• Keine Ergebnisse gefunden

AR0, D)S0(λ)( ˜ζ0F0) 0

0 0

 +

X

`=1

AR`, D)S`(λ)( ˜ζ`F0,ζ˜`G,ζ˜`G0,ζ˜`g100) BR`, D)S`(λ)( ˜ζ`F0,ζ˜`G,ζ˜`G0,ζ˜`g100) λ1/2BR`, D)S`(λ)( ˜ζ`F0,ζ˜`G,ζ˜`G0,ζ˜`g001) λBR1`, D)(S`1(λ)( ˜ζ`F0,ζ˜`G,ζ˜`G0,ζ˜`g100)

 .

By (6-1), (6-7) and Proposition 2.2, we have

RL(Xq(Ω))({(τ ∂τ)sU(λ)|λ∈Σϑ,λ2})≤Cqκ1λ−1/22 (s= 0,1) (6-14) for anyλ2≥λ1. We chooseλ2so large that

Cqκ1λ−1/22 ≤1/2. (6-15)

By (6-13), (6-14) and (6-15), we have

kHλU(λ)(F, G)kXq(Ω)12kHλ(F, G)kXq(Ω). (6-16) By the equivalence of the norms kHλ(·)kXq(Ω) and k · kGq(Ω) (cf. (5-19)), the inverse (I−U(λ))−1 = I+P

n=1U(λ)n exists in L(Gq(Ω)). LetV =A(λ)Hλ(I−U(λ))−1(F, G), and then by (6-12)V solves the equation:

Lλ(D)V = (F, G) on Ω×Γ. (6-17)

The uniqueness of solutions follows from the existence of solutions of the dual problem, so thatV is the unique solution of the equation (6-17).

On the other hand, by (6-14) and (6-15), I− U(λ) =I+P

n=1U(λ)n exists in C(Σϑ,λ2,L(Xq(Ω))) and satisfies the estimate:

RL(Xq(Ω))({(τ ∂τ)s(I− U(λ))−1|λ∈Σϑ,λ2})≤2 (s= 0,1). (6-18) Moreover, by (6-13),

Hλ(I−U(λ))−1=Hλ+

X

n=1

HλU(λ)n= (I+

X

n=1

U(λ)n)Hλ= (I− U(λ))−1Hλ. (6-19) LetBi(λ) =Ai(λ)(I− U(λ))−1 (i= 1,2). Then, by (6-9), (6-18) and Proposition 2.2,

RL(X

q(Ω),Hq4−j(Ω))({(τ ∂τ)sj/2B1(λ))|λ∈Σϑ,λ1})≤Cqκ1 (s= 0,1, j = 0,1,2,3,4), RL(X

q(Ω),Hq2−j(Ω))({(τ ∂τ)sj/2B2(λ))|λ∈Σϑ,λ1})≤Cqκ1 (s= 0,1, j = 0,1,2).

Moreover, settingB(λ) = (B1(λ), λB1(λ),B2(λ))>, by (6-19) we see that B(λ)Hλ(F, G) =A(λ)Hλ(I−U(λ))−1(F, G),

and thereforeV =B(λ)Hλ(F, G) is the unique solution of the equation (1-5) (cf. (6-17)). This completes the proof of Theorem 1.4 replacingλ0byλ2.

7 P roof of Theorem 1.3

To prove Theorem 1.3, we start with

Lemma 7.1. Let 1< p, q <∞. For any θ0∈Bq,p2−2/p(Ω),u0 ∈Bq,p4−2/p(Ω), and u1 ∈B2−2/pq,p (Ω), there exist ω andwsuch that ω|t=00,w|t=0=u0, and∂tw|t=0=u1 inΩ,

ω∈

1

\

`=0

Hp`((0,∞), Hq,p2−2`(Ω)), w∈

2

\

`=0

Hp`((0,∞), Hq4−2`(Ω),

and

1

X

`=0

k∂t`ωkL

p((0,∞),Hq2−2`(Ω)≤Ckθ0kB2−2/p q,p (Ω),

2

X

`=0

k∂t`wkL

p((0,∞),Hq,p4−2`(Ω)≤C(ku0kB4−2/p

q (Ω)+ku1kB2−2/p q,p (Ω)).

with some positive constantC.

