• Keine Ergebnisse gefunden

The influenza HA binds to sialic acids of glycoproteins and glycolipids. However the macromolecule carrying the receptor sialoglycan is not known. In the course of this thesis several approaches were undertaken to find a cellular interaction partner. Sep-aration of membrane proteins by 2D PAGE, Western blotting and overlay assays (as in section 3.3.8) as well as precipitation using Sepharose beads led to unsatisfying re-sults and bands that could not be isolated or further investigated. The approach shown in this thesis with simple cell lysates and overlay assays is a first attempt, that gave re-producible results in form of a band at 130 kDa - at least for H9Fc. This band was only detected when Calu-3 cell lysates were overlayed with H9Fc (fig.4.28). Unfortunately it is not possible to relate this band to one in a gel as the amount of proteins in cell lysates is quite high. Blotting onto PVDF membrane might circumvent this problem.

When overlayed and stained with alkaline phosphatase conjugated antibodies a grey band appears that can be cut out and directly be used for mass spectrometry which is not possible with nitrocellulose membranes. However protocols for blotting on PVDF and colorimetric detection have to be optimized for overlay assays. The potential inter-action partner found by this method does not have to be a cell surface protein as whole cell lysates were used.

In Western blot overlay, proteins are obviously the target. But on the cell surface also sialic acid carrying glycolipids, gangliosides, are present. In a collaboration with the Institute of Hygiene at the University of Münster, the working group of Prof. Dr. Jo-hannes Müthing, our solHAs are used to investigate the interaction of the influenza HA with gangliosides from different host species like human, cattle and others.

Another application for solHAs is to test whether binding of the HA to the cell is suf-ficient to activate the Raf/Mek/ERK cascade that is important for efsuf-ficient replication (Pleschka et al. [2001]).

SolHAs are a simple but valuable tool to investigate the influence of point mutations in the HA or the consequences of removing N-glycosylation sites. In detail, amino acid changes found by Herfst et al. [2012] and Imai et al. [2012] in the H5 that conferred transmissibility in the ferret model may be inserted into a solHA and change in binding to different tissues may be analysed, without having to work with infectious virus. The role of Neu5Gc for the binding of H1_WFc will also be subject of further research in collaboration with Prof.Johannes Müthing from Münster. The H5 and H1 solHAs will also be tested in glycan array analysis to see what glycan structures are recognized by either HA and how the closely related H1 subtypes differ in this respect. Glycan array studies with membrane bound HA, soluble HAs produced e.g. in insect cells or of full virus can be found in increasing number in the literature (Bateman et al. [2010], Stevens et al. [2006], Liao et al. [2010], Song et al. [2011] to name a few) and also with strains used in this work. It will be interesting to see how different solHA and virus binding is in this test. Therefore, the H9N2 strain and the H7N7 strain used for the virus binding test will be analysed by the same glycan array.

The affinity of H7Fc and H9Fc toα2,8- andα2,9-linked sialic acids observed in the gly-can array is also quite interesting and will be subject to further investigations. Binding of influenza HAs to α2,8-linked sialic acids has already been reported for H1 subtypes (Wu & Air [2004], Stevens et al. [2006]) but even in this publications these findings have not been subject to further investigations.

As mentioned before, including avian lung sections and human sections in the bind-ing studies will also help to understand receptor specificity and HA bindbind-ing in different hosts. Last but not least, many questions concerning the H17 remain. As it was not possible so far to propagate the complete virus, using only the HA is a possible way to find out which receptor is used by this particular HA.

The matter of receptor recognition, expression of this receptor on different cell types and what changes in the HA favor host switching is a complex issue and was simplified

for many years with the notion that only the terminal sialic acids are important. Using only two plant lectins does not credit the variety of oligosaccharides present on cell surfaces and staining with these lectin does not necessary stain appropriate receptors for influenza A viruses. As solHAs possess the natural binding properties of the HA they are able to detect specific sialic acids that would be used by the virus, without having to deal with biosafety considerations, and thus allows a more detailed analysis of receptor distribution. Use of different solHAs broadens the range of tools for the characterization of cells and tissues with regard to susceptibility of cells and sialic acid distribution.

