• Keine Ergebnisse gefunden

10.4 Alkyne protecting groups

10.4.2 Performance of the polar protecting groups

180 14 H, CH(CH3)2), 0.93 (d, 3J = 7.4 Hz, 3 H, ArCH2CHCH3). 13C NMR (126 MHz, CDCl3): δ = 157.7 (CArO), 134.4 (CArCH2), 129.6 (CArH meta to O), 113.5 (CArH ortho to O), 95.2 (SiC≡CH), 86.0 (SiC≡CH), 55.2 (OCH3), 37.4 (ArCH2), 19.2, 18.56, 18.51, 18.49, 14.0, and 11.0 (SiCHCH3). The 1H NMR spectrum shows additionally signals of low intensity with δ = 7.15 (half of an AA'XX' spin system), 2.37 (s), 1.31 (d).

10.4 Alkyne protecting groups

181 Alkynyl-aryl coupling of ethyne 68b with 1,4-dihexyl-2,5-diiodobenzene. See the general procedure for the alkynyl-aryl coupling. 68b (301 mg, 1.38 mmol), diiodobenzene 65 (343 mg, 0.689 mmol), THF (3 mL), piperidine (1 mL), Pd(PPh3)2Cl2 (13.8 mg, 0.020 mmol), CuI (13.1 mg, 0.069 mmol), reaction time:

14.5 h. Column chromatography (n-pentane/CH2Cl2 5:1) gave 65 (Rf = 0.67; 2 mg, 1%), 83b (Rf = 0.36; 14 mg, 5%), 84b (Rf = 0.26; 1 mg, <1%) as colorless solids, and 82b (Rf = 0.13; 345 mg, 93%) as slightly yellow oil. Analytical data of the monocoupling product 83b: 1H NMR (250 MHz, CDCl3): δ = 7.62 (s, 1 H, ArH ortho to I), 7.23 (s, 1 H, ArH meta to I), 7.13 and 6.81 (AA’XX’ spin system, 2 H each, ArH meta and ortho to O, respectively), 3.77 (s, 3 H, OCH3), 2.71 (half of an AA'XX' spin system, 2 H, SiCH2CH2), 2.66 and 2.61 (t-like, 2 H each, ArCH2 of hexyl), 1.60 (m, 4 H, ArCH2CH2 of hexyl), 1.33 (m, 12 H, CH2 of hexyl), 1.02 (half of an AA'XX' spin system, 2 H, SiCH2), 0.88 (m, 6 H, CH2CH3), 0.22 (s, 6 H, SiCH3). Analytical data of the Glaser-coupling product 84b: 1H NMR (250 MHz, CDCl3): δ = 7.12 and 6.81 (AA’XX’ spin system, 4 H each, ArH meta and ortho to O, respectively), 3.78 (s, 6 H, OCH3), 2.65 (half of an AA'XX' spin system, 4 H, SiCH2CH2), 0.94 (half of an AA'XX' spin system, 4 H, SiCH2), 0.13 (s, 12 H, SiCH3). The NMR spectrum shows additionally signals of THF, CH2Cl2, and signals of low intensity with δ = 7.70 (s), 1.36 (s), 1.25 (m), 0.17 (s). Analytical data of the dicoupling product 82b: 1H NMR (250 MHz, CD2Cl2): δ = 7.26 (s, 2 H, ArH ortho to hexyl), 7.15 and 6.81 (AA’XX’ spin system, 4 H each, ArH meta and ortho to O, respectively), 3.76 (s, 6 H, OCH3), 2.72 (m, 8 H, ArCH2), 1.62 (m, 4 H, ArCH2CH2 of hexyl), 1.33 (m, 12 H, CH2 of hexyl), 1.03 (half of an AA'XX' spin system, 4 H, SiCH2), 0.87 (t-like, 6 H, CH2CH3), 0.23 (s, 6 H, SiCH3). 13C NMR (63 MHz, CD2Cl2): δ = 158.2 (CArO), 143.2 (CArHex), 137.3 (CArC≡C ortho to hexyl), 132.9 (CArH ortho to hexyl), 129.1 (CArH meta to O), 123.1 (CAr para to O), 114.0 (CArH ortho to O), 104.9 (SiC≡C), 98.4 (SiC≡C), 55.6 (OCH3), 34.5, 32.2, 31.1, 29.7, 29.4, and 23.1(CH2), 18.8 (SiCH2), 14.3 (CH2CH3), -1.6 (SiCH3).

182 Alkynyl-aryl coupling of ethyne 68c with 1,4-dihexyl-2,5-diiodobenzene. See the general procedure for the alkynyl-aryl coupling. 68c (302 mg, 0.992 mmol), diiodobenzene 65 (248 mg, 0.498 mmol), THF (3 mL), piperidine (1 mL), Pd(PPh3)2Cl2 (8.6 mg, 0.012 mmol), CuI (4.1 mg, 0.022 mmol), reaction time: 16 h.

Column chromatography (n-pentane/CH2Cl2 5:1) gave 65 (Rf = 0.77; 1 mg, <1%), 83c (Rf = 0.36; 3 mg, 1%) as colorless solids, and 82c (Rf = 0.15; 270 mg, 77%) as colorless oil. Analytical data of the monocoupling product 83c: 1H NMR (250 MHz, CDCl3): δ = 7.63 (s, 1 H, ArH ortho to I), 7.23 (s, 1 H, ArH meta to I), 7.14 and 6.82 (AA’XX’ spin system, 2 H each, ArH meta and ortho to O, respectively), 3.78 (s, 3 H, OCH3), 2.81 (half of an AA'XX' spin system, 2 H, SiCH2CH2), 2.71 and 2.62 (t-like, 2 H each, ArCH2 of hexyl), 1.60 (m, 4 H, ArCH2CH2 of hexyl), 1.33 (m, 12 H, CH2 of hexyl), 1.12 (s, 18 H, C(CH3)3), 1.01 (half of an AA'XX' spin system, 2 H, SiCH2), 0.97 (m, 6 H, CH2CH3). Analytical data of the dicoupling product 82c: 1H NMR (250 MHz, CD2Cl2): δ = 7.30 (s, 2 H, ArH ortho to hexyl), 7.15 and 6.81 (AA’XX’ spin system, 4 H each, ArH meta and ortho to O, respectively), 3.76 (s, 6 H, OCH3), 2.83 (half of an AA'XX' spin system, 4 H, SiCH2CH2), 2.77 (t-like, 4 H, ArCH2 of hexyl), 1.67 (m, 4 H, ArCH2CH2 of hexyl), 1.31 (m, 12 H, CH2 of hexyl), 1.14 (s, 36 H, C(CH3)3), 1.03 (half of an AA'XX' spin system, 4 H, SiCH2), 0.86 (m, 6 H, CH2CH3). 13C NMR (63 MHz, CD2Cl2): δ = 158.1 (CArO), 143.0 (CArHex), 138.3 (CArC≡C ortho to hexyl), 133.3 (CArH ortho to hexyl), 128.9 (CArH meta to O), 123.3 (CAr para to O), 114.1 (CArH ortho to O), 106.6 (SiC≡C), 95.7 (SiC≡C), 55.6 (OCH3), 34.8, 32.3, 31.8, 31.6, and 29.8 (CH2), 28.7 (C(CH3)3), 23.1(CH2), 20.1 (C(CH3)3), 14.2 (CH2CH3), 13.1 (SiCH2).