Proof. To prove the lemma, we consider the shifted heat equation:

tv+v−∆v=f in (0,∞)×RN, v|t=0=v0. (7-1) Employing the same argument as in the previous sections, it is easy to prove that for anyf ∈Lp((0,∞), Lq(RN)) andv0∈B2−2/pq,p (RN), problem (7-1) admits a unique solutionv∈T1

`=0Hp`((0,∞), Hq2−2`(RN)) possessing the estimate:

1

X

`=0

k∂t`vkL

p((0,∞),Hq2−2`(RN))≤C(kv0kB2−2/p

q,p (RN)+kfkLp((0,∞),Lq(Ω))). (7-2) Assume thatv0∈B4−2/pq,p (RN) andf ∈T1

`=0Hp`((0,∞), Hq2−2`(RN)). Then, for any multi-indexα∈NN0

with|α| ≤2 we have

txαv+∂xαv−∆∂xαv=∂xαf in (0,∞)×RN, ∂xαv|t=0=∂xαv0. Thus, the unique existence of solutions of (7-1) yields that

v∈

1

\

`=0

Hp`((0,∞), Hq4−2`(RN)),

1

X

`=0

k∂t`vkL

p((0,∞),H4−2`q (RN))≤C(kv0kB4−2/p

q,p (RN)+kfkLp((0,∞),H2 q(RN))).

(7-3)

Moreover, the relation: ∂t2v=−∂tv+ ∆∂tv+∂tf yields that∂t2v∈Lp((0,∞), Lq(RN)) and k∂2tvkLp((0,∞),Lq(RN))≤C(kv0kB4−2/p

q,p (RN)+

1

X

`=0

k∂t`fkL

p((0,∞),Hq2−2`(RN))). (7-4) Letιhbe an extension map as given in Introduction satisfying property (e-1). Letω be a solution of the shifted heat equation:

tω+ω−∆ω= 0 in (0,∞)×RN, ω|t=0hθ0. Since ιhθ0 ∈Bq,p2−2/p(RN), by (7-2) with f = 0 there exists a uniqueω ∈T1

`=0Hp`((0,∞), Hq2−2`(RN)) satisfying the estimate

1

X

`=0

k∂`tωkL

p((0,∞),Hq2−2`(RN))≤Ckιhθ0kB2−2/p q,p (RN). Sinceιhθ00 on Ω andkιhθ0kB2−2/p

q,p (RN)≤Ckθ0kB2−2/p

q,p (Ω) with some constantC >0, the restriction ofω on Ω is the function satisfying the required properties.

Next, let f be a solution of the shifted heat equation:

tf+f−∆f = 0 in (0,∞)×RN, f|t=0=v0

withv0hu1hu0−ιh∆u0. Sincev0∈Bq,p2−2/p(RN) and kv0kB2−2/p

q,p (RN)≤C(ku1kB2−2/p

q,p (Ω)+ku0kB4−2/p q,p (Ω)), there exists a uniquef ∈T1

`=0Hp`((0,∞), Hq2−2`(RN)) satisfying the estimate:

1

X

`=0

k∂t`fkL

p((0,∞),Hq2−2`(RN)) ≤C(ku1kB2−2/p

q,p (Ω)+ku0kB4−2/p

q,p (Ω)). (7-5)

Letwbe a solution of the shifted heat equation:

tw+w−∆w=f in (0,∞)×RN, w|t=0=ιu0. (7-6) Then, by (7-3), (7-4) and (7-5), there exists a unique w ∈ T2

`=0Hp`((0,∞), Hq4−2`(RN)) satisfying the estimate:

2

X

`=0

k∂t`wkL

p((0,∞),Hq4−2`(RN)) ≤C(ku1kB2−2/p

q,p (Ω)+ku0kB4−2/p q,p (Ω)).

Moreover, by (7-6),∂tw|t=0 =v0−ιhu0+ ∆ιhu0hu1, so that the restriciton ofwon Ω satisfies the required properties, which completes the proof of Lemma 7.1.

In view of Lemma 7.1, to prove Theorem 1.3, it suffices to consider the equations (1-4) withU0= 0.

