald,I.R. and Murrell,J.C. (1997) The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol Lett 156: 205-210.

Merilä,P., Galand,P.E., Fritze,H., Tuittila,E.S., Kukko-oja,K., Laine,J., and Yrjala,K. (2006) Methanogen communities along a primary succession transect of mire ecosystems. FEMS Microbiol Ecol 55: 221-229.

Metje,M. and Frenzel,P. (2005) The effect of temperature on anaerobic ethanol oxidation and methanogenesis in an acidic peat from a northern wetland. Appl Environ Microbiol 71: 8191-8200.

Mitchell,P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Cambridge Phil Soc 41: 445-502.

Mitra,S., Wassmann,R., and Vlek,P.L.G. (2005) An appraisal of global wetland area and its organic carbon stock. Curr Sci 88: 25-35.

Morita,R.Y. (1975) Psychrophilic bacteria. Bacteriol Rev 39: 144-167.

Morita,R.Y. (1999) Is H2 the universal energy source for long-term survival? Microb Ecol 38: 307-320.

Namsaraev,B.B., Dulov,L.E., Sokolova,E.N., and Zemskaya,T.I. (1995) Bacterial methane production in the bottom sediments of lake baikal. Microbiology 64: 346-352.

Nercessian,D., Upton,M., Lloyd,D., and Edwards,C. (1999) Phylogenetic analysis of peat bog methanogen populations. FEMS Microbiol Lett 173: 425-429.

Nozhevnikova,A.N., Rebak,S., Kotsyurbenko,O.R., Parshina,S.N., Holliger,C., and Lettinga,G. (2000) Anaerobic production and degradation of volatile fatty acids in low temperature environments. Water Sci Tech 41: 39-46.

Nüsslein,B., Chin,K.J., Eckert,W., and Conrad,R. (2001) Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Environ Microbiol 3: 460-470.

Ohkuma,M., Noda,S., Horikoshe,K., and Kudo,T. (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134: 45-50.

5. Literatur

__________________________________________________________________________________________________________________________________________________

Patel,G.B., Sprott,G.D., and Fein,J.E. (1990) Patel,G.B., Sprott,G.D., and Fein,J.E. (1990) Isolation and characterization of Methanobacterium espanolae sp. nov., a mesophilic moderately acidophilic methanogen.

Int J Syst Bacteriol 40: 12-18.

Penning,H. and Conrad,R. (2006) Effect of Inhibition of Acetoclastic Methanogenesis on Growth of Archaeal Populations in an Anoxic Model Environment. Appl Environ Microbiol 72: 178-184.

Penning,H., Plugge,C.M., Galand,P.E., and Conrad,R. (2005) Variation of carbon isotope fractionation in hydrogenotrophic methanogenic microbial cultures and environmental samples at different energy status.

Glob Change Biol 11: 2103-2113.

Peters,V. and Conrad,R. (1995) Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl Environ Microbiol 61: 1673-1676.

Phelps,T.J. (1991) Similarity Between Biotransformation Rates and Turnover Rates of Organic-Matter Biodegradation in Anaerobic Environments. J Microbiol Methods 13: 243-254.

Phelps,T.J. and Zeikus,J.G. (1984) Influence of pH on terminal carbon metbolism in anoxic sediments from a mildly acidic lake. Appl Environ Microbiol 48: 1088-1095.

Pind,A., Freeman,C., and Lock,M.A. (1994) Enzymic degradation of phenolic materials in peatlands - measurement of phenol oxidase activity. Plant Soil 159: 227-231.

Popp,T.J., Chanton,J.P., Whiting,G.J., and Grant,N. (1999) Methane stable isotope distribution at a Carex dominated fen in north Central Alberta. Global Biogeochem Cycl 13: 1063-1077.

Ragsdale,S.W. (1991) Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit Rev Biochem Mol Biol 26: 261-300.

Rivkina,E., Gilichinsky,D., Wagener,S., Tiedje,J., and Mcgrath,J. (1998) Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiol J 15: 187-193.

Russell,M.J. and Martin,W. (2004) The rocky roots of the acetyl_CoA pathway. Trends in Biochemical Sciences 29: 358-363.

Rydin,H. and Jeglum,J. (2006) The Biology of Peatlands. New York: Oxford University Press.

Saitou,N. and Nei,M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.

Sanger,F., Nicklen,S., and Coulson,A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc Nat Acad Sci 74: 5463-5467.