Ayora-Talavera, G., Shelton, H., Scull, M. A., Ren, J., Jones, I. M., Pickles, R. J., &

Barclay, W. S. (2009). Mutations in H5N1 Influenza Virus Hemagglutinin that Confer Binding to Human Tracheal Airway Epithelium. PLOS one, 4(11). doi: 10.1371/

journal.pone.0007836

Babiuk, S., Albrecht, R., Berhane, Y., Marszal, P., Richt, J. a., García-Sastre, A., . . . Weingartl, H. (2010, February). 1918 and 2009 H1N1 influenza viruses are not pathogenic in birds. The Journal of general virology, 91(Pt 2), 339–42. Retrieved from doi: 10.1099/vir.0.016246-0

Baigent, S. J., & McCauley, J. W. (2003). Influenza type A in humans , mammals and birds : determinants of virus virulence , host-range and interspecies transmission.

Bio Essays, 657–671. doi: 10.1002/bies.10303

Barman, S., Ali, A., Hui, E. K., Adhikary, L., & Nayak, D. P. (2001). Transport of viral proteins to the apical membranes and interaction of matrix protein with glycoproteins in the assembly of influenza viruses. Virus Research,77, 61–69.

Bateman, A. C., Karamanska, R., Busch, M. G., Dell, A., Olsen, C. W., & Haslam, S. M. (2010, October). Glycan analysis and influenza A virus infection of primary swine respiratory epithelial cells: the importance of NeuAcalpha2-6 glycans. The Journal of biological chemistry,285(44), 34016–26. Retrieved from doi: 10.1074/

jbc.M110.115998

Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M. E., Alvarez, R., . . . Paulson, J. C. (2004). Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. PNAS.

Bohm, M. (2010). The role of sialic acids in avian influenza virus infection of primary cell culture. Unpublished doctoral dissertation, University of Veterinary Medicine Hannover.

Butt, A. M., Siddique, S., Idrees, M., & Tong, Y. (2010). Avian influenza A ( H9N2 ): computational molecular analysis and phylogenetic characterization of viral sur-face proteins isolated between 1997 and 2009 from the human population. Virology Journal,7(1), 319. Retrieved from doi: 10.1186/1743-422X-7-319

Chandrasekaran, A., Srinivasan, A., Raman, R., Viswanathan, K., Raguram, S., Tumpey, T. M., . . . Sasisekharan, R. (2008). Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nature Biotechnology, 26(1), 107–

113. doi: 10.1038/nbt1375

118

Chen, L.-M., Blixt, O., Stevens, J., Lipatov, A. S., Davis, C. T., Collins, B. E., . . . Donis, R. O. (2012, January). In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology, 422(1), 105–13. Retrieved from doi: 10.1016/

j.virol.2011.10.006

Chen, L.-M., Rivailler, P., Hossain, J., Carney, P., Balish, A., Perry, I., . . . Donis, R. O.

(2011, April). Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States. Virology, 412(2), 401–10. Retrieved from doi: 10.1016/j.virol.2011.01.015

Chen, X., & Varki, A. (2011). Advances in the Biology and Chemistry of Sialic Acids.

ACS Chem Biol.,5(2), 163–176. doi: 10.1021/cb900266r.Advances

Childs, R. A., Palma, A. S., Wharton, S., Matrosovich, T., Liu, Y., Chai, W., . . . Feizi, T. (2009). Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nature Biotechnology,27(9), 797–806.

Choi, Y. K., Ozaki, H., Webby, R. J., Webster, R. G., Peiris, J. S., Poon, L., . . . Guan, Y. (2004, August). Continuing evolution of H9N2 influenza viruses in Southeastern China. Journal of virology, 78(16), 8609–14. Retrieved from doi: 10.1128/JVI.78 .16.8609-8614.2004

Conenello, G. M., & Palese, P. (2007, October). Influenza A virus PB1-F2: a small protein with a big punch. Cell host and microbe,2(4), 207–9. Retrieved from doi:

10.1016/j.chom.2007.09.010

Costa, T., Chaves, A. J., Valle, R., Darji, A., van Riel, D., Kuiken, T., . . . Ramis, A.

(2012). Distribution patterns of influenza virus receptors and viral attachment pat-terns in the respiratory and intestinal tracts of seven avian species. Veterinary re-search,43(1), 28. Retrieved from doi: 10.1186/1297-9716-43-28

de Vries, E., Tscherne, D. M., Wienholts, M. J., Cobos-Jiménez, V., Scholte, F., García-Sastre, A., . . . de Haan, C. A. M. (2011, March). Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS pathogens,7(3), e1001329. Retrieved from doi: 10.1371/journal.ppat.1001329 Dong, G., Luo, J., Zhang, H., Wang, C., Duan, M., Deliberto, T. J., . . . He, H.