LetF = (0, f1, f2)> andG= (g1, g2, g3) satisfy the regularity condition:

(f1, f2)∈Lp((0, T), Lq(Ω)2), G∈Hp1((0, T), Lq(Ω)×W−1q (Ω)2)∩Lp((0, T), Hq2(Ω)×Hq1(Ω)2) and the compatibility condition: G|t=0 = 0. In the following, given f(t,·) defined fort ∈[0, T], f0(t,·) denotes the zero extension off tot <0, that is,f0(t,·) =f(t,·) for 0< t < T, andf0(t,·) = 0 fort <0, andETf denotes the extention of f toRdefined by

[ETf](t,·) =

(f0(t,·) fort < T ,

f0(2T−t,·) fort≥T . (7-7)

Note thatETf vanishes fort6∈[0,2T] and moreover, iff|t=0= 0, then

t[ETf](t,·) =





tf(t,·) fort≤T ,

−(∂tf)(2T−t,·) fort≥T ,

0 fort6∈[0,2T].

(7-8)

SinceETf =f for 0≤t≤T, instead of the equations (1-4) withU0= 0, we consider the equations:

Ut−A(D)U =ETF inR×Ω, B(D)U =ETG onR×Γ. (7-9) Let L be the Laplace transform with respect to time variable t and let L−1 be its inverse transform, which are defined by

L[f](λ,·) = Z

−∞

e−λtf(t,·)dt= Z

R

e−iτ te−γtf(t,·)dt, L−1[f](t,·) = 1

2πi

Z γ+i∞

γ−i∞

eλtf(λ,·)dλ=eγt

Z

−∞

f(γ+iτ,·)dτ,

whereλ=γ+iτ ∈C. Let L[ETF](λ,·) =Jλ andL[ETG](λ,·) =Kλ. SinceETF and ETGvanish for t 6∈[0,2T], Jλ andKλ are entire functions with respect to λ∈C. Applying the Laplace transform to (7-9), we have

λVλ−A(D)Vλ=Jλ in Ω, B(D)Vλ=Kλ on Γ, (7-10)

where we have setVλ=L[U](λ,·). Now,Vλ=B(λ)Hλ(Jλ, Kλ) is the unique solution of (7-10), so that the uniqueness of the solution yields that Vλ is holomorphic forλ∈Σϑ,λ0. LetBi(λ) (i= 1,2) be the operators given in Theorem 1.4 and setB(λ) = (B1(λ), λB1(λ),B2(λ))>. Then, the unique solutionU of (7-9) is given by

U(t,·) =L−1[B(λ)Hλ(Jλ, Kλ)] =eγtF−1[B(λ)Hλ(F[e−γ·ETF],F[e−γ·ETG])](t,·).

Let Λ1/2 be the operator defined by

1/2f](t,·) =L−11/2L[f](λ,·)](t), and let

ke−γtfkLp(R,X)=nZ

−∞

e−γtkf(t,·)kX)pdto1/p .

Since|λ|1/2≤ |λ|(1 +|ξ|2)−1/2 when|λ| ≥1 +|ξ|2 and|λ|1/2≤(1 +|ξ|2)1/2when|λ| ≤1 +|ξ|2, by the Bourgain theorem (cf. Proposition 2.2) we have

keγtΛ1/2fkLp(R,Lq(RN))≤C(keγtt(1−∆)−1/2fkLp(R,Lq(RN))+keγt(1−∆)1/2fkLp(R,Lq(RN))), so that by using property (e-2) of the extension mapιhgiven in the introduction we have

keγtΛ1/2fkLp(R,Lq(Ω))≤C(keγttfkL

p(R,W−1q (Ω))+keγtfkLp(R,H1

q(Ω))). (7-11) And also, using the extension mapιh and Proposition 2.2, we have

ke−γttfkLp(R,Hm

q(Ω))+ke−γtfkL

p(R,Hqm+2(Ω))

≤Cm,q(ke−γttfkLp(R,Hm

q (Ω))+ke−γtΛ1/2∇fkLp(R,Hm

q(Ω))+ke−γt2fkLp(R,Hm

q (Ω))) (7-12) for anym∈N∪ {0}. Therefore, using (7-11) and (7-12) and applying the Weis operator valued Fourier multiplier theorem with the help of Theorem 1.4, we have

2

X

`=0

ke−γtt`ukL

p(R,Hq4−2`(Ω))+

1

X

`=0

ke−γtt`θkL

p(R,Hq2−2`(Ω))

≤C(ke−γtET(f1, f2)kLp(R,Lq(Ω))+ke−γtETGkLp(R,H2q(Ω)×Hq1(Ω)2)