Alkynyl-aryl coupling of ethyne 68d with 1,4-dihexyl-2,5-diiodobenzene. See the general procedure for the alkynyl-aryl coupling. 68d (286 mg, 0.991 mmol), diiodobenzene 65 (258 mg, 0.518 mmol), THF (3 mL), piperidine (1 mL), Pd(PPh3)2Cl2 (9.6 mg, 0.014 mmol), CuI (11.2 mg, 0.059 mmol), reaction time: 15 h.

Column chromatography (n-pentane/CH2Cl2 5:1) gave 65 (Rf = 0.70; 1 mg, <1%), 83d (Rf = 0.36; 7 mg, 2%) as colorless solids, and 82d (Rf = 0.12; 259 mg, 77%) as colorless oil. Analytical data of the monocoupling product 83d: 1H NMR (250 MHz, CDCl3): δ = 7.63 (s, 1 H, ArH ortho to I), 7.24 (s, 1 H, ArH meta to I), 7.08 and 6.82 (AA’XX’ spin system, 2 H each, ArH meta and ortho to O, respectively), 3.78 (s, 3 H,

10.4 Alkyne protecting groups

183 OCH3), 3.07 (dd, 2J = 13.8 Hz, 3J = 2.8 Hz, 1 H, ArCH2CHSi), 2.70 and 2.62 (t-like, 2 H each, ArCH2 of hexyl), 2.33 (dd, 2J = 13.7 Hz, 3J = 12.2 Hz, 1 H, ArCH2CHSi), 1.56 (m, 4 H, ArCH2CH2 of hexyl), 1.31 (m, 13 H, CH2 of hexyl and ArCH2CH), 1.18 (m, 14 H, SiCH(CH2)2), 0.97 (d, 3J = 7.3 Hz, 3 H, ArCH2CHCH3), 0.87 (m, 6 H, CH2CH3). The NMR spectrum shows additionally signals of low intensity with δ = 7.19 (s), 7.16 (half of an AA'XX' spin system), 3.75 (s). Analytical data of the dicoupling product 82d: 1H NMR (250 MHz, CD2Cl2): δ = 7.29 (s, 2 H, ArH ortho to hexyl), 7.10 and 6.81 (AA’XX’ spin system, 4 H each, ArH meta and ortho to O, respectively), 3.77 (s, 6 H, OCH3), 3.09 (dd, 2J = 13.8 Hz, 3J = 2.8 Hz, 2 H, ArCH2CHSi), 2.75 (t-like, 4 H, ArCH2 of hexyl), 2.36 (dd, 2J = 13.7 Hz, 3J = 12.2 Hz, 2 H, ArCH2CHSi), 1.63 (m, 4 H, ArCH2CH2 of hexyl), 1.30 (m, 14 H, CH2 of hexyl and ArCH2CH), 1.20 (m, 28 H, SiCH(CH2)2), 0.98 (d, 3J = 7.3 Hz, 6 H, ArCH2CHCH3), 0.86 (m, 6 H, CH2CH3). 13C NMR (126 MHz, CD2Cl2): δ = 158.1 (CArO), 143.0 (CArHex), 134.9 (CArC≡C ortho to hexyl), 133.2 (CArH ortho to hexyl), 130.0 (CArH meta to O), 123.1 (CAr para to O), 113.8 (CArH ortho to O), 106.4 (SiC≡C), 95.4 (SiC≡C), 55.5 (OCH3), 37.9 (ArCH2CHSi), 34.7, 32.2, 31.4, 29.8, and 23.0 (CH2 of hexyl), 19.9, 18.96, 18.90, 18.89, 14.3, 14.2, 11.8, and 11.7 (SiCHCH3 and CH2CH3). The NMR spectrum shows additionally signals of low intensity with δ = 7.19 (s), 7.16 (half of an AA'XX' spin system), 3.75 (s).

Alkynyl-aryl coupling of ethyne 68e with 1,4-dihexyl-2,5-diiodobenzene. See the general procedure for the alkynyl-aryl coupling. 68e (0.38 mL, 1.69 mmol), diiodobenzene 65 (400 mg, 0.803 mmol), THF (3 mL), piperidine (1 mL), Pd(PPh3)2Cl2 (8 mg, 0.011 mmol), CuI (19 mg, 0.10 mmol), reaction time: 16 h.

Column chromatography (n-pentane) gave a mixture (Rf = 0.68; 350 mg) of 82e (291 mg, 78%) and 84e (59 mg, 10%) and a mixture (Rf = 0.42; 35 mg) of 83e (12 mg, 4%) and 82e (23 mg, 6%) as colorless oils. Analytical data of the monocoupling product 83e: 1H NMR (250 MHz, CDCl3): δ = 7.28 and 7.24 (s, 1 H each, ArH), 2.74 (m, 4 H, ArCH2), 1.60 (m, 4 H, ArCH2CH2), 1.28 (m, 12 H, CH2), 1.13 (m, 21 H, SiCH(CH3)2), 0.87 (m, 6 H, CH2CH3). The NMR spectrum shows additionally signals of the dicoupling product 82e and δ = 7.29 (s). Analytical data of the dicoupling product 82e: 1H NMR (250 MHz, CD2Cl2): δ = 7.26 (s, 2 H, ArH), 2.73 (t-like, 4 H, ArCH2), 1.61 (m, 4 H, ArCH2CH2), 1.32 (m, 12 H, CH2), 1.15 (s, 42 H, SiCH(CH3)2),

184 0.88 (t-like, 6 H, CH3 CH2CH3). 13C NMR (63 MHz, CD2Cl2): δ = 143.3 (CArHex), 133.2 (CArH), 123.2 (CArC≡C), 106.0 (SiC≡C), 95.7 (SiC≡C), 34.7, 32.2, 31.4, 29.7, 29.8, and 23.1(CH2), 18.9 (CH(CH3)2), 14.2 (CH2CH3), 11.8 (CH(CH3)2). The 1H NMR spectrum shows an additionally signal with δ = 1.10 (s) which belongs to the Glaser-coupling product 84e.

11 Literaturverzeichnis

[1] G. R. Desiraju, Angew. Chem. 1995, 107, 2541-2558; Angew. Chem. Int. Ed.

1995, 34, 2311-2327.

[2] A. W. Hosseini, Acc. Chem. Res. 2005, 38, 313-323.

[3] P. J. Langer, J. Hulliger, Chem. Soc. Rev. 1999, 28, 279-291.

[4] A. Nangia, Curr. Opin. Solid St. M. 2001, 5, 115-122.

[5] S.-L. Lee, N.-T. Lin, W.-C. Liao, C.-H. Chen, H.-C. Yang, T.-Y. Luh, Chem.

Eur. J. 2009, 15, 11594-11600.

[6] D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 2007, 36, 770-818.

[7] M. Jansen, J. C. Schön, Angew. Chem. 2006, 118, 3484-3490; Angew. Chem.

Int. Ed. 2006, 45, 3406-3412.