(2011). Phylogenetic Diversity and Genotypical Complexity of H9N2 Influenza A Viruses Revealed by Genomic Sequence Analysis. PLOS one,6(2). doi: 10.1371/

journal.pone.0017212

Elton, D., Digard, P., Tiley, L., & Ortin, J. (2006). Structure and Function of the influenza virus RNP. In Y. Kawaoka (Ed.),Influenza virology: Current topics(chap. 1). Horizon Scientific Press.

Erdt, M. (2012). Adaptation of avian influenza viruses of the subtype H9N2 to cells of the avian and human respiratory epithelium. Unpublished doctoral dissertation, University of Veterinary Medicine Hannover.

Flint, S., Enquist, L., Racaniello, V., & Skalka, A. (2004). Principles of Virology (second ed.). ASM Press.

Fouchier, R. A. M., Schneeberger, P. M., Rozendaal, F. W., Broekman, J. M., Kemink, S. A. G., Munster, V., . . . Osterhaus, A. D. M. E. (2004, February). Avian in-fluenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proceedings of the National Academy of Sci-ences of the United States of America, 101(5), 1356–61. Retrieved from doi:

10.1073/pnas.0308352100

Gambaryan, A., Tuzikov, A., Pazynina, G., Bovin, N., Balish, A., & Klimov, A. (2006, January). Evolution of the receptor binding phenotype of influenza A (H5) viruses.

Virology,344(2), 432–8. Retrieved from doi: 10.1016/j.virol.2005.08.035

Gambaryan, A., Yamnikova, S., Lvov, D., Tuzikov, A., Chinarev, A., Pazynina, G., . . . Bovin, N. (2005). Receptor specificity of influenza viruses from birds and mammals : New data on involvement of the inner fragments of the carbohydrate chain. Virology, 334, 276–283. doi: 10.1016/j.virol.2005.02.003

Gambaryan, A. S., Matrosovich, T. Y., Philipp, J., Munster, V. J., Fouchier, R. a. M., Cattoli, G., . . . Matrosovich, M. N. (2012, April). Receptor-binding profiles of H7 subtype influenza viruses in different host species. Journal of virology,86(8), 4370–

9. Retrieved from doi: 10.1128/JVI.06959-11

Gamblin, S. J., & Skehel, J. J. (2010, September). Influenza hemagglutinin and neu-raminidase membrane glycoproteins. The Journal of biological chemistry, 285(37), 28403–9. Retrieved from doi: 10.1074/jbc.R110.129809

García-Sastre, A. (2012, October). The neuraminidase of bat influenza viruses is not a neuraminidase. Proceedings of the National Academy of Sciences of the United States of America. Retrieved from doi: 10.1073/pnas.1215857109

Garten, R. J., Davis, C. T., Russell, C. a., Shu, B., Lindstrom, S., Balish, A., . . . Cox, N. J. (2009, July). Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science (New York, N.Y.), 325(5937), 197–201. Retrieved from doi: 10.1126/science.1176225

Glaser, L., Conenello, G., Paulson, J., & Palese, P. (2007). Effective replication of human influenza viruses in mice lacking a major alpha2 , 6 sialyltransferase. Virus Research,126, 9–18. doi: 10.1016/j.virusres.2007.01.011

Hale, B. G., Randall, R. E., Ortı, J., &J ackson, D. (2008). The multifunctional NS1 protein of influenza A viruses. Journal of General Virology, 2359–2376. doi: 10 .1099/vir.0.2008/004606-0

Harbury, P. B., Zhang, T., Kim, P. S., & Alber, T. (1993, November). A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science (New York, N.Y.),262(5138), 1401–7. Retrieved from

Harrison, S. C. (2008). Viral membrane fusion. Nature Structural and Molecular Biology,15(7), 690–698.