Saunders,N.F., Thomas,T., Curmi,P.M., Mattick,J.S., Kuczek,E., Slade,R. et al. (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13: 1580-1588.

Schink,B. (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Rev 61: 262.

Schink,B., Phelps,T.J., Eichler,B., and Zeikus,J.G. (1985) Comparison of ethanol degradation pathways in anoxic freshwater environments. J Gen Microbiol 131: 651-660.

Schink,B. and Stams,A.J.M. (2002) Syntrophism Among Prokaryotes. In The Prokaryotes. M.Dworkin et al.

(ed). New York: Springer-Verlag.

5. Literatur

__________________________________________________________________________________________________________________________________________________

Schnürer,A., Schink,B., and Svensson,B.H. (1996) Clostridium ultunense sp nov, a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46: 1145-1152.

Schnürer,A., Zellner,G., and Svensson,B.H. (1999) Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol Ecol 29: 249-261.

Schulz,S. and Conrad,R. (1996) Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance. FEMS Microbiol Ecol 20: 1-14.

Schulz,S., Matsuyama,H., and Conrad,R. (1997) Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). FEMS Microbiol Ecol 22: 207-213.

Seelert,H., Poetsch,A., Rohlfs,M., and Dencher,N.A. (2000) Dye-ligand chromatographic purification of intact multisubunit membrane protein complexes: application to the chloroplast H+-F0F1-ATP synthase.

Biochem J 346: 41-44.

Shock,E.L. (1992) Chemical environments of submarine hydrothermal systems. Orig Life Evol Biosph 22:

67-107.

Simankova,M.V., Kotsyurbenko,O.R., Lueders,T., Nozhevnikova,A., Wagner,B., and Friedrich,M.W. (2003) Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst Appl Microbiol 26: 312-318.

Simankova,M.V., Parshina,S.N., Tourova,T.P., Kolganova,T.V., Zehnder,A.J.B., and Nozhevnikova,A.N.

(2001) Methanosarcina lacustris sp nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. Syst Appl Microbiol 24: 362-367.

Singh,N., Kendall,M.M., Liu,Y.T., and Boone,D.R. (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55: 2531-2538.

Smith,L.C., MacDonald,G.M., Velichko,A.A., Beilman,D.W., Borisova,O.K., Frey,K.E. et al. (2004) Siberian Peatlands a Net Carbon Sink and Global Methane Source Since the Early Holocene. Science 303:

353-356.

Springer,E., Sachs,M.S., Woese,C.R., and Boone,D.R. (1995) Partial gene sequences for the α-subunit of methyl-coenzymeM reductase (MCRI) as a phylogenetic tool for the family Methanosarcinaceae. Int J Syst Bacteriol 45: 554-559.

Squyres,S.W., Cassen,P.M., and Peale,S.J. (1983) Liquid water and active resurfacing on Europa. Nature 301: 225-226.

Stahl,D.A. and Amann,R. (1991) Development and application of nucleic acid acid probes in bacterial systematics. In Nucleic acid techniques in bacterial systematics. Stackebrandt,E. and Goodfellow,M. (eds).

Chichester, England: John Wiley & Sons, pp. 205-248.

Stams,A.J.M. (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments.

Antonie van Leeuwenhoek 66: 271-294.

5. Literatur

__________________________________________________________________________________________________________________________________________________

Stookey,L.L. (1970) Ferrozine - A New Spectrophotometric Reagent for Iron. Anal Chem 42: 779-&.

Strom,L., Ekberg,A., Mastepanov,M., and Christensen,T.R. (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Global Change Biol 9: 1185-1192.

Strunk, O., Gross, O., Reichel, B., May, M., Hermann, S., and Stuckmann, N. ARB: a software environment for sequence data. [(Online).Department of Microbiology, Technische Universität München, Munich.http://www.mikro.biologie.tu-muenchen.de]. [1]. 1998.

Ref Type: Computer Program

Stumm,W. and Morgan,J.J. (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. New York: Wiley.

Thauer,R.K. (1998) Biochemistry of methanogenesis - a tribute to Marjory Stephenson. Microbiology 144:

2377-2406.

Thauer,R.K., Jungermann,K., and Decker,K. (1977) Energy conservation in chemotrophic anaerobic bacteria.

Bacteriol Rev 41: 100-180.

The Ramsar Convention Bureau (1999) The Ramsar Convention on Wetlands. http://www2 iucn org/themes/ramsar/.