[8] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. 2004, 116, 2388-2430, Angew. Chem. Int. Ed. 2004, 43, 2334-2378.

[9] W. Lin, W. J. Rieter, K. M. L. Taylor, Angew. Chem. 2009, 121, 660-668;

Angew. Chem. Int. Ed. 2009, 48, 650-658.

[10] J. J. Perry IV, J. A. Perman. M. J. Zaworotko, Chem. Soc. Rev. 2009, 38, 1400-1417.

[11] A. K. Cheetham, C. N. R. Rao, R. K. Feller, Chem. Commun. 2006, 4780-4795.

[12] M. Eddaoudi, J. Kim, N. L. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M.

Yaghi, Science 2002, 295, 469-472.

185 [13] D. J. Tranchemontage, J. L. Mendoza-Cortés, M. O'Keeffe, O. M. Yaghi,

Chem. Soc. Rev. 2009, 38, 1257-1283.

[14] M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe, O. M.

Yaghi, Acc. Chem. Res. 2001, 34, 319-330.

[15] D. Zhao, D. J. Timmons, D. Yuan, H.-C. Zhou, Acc. Chem. Res. 2011, 44, 123-133.

[16] K. Biradha, A. Ramanan, J. J. Vittal, Cryst. Growth Des. 2009, 9, 2969-2970.

[17] N. Klein, I. Senkovska, K. Gedrich, U. Stoeck, A. Henschel, U. Mueller, S.

Kaskel, Angew. Chem. 2009, 121, 10139-10142; Angew. Chem. Int. Ed. 2009, 48, 9954-9957.

[18] H. Furukawa, N. Ko, Y. B. Go, N. Aranti, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424-428.

[19] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710-712.

[20] M. E. Davis, Acc. Chem. Res. 1993, 26, 111-115.

[21] J. Jiang, J. Yu, A. Corma, Angew. Chem. 2010, 122, 3186-3212;

Angew. Chem. Int. Ed. 2010, 49, 3120-3145.

[22] J. Laine, S. Yunes, Carbon 1992, 30, 601-604.

[23] C. Pelekani, V. L. Snoeyink, Water Res. 1999, 33, 1209-1219.

[24] C. Janiak, J. K. Vieth, New J. Chem. 2010, 34, 2366–2388.

[25] R. J. Kuppler, D. J. Timmons, Q.-R. Fang, J.-R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, H.-C. Zhou, Coord. Chem. Rev. 2009, 253, 3042-3066.

[26] P. S. Bárcia, D. Guimarães, P. A. P. Mendes, J. A. C. Silva, V. Guillerm, H.

Chevreau, C. Serre, A. E. Rodrigues, Microporous Mesoporous Mater. 2011, 139, 67-73.

[27] J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477-1504.

[28] S. Uchida, R. Eguchi, N. Mizuno, Angew. Chem. 2010, 122, 10126-10130;

Angew. Chem. Int. Ed. 2010, 49, 9930-9934.

[29] T.-F. Liu, J. Lü, C. Tian, M. Cao, Z. Lin, R. Cao, Inorg. Chem. 2011, 50, 2264-2271.

[30] A. Lan, K. Li, H. Wu, D. H. Olson, T. J. Emge, W. Ki, M. Ho, Angew. Chem.

2009, 121, 2370-2374. Angew. Chem. Int. Ed. 2009, 48, 2334-2338.

186 [31] L.-G. Qiu, Z.-Q. Li, Y. Wu, W. Wang, T. Xu, X. Jiang, Chem. Comm. 2008, 31,

3642-3644.

[32] B. Chen, L. Wang, F. Zapata, G. Qian, E. B. Lobkovsky, J. Am. Chem. Soc.

2008, 130, 6718-6719.

[33] M. D. Allendorf, R. J. T. Houk, L. Andruszkiewicz, A. A. Talin, J. Pikarsky, A.

Choudhury, K. A. Gall, P. J. Hesketh, J. Am. Chem. Soc. 2008, 130, 14404-14405.

[34] D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. 2009, 121, 7638-7649;

Angew. Chem. Int. Ed. 2009, 48, 7502-7513.

[35] A. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606-4655.

[36] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450-1459.

[37] L. Ma, J. M. Falkowski, C. Abney, W. Lin, Nature Chem. 2010, 2, 838-846.

[38] P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey,

Angew. Chem. 2006, 118, 6120-6124; Angew. Chem. Int. Ed. 2006, 45, 5974-5978.

[39] P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, J. Am. Chem. Soc. 2008, 130, 6774-6780.

[40] A. C. McKinlay, R. E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur, C.

Serre, Angew. Chem. 2010, 122, 6400-6406; Angew. Chem. Int. Ed. 2010, 49, 6260-6266.

[41] S. Huh, S. Jung, Y. Kim, S.-J. Kim, S. Park, Dalton Trans. 2010, 39, 1261-1265.

[42] Y. Fuma, M. Ebihara, S. Kutsumizu, T. Kawamura, J. Am. Chem. Soc. 2004, 126, 12238-12239.

[43] J. N. Behera, D. M. D’Alessandro, N. Soheilnia, J. R. Long, Chem. Mater.

2009, 21, 1922-1926.

[44] Y. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, Chem. Mater. 2010, 22, 4120-4122.

[45] N. S. Hush, Ann. N.Y. Acad. Sci. 2003, 1006, 1-20.

[46] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. 1998, 110, 416-443;

Angew. Chem. Int. Ed. 1998, 37, 402-428.

187 [47] L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Adv. Mat. 2011,

23, 926-952.

[48] S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, W. Huang, Adv. Mat. 2010, 22, 5227-5239.

[49] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789-1791.

[50] H. Hoppe, N. S. Sariciftci, J. Mat. Res. 2004, 19, 1924-1945.

[51] F. Hide, M. A. Díaz-García, B. J. Schwartz A. J. Heeger, Acc. Chem. Res.

1997, 30, 430-436.

[52] I. D. W. Samuel, G. A. Turnbull, Chem. Rev. 2007, 107, 1272-1295.

[53] W. H. Lee, J. H. Cho, K. Cho, J. Mater. Chem. 2010, 20, 2549-2561.

[54] K. H. Kim, D. S. Chung, C. E. Park, D. H. Choi, J. Polym. Sci., Part A: Polym.

Chem. 2011, 49, 55-64.

[55] W. J. Feast, R. H. Friend, J. Mat. Sci. 1990, 25, 3796-3805.

[56] A. L. Kanibolotskya, I. F. Perepichka, P. J. Skabara, Chem. Soc. Rev. 2010, 39, 2695-2728.

[57] C. Gomes Silva, A. Corma, H. García, J. Mater. Chem. 2010, 20, 3141–3156.

[58] A. J. Blake, N. R. Champness, T. L. Easun, D. R. Allan, H. Nowell, M. W.

George, J. Jia, X.-Z. Sun, Nature Chem. 2010, 2, 688-694.

[59] M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev.

2009, 38, 1330-1352.

[60] B. O'Regan, M. Grätzel, Nature 1991, 353, 737-740.

[61] M. Grätzel, Nature 2001, 414, 338-344.

[62] T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswyk, J. T. Hupp, Energy Environ. Sci. 2008, 1, 66–78.