Herfst, S., Schrauwen, E. J. a., Linster, M., Chutinimitkul, S., de Wit, E., Munster, V. J., . . . Fouchier, R. a. M. (2012, June). Airborne transmission of influenza A/H5N1 virus between ferrets. Science (New York, N.Y.), 336(6088), 1534–41. Retrieved from doi: 10.1126/science.1213362

Herrler, G., Rott, R., Klenk, H. D., Müller, H. P., Shukla, A. K., & Schauer, R. (1985, June). The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. The EMBO journal,4(6), 1503–6. Retrieved from

Hong, Z. (2009). Tissue and host tropism of influenza viruses : Importance of quanti-tative analysis. Science in China Series C: Life Sciences,52(12), 1101–1110. doi:

10.1007/s11427-009-0161-x

Horimoto, T., & Kawaoka, Y. (2001). Pandemic Threat Posed by Avian Influenza A Viruses. Clinical Microbiology Reviews, 14(1), 129–149. doi: 10.1128/CMR.14.1 .129

Horimoto, T., & Kawaoka, Y. (2005, August). Influenza: lessons from past pandemics, warnings from current incidents. Nature reviews. Microbiology, 3(8), 591–600. Re-trieved from doi: 10.1038/nrmicro1208

Imai, M., Watanabe, T., Hatta, M., Das, S. C., Ozawa, M., Shinya, K., . . . Kawaoka, Y. (2012, June). Experimental adaptation of an influenza H5 HA confers respi-ratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 486(7403), 420–8. Retrieved from doi: 10.1038/nature10831

Ito, T., Couceiro, J. N., Kelm, S., Baum, L. G., Krauss, S., Castrucci, M. R., . . . Kawaoka, Y. (1998, September). Molecular basis for the generation in pigs of in-fluenza A viruses with pandemic potential. Journal of virology, 72(9), 7367–73.

Retrieved from

Ito, T., & Kawaoka, Y. (2000). Host-range barrier of influenza A viruses. Veterinary microbiology. Retrieved from

Jiang, S., Li, R., Du, L., & Liu, S. (2010). Roles of the hemagglutinin of influenza A virus in viral entry and development of antiviral therapeutics and vaccines. Protein Cell,1(4), 342–354. doi: 10.1007/s13238-010-0054-6

Kimble, B., Nieto, G. R., & Perez, D. R. (2010). Characterization of influenza virus sialic acid receptors in minor poultry species. Virology Journal,7(1), 365. Retrieved from doi: 10.1186/1743-422X-7-365

Klein, A., Krishna, M., Varki, N. M., & Varki, A. (1994). 9-0-Acetylated sialic acids have widespread but selective expression: Analysis using a chimeric dual-function probe derived from influenza C hemagglutinin-esterase. Proc. Natl. Acad. Sci USA, 91(August), 7782–7786.

Kleineidam, R., Schmelter, T., Schwarz, R. T., & Schauer, R. (1997). Studies on the inhibition of sialyl-and galactosyltransferases. Glycoconjugate journal. Retrieved from

Klenk, W. G. . H.-D. (2008). Cleavage Activation of the Influenza Virus Hemagglutinin and Its Role in Pathogenesis. Monogr Virol. Basel,27, 156–167.

Knibbs, R. N., Goldstein, I. J., Ratcliffe, R. M., & Shibuya, N. (1991, January). Charac-terization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. Comparison with other sialic acid-specific lectins. The Journal of biological chemistry,266(1), 83–8. Retrieved from

Koopmans, M., Wilbrink, B., Conyn, M., Natrop, G., van der Nat, H., Vennema, H., . . . Bosman, A. (2004, February). Transmission of H7N7 avian influenza A virus to hu-man beings during a large outbreak in commercial poultry farms in the Netherlands.

Lancet,363(9409), 587–93. Retrieved from doi: 10.1016/S0140-6736(04)15589-X Kuchipudi, S. V., Nelli, R., White, G. A., Bain, M., Chang, K. C., & Dunham, S. (2009).

Differences in influenza virus receptors in chickens and ducks : Implications for inter-species transmission. Journal of Molecular and Genetic Medicine,3(1), 143–151.

Kyhse-Andersen, J. (1984, December). Electroblotting of multiple gels: a simple appa-ratus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocel-lulose. Journal of biochemical and biophysical methods, 10(3-4), 203–9. Retrieved from

Laemmli, U. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature. Retrieved from

Li, Q., Sun, X., Li, Z., Liu, Y., Vavricka, C. J., Qi, J., & Gao, G. F. (2012, September).

Structural and functional characterization of neuraminidase-like molecule N10 de-rived from bat influenza A virus. Proceedings of the National Academy of Sciences of the United States of America. Retrieved from doi: 10.1073/pnas.1211037109 Liao, H.-Y., Hsu, C.-H., Wang, S.-C., Liang, C.-H., Yen, H.-Y., Su, C.-Y., . . . Wong, C.-H.