+ke−γtΛ1/2ETGkLp(R,Hq1(Ω)×Lq(Ω)2)+ke−γttETg1kLp(R,Lq(Ω)))

≤C(ke−γtET(f1, f2)kLp(R,Lq(Ω))+ke−γtETGkLp(R,H2q(Ω)×Hq1(Ω)2)

+ke−γttETGkL

p(R,Lq(Ω)×W−1q (Ω)2))

(7-13)

for anyγ ≥λ0 with constant C independent of γ, where we have setU = (u, ∂tu, θ). Using (7-7) and (7-8) and noting thatG|t=0= 0, we have

ke−γtET(f1, f2)kLp(R,Lq(Ω))≤Ck(f1, f2)kLp((0,T),Lq(Ω)), ke−γtETGkLp(R,H2

q(Ω)×Hq1(Ω)2)≤CkGkLp((0,T),H2

q(Ω)×Hq1(Ω)2), ke−γttETGkL

p(R,Lq(Ω)×W−1q (Ω)2)≤Ck∂tGkL

p((0,T),Lq(Ω)×W−1q (Ω)2), which, combined with (7-13), furnishes that

2

X

`=0

ke−γtt`ukL

p(R,Hq4−2`(Ω))+

1

X

`=0

ke−γtθkL

p(R,Hq2−2`(Ω))≤CIT (7-14) with

IT =ke−γt(f1, f2)kLp((0,T),Lq(Ω))+kGkLp(R,H2q(Ω)×Hq1(Ω)2)+k∂tGkL

p(R,Lq(Ω)×W−1q (Ω)2).

Especially, for anyt <0, we have eγ|t|

2

X

`=0

k∂t`ukL

p((−∞,t),Hq4−2`(Ω))+

1

X

`=0

kθkL

p((−∞,t),Hq2−2`(Ω))

2

X

`=0

ke−γtt`ukL

p(R,Hq4−2`(Ω))+

1

X

`=0

ke−γtθkL

p(R,Hq2−2`(Ω))≤CIT

for anyγ≥λ0, so that lettingγ→ ∞, we have eγ|t|

2

X

`=0

k∂t`ukL

p((−∞,t),Hq4−2`(Ω))+

1

X

`=0

kθkL

p((−∞,t),Hq2−2`(Ω))= 0 for anyt <0, which implies that (u, θ) = 0 fort <0.

Summing up, we have proved thatU = (u, ∂tu, θ)> satisifes the equations:

Ut−A(D)U =F in Ω×(0, T), B(D)U =G on Γ×(0, T), U|t=0= 0 in Ω and the estimate:

2

X

`=0

ke−γtt`ukL

p((0,T),Hq4−2`(Ω))+

1

X

`=0

ke−γtθkL

p((0,T),H2−2`q (Ω))≤CIT.

The uniqueness of the solutions follwos from the existence of solutions of the dual problem, which completes the proof of Theorem 1.3.

References

[1] J. Bourgain,Vector-valued singular integrals and theH1-BMO duality, In: Probability Theory and Harmonic Analysis, D. Borkholder (ed.) Marcel Dekker, New York (1986), 1–19.

[2] I. Chueshov and I. Lasiecka,Von Karman evolution equations, Springer Monographs in Mathematics, Springer, New York, 2010, Well-posedness and long-time dynamics.

[3] R. Denk, M. Hieber, and J. Pr¨uss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166(788), 2003.

[4] R. Denk and R. Racke, Lp-resolvent estimates and time decay for generalized thermoelastic plate equations, Electron. J. Differential Equations, No. 48, 16pp. (electronic), 2006.

[5] R. Denk, R. Racke, and Y. Shibata,Lp theory for the linear thermoelastic plate equations in bounded and exterior domains, Adv. Differential Equations14(7–8) (2009), 685–715.

[6] R. Denk, R. Racke, and Y. Shibata, Local energy decay estimate of soluions to the thermoelastic plate equations in two- and three-dimensional exterior domains, Z. Anal. Anwend., 29(1) (2010), 21–62.

[7] R. Denk and R. Schnaubelt,A structurally damped plate equations with Dirichlet-Neumann boundary conditions, J. Differential Equations,259(4) (2015), 1323–1353.