[63] J. Preat, D. Jacquemin, E. A. Perpète, Energy Environ. Sci. 2010, 3, 891-904.

[64] A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem. 2009, 121, 2510-2536;

Angew. Chem. Int. Ed. 2009, 48, 2474-2499.

[65] Y. Ooyama, Y. Harima, Eur. J. Org. Chem. 2009, 18, 2903-2934.

[66] K. Schwarzburg, R. Ernstorfer, S. Felber, F. Willig, Coord. Chem. Rev. 2004, 248, 1259-1270.

[67] N. Robertson, Angew. Chem. 2006, 118, 2398-2405; Angew. Chem. Int. Ed.

2006, 45, 2338-2345.

188

[68] P. V. Kamat, M. Haria, S. Hotchandani, J. Phys. Chem. B 2004, 108, 5166-5170.

[69] T. A. Heimer E. J. Heilweil, C. A. Bignozzi, G. J. Meyer, J. Phys. Chem. A 2000, 104, 4256-4262.

[70] J. Bisquert, D. Cahen, G. Hodes, S. Rühle, A. Zaban, J. Phys. Chem. B 2004, 108, 8106-8118.

[71] A. Furube, R. Katoh, T. Yoshihara, K. Hara, S. Murata, H. Arakawa, M.

Tachiya, J. Phys. Chem. B 2004, 108, 12583-12592.

[72] R. Katoh, M. Kasuya, A. Furube, N. Fuke, N. Koide, L. Han, Sol. Energy Mat.

Sol. Cells 2009, 93, 698–703.

[73] B. A. Gregg, Coord. Chem. Rev. 2004, 248, 1215-1224.

[74] A. J. Frank, N. Kopidakis, J. van de Lagemaat, Coord. Chem. Rev. 2004, 248, 1165-1179.

[75] J. Nelson, R. E. Chandler, Coord. Chem. Rev. 2004, 248, 1181-1194.

[76] J. R. Durrant, S. A. Haque, E. Palomares, Coord. Chem. Rev. 2004, 248, 1247-1257.

[77] R. Katoh, A. Furube, A. V. Barzykin, H. Arakawa, M. Tachiya, Coord. Chem.

Rev. 2004, 248, 1195-1213.

[78] C. Scherb, A Schödel, T. Bein, Angew. Chem. 2008, 120, 5861-5863;

Angew. Chem. Int. Ed. 2008, 47, 5777-5779.

[79] F. Hinterholzinger, C. Scherb, T. Ahnfeldt, N. Stock, T. Bein, Phys. Chem.

Chem. Phys. 2010, 12, 4515-4520.

[80] Y. F. Song, L. Cronin, Angew. Chem. 2008, 120, 4713-4715; Angew. Chem.

Int. Ed. 2008, 47, 4635-4637.

[81] Z. Wang, S. M. Cohen, Chem. Soc. Rev. 2009, 38, 1315-1329.

[82] S. M. Cohen, Chem. Sci. 2010, 1, 32-36.

[83] H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276-279.

[84] N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe, O. M. Yaghi, J. Am.

Chem. Soc. 2004, 127, 1504-1518.

[85] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P.

Lillerud, J. Am. Chem. Soc. 2008, 130, 13850-13851.

[86] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 2005, 98, 041301.

189 [87] M. Fuentes-Cabrera, D. M. Nicholson, B. G. Sumpter, M. Widom, J. Chem.

Phys. 2005, 123, 124713.

[88] A. Kuc, A. Enyashin, G. Seifert, J. Phys. Chem. B 2007, 111, 8179-8186.

[89] C. G. Silva, A. Corma, H. Garciá, J. Mat. Chem. 2010, 20, 3141-3156.

[90] F. X. Llabrés i Xamena, A. Corma, H. Garciá, J. Phys. Chem. C 2007, 111, 80-85.

[91] M. Alvaro, E. Carbonell, B. Ferrer, F. X. Llabrés i Xamena, H. Garciá, Chem.

Eur. J. 2007, 13, 5106-5112.

[92] S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K.-P.

Lillerud, M. Bjorgen, A. Zecchina, Chem. Commun. 2004, 2300-2301.

[93] J. Gascon, M. D. Hernández-Alonso, A. R. Almeida, G. P. M. van Klink, F.

Kapteijn, G. Mul, ChemSusChem 2008, 1, 981-983.

[94] T. Tachikawa, J. R. Choi, M. Fujitsuka, T. Majima, J. Phys. Chem. C 2008, 112, 14090-14101.

[95] P. Mahata, G. Madras, S. Natarajan, J. Phys. Chem. B 2006, 110, 13759-13768.

[96] J. Panke, M. Wark, Microporous Mesoporous Mater. 2011, zur Veröffentlichung eingereicht.

[97] P. L. Feng, J. J. Perry IV, S. Nikodemski, B. W. Jacobs, S. T. Meek, M. D.

Allendorf, J. Am. Chem. Soc. 2010, 132, 15487-15489.

[98] B. Civalleri, F. Napoli, Y. Noël, C. Roetti, R. Dovesi, CrystEngComm 2006, 8, 364-371.

[99] S. S. Kaye, A. Dailly, O. M. Yaghi, J. R. Long, J. Am. Chem. Soc. 2007, 129, 14176-14177.

[100] K. Schöck, F. Schröder, M. Heyden, R. A. Fischer, M. Havenith, Phys. Chem.

Chem. Phys. 2008, 10, 4732-4739.

[101] L. Valenzano ,B. Civalleri, S. Chavan, S. Bordiga, M. H. Nilsen, S. Jakobsen, K. P. Lillerud, C. Lamberti, Chem. Mater. 2011, 23, 1700–1718.

[102] Y. Xu, M. A. A. Schoonen, Am. Mineral. 2000, 85, 543-556.

[103] C. Karunakaran, S. Senthilvelan, J. Mol. Catal. A Chem. 2005, 233, 1-8.

[104] C. Gomes Silva, I. Luz, F. X. Llabrés i Xamena, A. Corma, H. Garciá, Chem.

Eur. J. 2010, 16, 11133-11138.

[105] J. Panke, M. Wark, unveröffentlichte Ergebnisse.

190

[106] D. Zhao, D. Yuan, D. Sun, H.-C. Zhou, J. Am. Chem. Soc. 2009, 131, 9186-9188.

[107] A. Schaate, P. Behrens, unveröffentlichte Ergebnisse.

[108] S.-R. Batten, R. Robson, Angew. Chem. 1998, 110, 1558-1595;

Angew. Chem. Int. Ed. 1998, 37, 1460-1494.

[109] O. M. Yaghi, Nature Mater. 2007, 6, 92-93.

[110] J. L. C. Rowsell, O. M. Yaghi, Microporous Mesoporous Mater. 2004, 73, 3-14.

[111] S. Hausdorf, J. Wagler, R. Mossig, F. O. R. L. Mertens, J. Phys. Chem. A.

2008, 112, 7567-7576.

[112] T. Loiseau, H. Muguerra, G. Férey, M. Haouas, F. Taulelle, J. Solid State Chem. 2005, 178, 621-628.