Utsumi,M., Belova,S.E., King,G.M., and Uchiyama,H. (2003) Phylogenetic comparison of methanogen diversity in different wetland soils. J Gen Appl Microbiol 49: 75-83.

van Bodegom,P.M., Broekman,R., van Dijk,K., Bakker,C., and Aerts,R. (2005) Ferrous iron stimulates phenol oxidase activity and organic matter decomposition in waterlogged wetlands. Biogeochemistry 76: 69-83.

Vanbreemen,N. (1995) How Sphagnum Bogs Down Other Plants. Trends Ecol Evol 10: 270-275.

Vann,C.D. and Megonigal,J.P. (2003) Elevated CO2 and water depth regulation of methane emissions:

Comparison of woody and non-woody wetland plant species. Biogeochemistry 63: 117-134.

von Klein,D., Arab,H., Volker,H., and Thomm,M. (2002) Methanosarcina baltica, sp nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremophiles 6: 103-110.

Wächtershäuser,G. (1988) Pyrite formation, the first energy source for life: a hypothesis. Syst Appl Microbiol 10: 207-210.

Wächtershäuser,G. (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87: 200-204.

Wagner,D., Spieck,E., Bock,E., and Pfeiffer,E.-M. (2002) Microbial Life in Terrestrial Permafrost:

Methanogenesis and Nitrification in Gelisols as Potentials for Exobiological Processes. In Astrobiology: The Quest for the Conditions of Life. Horneck,G. and Baumstark-Khan,C. (eds). Springer, pp. 143-159.

Walker,D.A., Auerbach,N.A., Bockheim,J.G., Chapin,F.S., Eugster,W., King,J.Y. et al. (1998) Energy and trace-gas fluxes across a soil ph boundary in the arctic. Nature 394: 469-472.

Whitman, W. B., Bowen, T. L., and Boone, D. R. The Prokaryotes: The Methanogenic Bacteria. 2001. 11-6-2001.

Zeikus,J.G. and Winfrey,M.R. (1976) Temperature limitation of methanogenesis in aquatic sediments. Appl Environ Microbiol 31: 99-107.

Zhang,T. (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage

5. Literatur

__________________________________________________________________________________________________________________________________________________

Zimov,S.A., Schuur,E.A.G., and Chapin,F.S. (2006) Permafrost and the global carbon budget. Science 312:

1612-1613.

Zinder,S.H. (1994) Syntrophic acetate oxidation and `reversible acetogenesis'. In Acetogenesis. Drake,H.L.

(ed). New York: Chapman & Hall, pp. 386-415.

Zinder,S.H. and Koch,M. (1984) Non-Aceticlastic Methanogenesis from Acetate - Acetate Oxidation by A Thermophilic Syntrophic Coculture. Arch Microbiol 138: 263-272.

Ziska,L.H., Moya,T.B., Wassmann,R., Namuco,O.S., Lantin,R.S., Aduna,J.B. et al. (1998) Long-term growth at elevated carbon dioxide stimulates methane emission in tropical paddy rice. Global Change Biol 4: 657-665.

__________________________________________________________________________________________________________________________________________________

Lebenslauf

Martina Metje, geboren am 9. Januar 1977 in Bad Gandersheim Schulbildung:

1983 – 1987: Grundschule Bad Gandersheim 1987 – 1989: Orientierungsstufe Bad Gandersheim 1989 – 1996: Roswitha-Gymnasium Bad Gandersheim April 1996: Abitur

Hochschulstudium:

1996 – 1998: Studium der Kunstgeschichte an der Philipps-Universität Marburg 1998 – 2003: Studium der Biologe am Fachbereich Biologie

der Philipps-Universität Marburg August 2003: Biologie Diplom

(Prüfungsfächer: Mikrobiologie, Genetik, Biochemie, Virologie) Diplomarbeit in der Arbeitsgruppe von Prof. Dr. Peter Frenzel in der Abteilung Biogeochemie am Max-Planck-Institut für Terrestrische Mikrobiologie in Marburg: „Methanogenese und methanogene Archaea in subarktischen Torfen“

Promotion:

Seit Januar 2004: Doktorarbeit bei Prof. Dr. Peter Frenzel am Max-Planck-Institut für Terrestrische Mikrobiologie in Marburg und Mitglied der International Max Planck Research School

Promotionsstudium am Fachbereich Biologie der Philipps-Universität Marburg

Januar 2004 – Dezember 2007