[8] R. Denk and J. Seiler,On the maximalLp-regularity of parabolic maixed-order system, J. Evol. Equ., 11(2) (2011), 371–404.

[9] Y. Enomoto and Y. Shibata, On the R-sectoriality and the initial boundary value problem for the viscous compressible fluid flow, Funkcial. Ekvac.,56(3) (2013), 441–505.

[10] Y. Enomoto, L. von Below, and Y. Shibata, On some free boundary problem for a compressible barotropic viscous fluid flow, Ann. Univ. Ferrara Sez. VII Sci. Mat.,60(1) (2014), 55-89.

[11] M. Girardi and L. Weis, Criteria forR-boundedness of operator families, In Evolution equations, volume 234 of Lecture Notes in Pure and Appl. Math., pages 203–221. Dekker, New York, 2003.

[12] J. U. Kim,On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal.,23(4) (1992), 889–899.

[13] P. C. Kunstmann and L. Weis,MaximalLp-regularity for parabolic equations, Fourier multiplier the-orems andH-functional calculus, In Functional analytic methods for evolution equations, volume 1855 of Lecture Notes in Math., pages 65-311, Springer, Berlin, 2004.

[14] J. E. Lagnese,Boundary stabilization of thin plates, volume 10 of SIAM Studies in Applied Mathe-matics, Society for Industrial and Applied Mathematcs (SIAM), Philadelphia, PA, 1989

[15] I. Lasiecka and R. Triggiani,Analyticity, and lack thereof, of thermo-elastic semigroups, In Control and partial differential equations) Marseille-Luminy, 1997), volume 4 of ESAIM Proc., pages 199–222 (electropnic), Soc. Math. Appl. Indust., Paris,1998.

[16] I. Lasiecka and R. Triggiani,Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C., Abstr. Appl. Anal.,3(1-2) (1998), 153–169.

[17] I. Lasiecka and M. Wilke, Maximal regularity and global existence of soluiotns to a quasilinear thermoelastic plate system, Discrete Contin. Dyn. Syst.,33(11-12) (2013), 5189–5202.

[18] K. Liu and Z. Liu,Exponential sstability and analyticity of abstract linear thermoelastic systems, Z.

Angew. Math. Phys.,48(6) (1997), 885–904.

[19] Z. Liu and J. Yong,Qualitative properties of certain C0 semigroups arising in elastic systems with varioius dampings, Adv. Differential Equations,3(5) (1998), 643–686.

[20] Z.-Y. Liu and M. Renardy,A note on the equations of a thermoelastic plate, Appl. Math. Lett.,8(3) (1995), 1–6.

[21] Z. Liu and S. Zheng,Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quart. Appl. Math.,55(3) (1997), 551–564.

[22] J. E. Munoz Rivera and R. Racke,Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26(6) (1995), 1547–1563.

[23] Y. Naito,On theLp-Lq maximal regularity for the linear thermoelastic plate equation in a bounded domain, Math. Methods Appl. Sci.,32(13) (2009), 1609–1637.

[24] Y. Naito and Y. Shibata,On theLpanalytic semigroup associated with the linear thermoelastic plate equations in the half-space, J. Math. Soc. Japan,61(4) (2009), 971–1011.

[25] K. Schade and Y. Shibata, On strong dynamics of compressible nematic liquid crystals, SIAM J.

Math. Anal.47 (5) (2015), 3963–3992.

[26] Y. Shibata,On the exponential decay of the energy of a linear thermoelastic plate, Mat. Apl. Com-put.,13(2) (1994), 81–102.

[27] Y. Shibata,On the R-boundedness of solution oeprators for the Stokes equations with free boundary condition, Differential Integral Equations,27(3-4) (2014), 313–368.

[28] Y. Shibata, On some free boundary problem of the Navier-Stokes equations in the maximalLp-Lq

regularity class, J. Differential Equations,258(12) (2015), 4127–4155.

[29] Y. Shibata and S. Shimizu,On theLp-Lq maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, J. Reine Angew. Math.615(2008), 157–209.

[30] Y. Shibata and S. Shimizu, On the maxial Lp-Lq regularity of the Stokes problem with first order boundary condition; model problems, J. Math. Soc. Japan,64(2) (2012), 561–626.

[31] L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Math. Ann., 319(4) (2001), 735–785.

ÄHNLICHE DOKUMENTE