[113] R. Grünker, I. Senkovska, R. Biedermann, N. Klein, A. Klausch, I. A. Baburin, U. Mueller, S. Kaskel, Eur. J. Inorg. Chem. 2010, 24, 3835-3841.

[114] O. K. Farha, J. T. Hupp, Acc. Chem. Res. 2010, 43, 1166-1175.

[115] J. Rabone, Y.-F. Yue, S. Y. Chong, K. C. Stylianou, J. Basca, D. Bradshaw, G.

R. Darling, N. G. Berry, Y. Z. Khimyak, A. Y. Ganin, P. Wiper, J. B. Claridge, M. J. Rosseinsky, Science 2010, 329, 1053-1057.

[116] G. Jeschke, M. Sajid, M. Schulte, N. Ramezanian, A. Volkov, H. Zimmermann, A. Godt, J. Am. Chem. Soc. 2010, 132, 10107-10117.

[117] A. Godt, M. Schulte, H. Zimmermann, G. Jeschke, Angew. Chem. 2006, 118, 7722-7726; Angew. Chem. Int. Ed. 2006, 45, 7560-7564.

[118] P. Bäuerle, T. Fischer, B. Bidlingmeier, A. Stabel, J. P. Rabe, Angew. Chem.

1995, 107, 335-339; Angew. Chem. Int. Ed. 1995, 34, 303-307.

[119] J. A. E. H. van Haare, L. Groenendaal, E. E. Havinga, R. A. J. Jansen, E. W.

Meijer, Angew. Chem. 1996, 108, 696-699; Angew. Chem. Int. Ed. 1996, 35, 638-640.

[120] J. Jo, C. Chi, S. Höger, G. Wegner, D. Y. Yoon, Chem. Eur. J. 2004, 10, 2681-2688.

[121] F. Babudri, G. M. Farinola, L. C. Lopez, M. G. Martinelli, F. Naso, J. Org.

Chem. 2001, 66, 3878-3885.

[122] J. M. Tour, Adv. Mater. 1994, 6, 190-198.

[123] T. M. Swager, C. J. Gil, M. S. Wrighton, J. Phys. Chem. 1995, 99, 4886-4893.

[124] C. Weder, M. S. Wrighton, Macromolecules 1996, 29, 5157-5165.

191 [125] J.-L. Brédas, D. Beljonne, V. Coropceanu, J Cornil, Chem. Rev. 2004, 104,

4971-5003.

[126] D. K. James, J. M. Tour, Top. Curr. Chem. 2005, 257, 33-62.

[127] E. A. Weiss, M. R. Wasielewski, M. A. Ratner, Top. Curr. Chem. 2005, 257, 103-133.

[128] E. A. Weiss, M. J. Ahrens, L. E. Sinks, A. V. Gusev, M. A. Ratner, M. R.

Wasielewski, J. Am. Chem. Soc. 2004, 126, 5577-5584.

[129] R. L. McCreery, Chem. Mater. 2004, 16, 4477-4496.

[130] C. Torborg, M. Beller, Adv. Synth. & Catal. 2009, 351, 3027–3043.

[131] G. P. McGlacken, I. J. S. Fairlamb, Eur. J. Org. Chem. 2009, 24, 4011-4029.

[132] J. M. Tour, Chem. Rev. 1996, 96, 537-553.

[133] U. Ziener, Adelheid Godt, J. Org. Chem. 1997, 62, 6137-6143.

[134] H. Kukula, S. Veit, A. Godt, Eur. J. Org. Chem. 1999, 277-286.

[135] J. M. Tour, A. M. Rawlett, M. Kozaki, Y. Yao, R. C. Jagessar, S. M. Dirk, D. W.

Price, M. A. Reed, C.-W. Zhou, J. Chen, W. Wang, I. Campbell, Chem. Eur. J.

2001, 7, 5118-5134.

[136] J. R. Long, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1213-1214.

[137] E. Biemmi, S. Christian, N. Stock, T. Bein, Microporous Mesoporous Mater.

2009, 117, 111-117.

[138] B. Tram Nguyen Pham, L. M. Lund, D. Song, Inorg. Chem. 2009, 47, 6329-6335.

[139] T. Gadzikwa, B.-S. Zeng, J. T. Hupp, S. T. Nguyen, Chem. Commun. 2008, 3672-3674.

[140] S. Hausdorf, W. Seichter, E. Weber, F. O. R. L. Mertens, Dalton Trans. 2009, 1107-1113.

[141] Y. Hu, S. Xiang, W. Zhang, Z. Zhang, L. Wang, J. Bai, B. Chen, Chem.

Commun. 2009, 7551-7553.

[142] D. Sun, S. Ma, J. M. Simmons, J.-R. Li, D. Yuan, H.-C. Zhou, Chem. Commun.

2010, 46, 1329-1331.

[143] K. M. L. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran, W. Lin, J. Am. Chem.

Soc. 2009, 131, 14261-14263.

[144] D. Britt, C. Lee, F. J. Uribe-Romo, H. Furukawa, O. M. Yaghi, Inorg. Chem.

2010, 49, 6387-6389.

192 [145] A. D. Burrows, C. G. Frost, M. F. Mahon, C. Richardson, Angew. Chem. 2008,

120, 8610-8614; Angew. Chem. Int. Ed. 2008, 47, 8482-8486.

[146] W. Morris, C. J. Doonan, H. Furukawa, R. Banerjee, O. M. Yaghi, J. Am.

Chem. Soc. 2008, 130, 12626-12627.

[147] T. Kawamichi, T. Haneda, M. Kawano, M. Fujita, Nature 2009, 461, 633-635.

[148] C. J. Doonan, W. Morris, H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 9492-9493.

[149] M. Savonnet, D. Bazer-Bachi, N. Bats, J. Perez-Pellitero, E. Jeanneau, V.

Lecocq, C. Pinel, D. Farrusseng, J. Am. Chem. Soc. 2010, 132, 4518-4519.

[150] J. S. Costa, P. Gamez, C. A. Black, O. Roubeau, S. J. Teat, J. Reedijk, Eur. J.

Inorg. Chem. 2008, 1551-1554.

[151] Z. Wang, S. M. Cohen, J. Am. Chem. Soc. 2008, 129, 12368-12369.

[152] K. K. Tanabe, Z. Wang, S. M. Cohen, J. Am. Chem. Soc. 2008, 130, 8508-8517.

[153] Z. Wang, S. M. Cohen, Angew. Chem. 2008, 120, 4777-4780; Angew. Chem.

Int. Ed. 2008, 47, 4699-4702.

[154] M. J. Ingleson, J. P. Barrio, J.-B. Guilbaud, Y. Z. Khimyak, M. J. Rosseinsky, Chem. Commun. 2008, 2680-2682.

[155] Z. Wang, K. K. Tanabe, S. M. Cohen, Inorg. Chem. 2009, 48, 296-306.

[156] S. J. Garibay, Z. Wang, K. K. Tanabe, S. M. Cohen, Inorg. Chem. 2009, 48, 7341-7349.

[157] K. K. Tanabe, S. M. Cohen, Angew. Chem. 2009, 121, 7560-7563; Angew.

Chem. Int. Ed. 2009, 48, 7424-7427.

[158] M. Kandiah, S. Usseglio, S. Svelle, U. Olsbye, K. P. Lillerud, M. Tilset, J. Mater. Chem. 2010, 20, 9848-9851.

[159] J. G. Nguyen, S. M. Cohen, J. Am. Chem. Soc. 2010, 132, 4560-4561.

[160] S. J. Garibay, Z. Wang, S. M. Cohen, Inorg. Chem. 2010, 49, 8086-8091.

[161] S. J. Garibay, S. M. Cohen, Chem. Commun. 2010, 46, 7700-7702.

[162] K. K. Tanabe, S. M. Cohen, Inorg. Chem. 2010, 49, 6766-6774.

[163] Z. Wang, K. K. Tanabe, S. M. Cohen, Chem. Eur. J. 2010, 16, 212-217.

[164] C. Volkringer, S. M. Cohen, Angew. Chem. 2010, 122, 4748-4752; Angew.

Chem. Int. Ed. 2010, 49, 4644-4648.

193 [165] E. Dugan, Z. Wang, M. Okamura, A. Medina, S. M. Cohen, Chem. Commun.

2008, 3366-3368.

[166] C. E. Castro, E. J. Gaughan, D. C. Owsley, J. Org. Chem. 1966, 31, 4071-4078.

[167] A. Arcadi, S. Cacchi, F. Marinelli, Tetrahedron Lett. 1989, 30, 2581-2584.

[168] L. Xu, I. R. Lewis, S. K. Davidsen, J. B. Summers, Tetrahedron Lett. 1998, 39, 5159-5162.

[169] A. L. Rodriguez, C. Koradin, W. Dohle, P. Knochel, Angew. Chem. 2000, 112, 2607-2609; Angew. Chem. Int. Ed. 2000, 39, 2488-2490.

[170] S. Diring, S. Furukawa, Y. Takashima, T. Tsuruoka, S. Kitagawa, Chem.

Mater. 2010, 22, 4531–4538.

[171] A. Schaate, P. Roy, J. Lippke, F. Waltz, M. Wiebcke, A. Godt, P. Behrens, Chem. Eur. J. 2011, 17, 6641-6643.

[172] K. Gustav, J. Sühnel, Helv. Chim. Acta 1978, 197, 2100-2107.

[173] T. G. Pavlopoulos, P. R. Hammond, J. Am. Chem. Soc. 1974, 96, 6568-6579.

[174] S. Samori, M. Hara, S. Tojo, M. Fujitsuka, S.-W. Yang, A. Elangovan, T.-I. Ho, T. Majima, J. Phys. Chem. B 2005, 109, 11735-11742.

[175] D. O. Kim, J. Park, G. R. Ahn, H. J. Jeon, J. S. Kim, D. W. Kim, M. S. Jung, S.

W. Lee, S. H. Shin, Inorg. Chim. Acta 2011, 370, 76-81.

[176] K. Oisaki, Q. Li, H. Furukawa, A. U. Czaja, O. M. Yaghi, J. Am. Chem. Soc.

2010, 132, 9262–9264.

[177] Y. Goto, H. Sato, S. Shinkai, K. Sada, J. Am. Chem. Soc. 2008, 130, 14354-14355.

[178] A. P. Nelson, O. K. Farha, K. L. Mulfort, J. T. Hupp, J. Am. Chem. Soc. 2009, 131, 458-460.

[179] S. Ma, D. Sun, P. M. Forster, D. Yuan, W. Zhuang, Y-S. Chen, J. B. Parise, H.-C. Zhou, Inorg. Chem. 2009, 48, 4616-4618.

[180] K. L. Mulfort, O. K. Farha, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, Chem. Eur. J. 2010, 16, 276-281.

[181] T. Gadzikwa, O. K. Farha, K. L. Mulfort, J. T. Hupp, S. T. Nguyen, Chem.

Commun. 2009, 3720-3722.

[182] A. M. Shultz, O. K. Farha, D. Adhikari, A. A. Sarjeant, J. T. Hupp, S. T.

Nguyen, Inorg. Chem. 2011, 50, 3174–3176.

194 [183] O. K. Farha, K. L. Mulfort, J. T. Hupp, Inorg. Chem. 2008, 47, 10223-10225.

[184] A. M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2009, 131, 4204-4205.

[185] T. Gadzikwa, O. K. Farha, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, S. T.

Nguyen, J. Am. Chem. Soc. 2009, 131, 13613-13615.

[186] O. K. Farha, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, J. Am. Chem. Soc.

2010, 132, 950-952.

[187] J. Sarju, T. N. Danks, G. Wagner, Tetrahedron Lett. 2004, 45, 7675-7677.

[188] J. P. Parrish, B. Sudaresan, K. Woon Jung, Synth. Commun. 1999, 29, 4423-4431.

[189] S. K. Srivastava, P. Man Singh Chauhan, A. P. Bhaduri, Synth. Commun.

1999, 29, 2085-2091.

[190] D. Himsl, D. Wallacher, M. Hartmann, Angew. Chem. 2009, 121, 4710-4714.

Angew. Chem. Int. Ed. 2009, 48, 4639-4642.

[191] T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, B. Moulin, D. Heurtaux, G. Clet, A. Vimont, J.-M. Grenèche, B. Le Ouay, F. Moreau, E. Magnier, Y.

Filinchuk, J. Marrot, J.-C. Lavalley, M. Daturi, G. Férey, J. Am. Chem. Soc.

2010, 132, 1127-1136.

[192] K. L. Mulfort, O. K. Farha, C. L. Stern, A. A. Sarjeant, J. T. Hupp, J. Am.

Chem. Soc. 2009, 131, 3866-3868.

[193] M. Wang, M.-H. Xie, C.-D. Wu, Y.-G. Wang, Chem. Commun. 2009, 2396-2398.

[194] D. O. Kim, J. Park, G. R. Ahn, H. J. Jeon, J. S. Kim, D. W. Kim, M. S. Jung, S.

W. Lee, S. H. Shin, Inorg. Chim. Acta 2011, 370, 76-81.

[195] T. Yamada, H. Kitagawa, Supramol. Chem. 2011, 23, 315-318.

[196] T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 6312-6313.

[197] K. K. Tanabe, C. A. Allen, S. M. Cohen, Angew. Chem. 2010, 122, 9924-9927;

Angew. Chem. Int. Ed. 2010, 49, 9730-9733.

[198] T. Gadzikwa, G. Lu, C. L. Stern, S. R. Wilson, J. T. Hupp, S. T. Nguyen, Chem. Commun. 2008, 5493-5495.

[199] T. Kawamichi, Y. Inokuma, M. Kawano, M. Fujita, Angew. Chem. 2010, 122, 2425-2427; Angew. Chem. Int. Ed. 2010, 49, 2375-2377.

195 [200] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. 2001, 113, 2056-2075;

Angew. Chem. Int. Ed. 2001, 40, 2004-2021.

[201] M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952-3015.

[202] O. K. Farha, K. L. Mulfort, A. M. Thorsness, J. T. Hupp, J. Am. Chem. Soc.

2008, 130, 8598-8599.

[203] J. Sauer, Angew. Chem. 1966, 78, 233-252; Angew. Chem. Int. Ed. 1966, 5, 211-230.

[204] A. Vieyres, T. Lam, R. Gillet, G. Franc, A. Castonguay, A.Kakkar, Chem.

Commun. 2010, 46, 1875–1877.

[205] V. D. Kiselev, A. I. Konovalov, J. Phys. Org. Chem. 2009, 22, 466-483.

[206] S. Reymond, J. Cossy, Chem. Rev. 2008, 108, 5359-5406.

[207] U. Pindur, G. Lutz, C. Otto, Chem. Rev. 1993, 93, 741-701.

[208] L. Rulíšek, P. Šebek, Z. Havlas, R. Hrabal, P. Čapek, A. Svatoš, J. Org.

Chem. 2005, 70, 6295-6302.

[209] C. O. Kappe, S. S. Murphree, A. Padwa, Tetrahedron 1997, 53, 14179-14233.

[210] A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020-4028.

[211] M. P. Moselage, Alkylierbare Linkerverbindungen für Metall-organische Gerüste, Bachelorarbeit, Fakultät für Chemie, Universität Bielefeld, 2010.

[212] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483.

[213] T. Preuße, Synthese modifizierter OligoPPEs für den Aufbau metall-organischer Netzwerke, Forschungspraktikum, Fakultät für Chemie, Universität Bielefeld, 2010.

[214] B. Balaganesan, W.-J. Shen, C. H. Chen, Tetrahedron Lett. 2003, 44, 5747-5750.

[215] W. J. Jo, K.-H. Kim, H. C. No, D.-Y. Shin, S.-J. Oh, J.-H. Son, Y.-H. Kim, Y.-K.

Cho, Q.-H. Zhao, K.-H. Lee, H.-Y. Oh, S.-K. Kwon, Synth. Met. 2009, 159, 1359-1364.

[216] H.-Y. Chen, C.-T. Chen, C.-T. Chen, Macromolecules 2010, 43, 3613-3623.

[217] C. L. R. Catherall, T. F. Palmer, R. B. Cundall, J. Chem. Soc., Faraday Trans. 2, 1984, 80, 823-834.

[218] L. F. M. L. Ciscato, F. H. Bartoloni, E. L. Bastos, W. J. Baader, J. Org. Chem.

2009, 74, 8974-8979.

[219] F. Hinterholzinger, S. Wuttke, T. Bein, unveröffentlichte Ergebnisse.

196 [220] M. Hülsmann, A. Godt, unveröffentlichte Ergebnisse.

[221] A. Senger, Organische Linker für MOFs, Diplomarbeit, Fakultät für Chemie, Universität Bielefeld, 2008.

[222] D. Britt, D. Trachemontagne, O. M. Yaghi, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 11623-11627.

[223] P. Heinrichs, A. Godt, unveröffentlichte Ergebnisse.

[224] Y.-L. Zhao, L. Liu, W. Zhang, C.-H. Sue, Q. Li, O. Š. Miljanic, O. M. Yaghi, J.

F. Stoddart, Chem. Eur. J. 2009, 15, 13356-13380.

[225] B. Brosent, A. Godt, unveröffentlichte Ergebnisse.

[226] A. Williamson, Philos. Mag. 1850, 37, 350-356.

[227] S. Stavbe, M. Jereb, M. Zupan, Synthesis 2008, 10, 1487-1513.

[228] P. J. Kocieński, Protecting Groups, Leeds, 2005, 3rd Edition.

[229] T. W. Greene, Protective groups in organic synthesis, New York, 1999, 3. Auflage.

[230] D. B. Bryan, R. F. Hall, K. G. Holden, W. F. Huffman, J. G. Gleason, J. Am.

Chem. Soc. 1977, 99, 2353-2355.

[231] A. Mehta, R. Jaouhari, T. J. Benson, K. T. Douglas, Tetrahedron Lett. 1992, 33, 5441-5444.

[232] B. Neises, W. Steglich, Angew. Chem. 1978, 90, 556-557; Angew. Chem. Int.

Ed. 1978, 17, 522-524.

[233] W. G. Dauben, H. O. Krabbenhoft, J. Am. Chem. Soc. 1976, 98, 1992-1993.

[234] P. Caramella, P. Quadrelli, L. Toma, J. Am. Chem. Soc. 2002, 124, 1130-1131.

[235] P. Jutzi, J. Organomet. Chem. 1990, 400, 1-17.

[236] G. Erker, J. Organomet. Chem. 1990, 400, 185-203.

[237] V. A. Mironov, E. V. Sobolev, A. N. Elizarova, Tetrahedron 1963, 19, 1939-1958.

[238] S. McLean, P. Haynes, Tetrahedron 1965, 21, 2329-2342.

[239] J. Hudon, T. A. Cernak, J. A. Ashenhurst, J. L. Gleason, Angew. Chem. 2008, 120, 9017-9020; Angew. Chem. Int. Ed. 2008, 47, 8885-8888.

[240] M. Neuenschwander, H. Schaltegger, F. Stuber, Helv. Chim. Acta 1967, 50, 880-889.

[241] M. Ouchi, M. Kamigaito, M. Sawamoto, Macromolecules 2001, 34, 3176-3181.

197 [242] V. Ratovelomanana, G. Linstrumelle, Tetrahedron Lett. 1981, 22, 315-318.

[243] M. Levitus, M. A. Garcia-Garibay, J. Phys. Chem. A 2000, 104, 8632-8637.

[244] J. Lukacs, R. A. Lamp, J. Metcalfe, D. Phillips, J. Photochem. Photobiol. A:

Chem., 1992, 63, 59-65.

[245] D. J. Fatemi, H. Murata, C. D. Merritt, Z. H. Kafafi, Synth. Met. 1997, 85, 1225-1228.

[246] B. Li, W. Miao, L. Cheng, Dyes Pigments 2000, 46, 81-84.

[247] Q. Li, W. Zhang, O. Š. Miljanic, C. B. Knobler, J. F. Stoddart, O. M. Yaghi, Chem. Commun. 2010, 46, 380-382.

[248] Q. Li, C.-H. Sue, S. Basu, A. K. Shveyd, W. Zhang, G. Barin, L. Fang, A. A.

Sarjeant, J. F. Stoddart, O. M. Yaghi, Angew. Chem. 2010, 122, 6903-6907;

Angew. Chem. Int. Ed. 2010, 49, 6751-6755.

[249] Q. Li, W. Zhang, O. Š. Miljanic, C.-H. Sue, Y.-L. Zhao, L. Liu, C. B. Knobler, J.

F. Stoddart, O. M. Yaghi, Science 2009, 325, 855-859.

[250] X. Liu, M. Park, S. Hong, M. Oh, J. W. Yoon, J.-S. Chang, M. Soo Lah, Inorg.

Chem. 2009, 48, 11507-11509.

[251] N. Kobayashi, M. Kijima, J. Mater. Chem. 2008, 18, 1037-1045.

[252] S. Hong, M. Oh, M. Park, J. W. Yoon, J. S. Chang, M. S. Lah, Chem.

Commun. 2009, 5397-5399.

[253] D. Yuan, D. Zhao, D. Sun, H.-C. Zhou, Angew. Chem. 2010, 122, 5485-5489.

Angew. Chem. Int. Ed. 2010, 49, 5357-5361.

[254] A. Schaate, P. Roy, T. Preuße, S. J. Lohmeier, A. Godt, P. Behrens, Chem.

Eur. J. 2011, im Druck, DOI: 10.1002/chem.201101015.

[255] J. Roncali, Chem. Rev. 1992, 92, 711-738.

[256] M. Jeffries-El, G. Sauve, R. D. McCullough, Macromolecules 2005, 38, 10346-10352.

[257] U. H. F. Bunz, Angew. Chem. 2010, 122, 5159-5162; Angew. Chem. Int. Ed.

2010, 49, 5037-5040.

[258] G. Férey, C. Serre, Chem. Soc. Rev. 2009, 38, 1380-1399.

[259] C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër, G.

Férey, J. Am. Chem. Soc. 2002, 124, 13519-13526.

[260] Z. Wang, S. M. Cohen, J. Am. Chem. Soc. 2009, 131, 16675-16677.

198 [261] J. Horstmann, Synthese langer, gut löslicher Linkerverbindungen für Metall-organische Gerüste, Bachelorarbeit, Fakultät für Chemie, Universität Bielefeld, 2010.

[262] E. D. Bloch, D. Britt, C. Lee, C. J. Doonan, F. J. Uribe-Romo, H. Furukawa, J.

R. Long, O. M. Yaghi, J. Am. Chem. Soc. 2010, 132, 14382-14384.

[263] P. F. H. Schwab, F. Fleischer, J. Michl, J. Org. Chem. 2002, 67, 443-449.

[264] G. Zotti, S. Zecchin, G. Schiavon, A. Berlin, M. Penso, Chem. Mater. 1999, 11, 3342-3351.

[265] C. A. Bauer, T. V. Timofeeva, T. B. Settersten, B. D. Patterson, V. H. Liu, B. A.

Simmons, M. D. Allendorf, J. Am. Chem. Soc. 2007, 129, 7136-7144.

[266] A. Lan, K. Li, H. Wu, D. H. Olson, T. J. Emge, W. Ki, M. Hong, J. Li, Angew.

Chem. 2009, 121, 2370-2374; Angew. Chem. Int. Ed. 2009, 48, 2334-2338.

[267] Y. Bai, G.-J. He, Y.-G. Zhao, C.-Y. Duan, D.-B. Dang, Q.-J. Meng, Chem.

Commun. 2006, 14, 1530-1532.

[268] W. Liu, T. Jiao, Y. Li, Q. Liu, M. Tan, H. Wang, L. Wang, J. Am. Chem. Soc.

2004, 126, 2280–2281.

[269] Y. Qiu, Z. Liu, Y. Li, H. Deng, R. Zeng, M. Zeller, Inorg. Chem. 2008, 47, 5122–5128.

[270] K.-L. Wong, G.-L. Law, Y.-Y. Yang, W.-T. Wong, Adv. Mater. 2006, 18, 1051-1054.

[271] B. Zhao, X.-Y. Chen, P. Cheng, D.-Z. Liao, S.-P. Yan, Z.-H. Jiang, J. Am.

Chem. Soc. 2004, 126, 15394-15395.

[272] B. L. Chen, Y. Yang, F. Zapata, G. N. Lin, G. D. Qian, E. B. Lobkovsky, Adv. Mater. 2007, 19, 1693-1696.

[273] B. V. Harbuzaru, A. Corma, F. Rey, P. Atienzar, J. L. Jorda, H. Garcia, D.

Ananias, L. D. Carlos, J. Rocha, Angew. Chem. Int. Ed. 2008, 47, 1080-1083.

[274] M. Müller, A. Devaux, C.-H. Yang, L. De Cola, R. A. Fischer, Photochem.

Photobiol. Sci. 2010, 9, 846-853.

[275] B. Moulton, M. J. Zaworotko, Curr. Opin. Solid State Mater. Sci. 2002, 6, 117-123.

[276] E.-Y. Choi, C. A. Wray, C. Hu, W. Choe, CrystEngComm 2009, 11, 553-555.

[277] A. M. Schultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2009, 131, 4204-4205.

199 [278] S. Demmig, H. Langhals, Chem. Ber. 1988, 121, 225-230.

[279] X. Z. Jiang, Y. Q. Liu, S. G. Liu, W. F. Qiu, X. Q. Song, D. B. Zhu, Synth. Met.

1997, 91, 253-256.

[280] F. J. Céspedes-Guirao, S. García-Santamaría, F. Fernández-Lázaro, A.

Sastre-Santos, H. J. Bolink, J. Phys. D: Appl. Phys. 2009, 42, 105106-105112.

[281] C. Zafer, C. Karapire, N. S. Sariciftci, S. Icli, Sol. Energy Mater. Sol. Cells 2005, 88, 11-21.

[282] W. S. Shin, H.-H. Jeong, M.-K. Kim, S.-H. Jin, M.-R. Kim, J.-K. Lee, J. W. Lee, Y.-S. Gal, J. Mater. Chem. 2006, 16, 384–390.

[283] E. Zhou, K. Tajima, C. Yanga, K. Hashimoto, J. Mater. Chem. 2010, 20, 2362-2368.

[284] H.-G. Löhmannsröben, H. Langhals, Appl. Phys. 1989, B48, 449-452.

[285] M. Gsänger, J. H. Oh, M. Könemann, H. W. Höffken, A.-M. Krause, Z. Bao, F.

Würthner, Angew. Chem. 2010, 122, 752-755; Angew. Chem. Int Ed. 2010, 49, 740-743.

[286] H. Langhals, Heterocycles 1995, 40, 477-500.

[287] C. Huang, S. Barlow, S. R. Marder, J. Org. Chem. 2011, 76, 2386-2407.

[288] R. Dölling, M. Beyermann, J. Haenel, F. Kernchen, E. Krause, P. Franke, M.

Brudelb, M. Biener, J. Chem. Soc., Chem. Commun. 1994, 853-854.

[289] M. Niyaz Khan, J. E. Ohayagha, J. Phys. Org. Chem. 1991, 4, 547-561.

[290] K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev. 1998, 177, 347-414.

[291] B. M. Trost, M. U. Frederiksen, M. T. Rudd, Angew. Chem. 2005, 117, 6788-6825; Angew. Chem. Int. Ed. 2005, 44, 6630-6666.

[292] S. S. Kaye, J. R. Long, J. Am. Chem. Soc. 2008, 130, 806-807.

[293] M. Meilikhov, K. Yusenko, R. A. Fischer, J. Am. Chem. Soc. 2009, 131, 9644-9645.

[294] S. Chavan, J. G. Vitillo, M. J. Uddin, F. Bonino, C. Lamberti, E. Groppo, K.-P.

Lillerud, S. Bordiga, Chem. Mat. 2010, 22, 4602-4611.

[295] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M.

Grätzel, Nature Mater. 2003, 2, 402-407.

[296] N. Hirata, J.-J. Lagref, E. J. Palomares, J. R. Durrant, M. K. Nazeeruddin, M.

Grätzel, D. Di Censo, Chem. Eur. J. 2004, 10, 595-602.