(2010, October). Differential receptor binding affinities of influenza hemagglutinins on glycan arrays. Journal of the American Chemical Society, 132(42), 14849–56.

Retrieved from doi: 10.1021/ja104657b

Lin, Y. P., Shaw, M., Gregory, V., Cameron, K., Lim, W., Klimov, A., . . . Hay, A. (2000).

Avian-to-human transmission of H9N2 subtype influenza A viruses : Relationship between H9N2 and H5N1 human isolates. PNAS,97(17), 1–5.

Mathieu, C., Moreno, V., Retamal, P., Gonzalez, A., Rivera, A., Fuller, J., . . . Avalos, P. (2010, April). Pandemic (H1N1) 2009 in breeding turkeys, Valparaiso, Chile.

Emerging infectious diseases,16(4), 709–11. Retrieved from doi: 10.3201/eid1604 .091402

Matrosovich, M., Krauss, S., & Webster, R. (2001). H9N2 Influenza A Viruses from Poultry in Asia Have Human Virus-like Receptor Specificity.Virology,162, 156–162.

doi: 10.1006/viro.2000.0799

Matrosovich, M., Zhou, N., Kawaoka, Y., & Webster, R. (1999, February). The sur-face glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. Journal of virology, 73(2), 1146–55.

Retrieved from

Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. a., & Klenk, H.-D. (2004, March). Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4620–4. Retrieved from doi: 10.1073/

pnas.0308001101

Medina, R. a., & García-Sastre, A. (2011, August). Influenza A viruses: new research developments. Nature reviews. Microbiology, 9(8), 590–603. Retrieved from doi:

10.1038/nrmicro2613

Naim, H. Y., & Roth, M. G. (1993). Basis for Selective Incorporation of Glycoproteins into the Influenza Virus Envelope. Journal of Virology,67(8), 4831–4841.

Nayak, D. P., Balogun, R. A., Yamada, H., Zhou, Z. H., & Barman, S. (2009, August).

Influenza virus morphogenesis and budding. Virus research, 143(2), 147–61. Re-trieved from doi: 10.1016/j.virusres.2009.05.010

Nayak, D. P., Hui, E. K.-w., & Barman, S. (2004). Assembly and budding of influenza virus. Virus Research,106, 147–165. doi: 10.1016/j.virusres.2004.08.012

Nelli, R. K., Kuchipudi, S. V., White, G. A., Perez, B. B., Dunham, S. P., & Chang, K.-C. (2010, January). Comparative distribution of human and avian type sialic acid influenza receptors in the pig. BMC veterinary research,6, 4. Retrieved from doi:

10.1186/1746-6148-6-4

Nelson, M. I., Lemey, P., Tan, Y., Vincent, A., Lam, T. T.-Y., Detmer, S., . . . Gramer, M. (2011, June). Spatial dynamics of human-origin H1 influenza A virus in North American swine. PLoS pathogens,7(6), e1002077. Retrieved from doi: 10.1371/

journal.ppat.1002077

Neumann, G., & Kawaoka, Y. (2006, June). Host range restriction and pathogenicity in the context of influenza pandemic. Emerging infectious diseases, 12(6), 881–6.

Retrieved from

Nicholls, J. M., Bourne, A. J., Chen, H., Guan, Y., & Peiris, M. (2007). Sialic acid recep-tor detection in the human respirarecep-tory tract : evidence for widespread distribution of potential binding sites for human and avian influenza viruses.Respiratory Research, 1, 1–10. doi: 10.1186/1465-9921-8-73

Nicholls, J. M., Chan, R. W. Y., Russell, R. J., Air, G. M., & Peiris, J. S. M. (2008).

Evolving complexities of influenza virus and its receptors. Cell, 149–157. doi: 10 .1016/j.tim.2008.01.008

Pantin-Jackwood, M., Wasilenko, J. L., Spackman, E., Suarez, D. L., & Swayne, D. E.

(2010, January). Susceptibility of turkeys to pandemic-H1N1 virus by reproductive tract insemination. Virology journal,7, 27. Retrieved from doi: 10.1186/1743-422X -7-27

Paul, A. (2008). Charakterisierung des intrazellulären Transports des Spike-Proteins des Virus der ubertragbaren Gastroenteritis der Schweine. Unpublished doctoral dissertation, University of Veterinary Medicine Hannover, Foundation.

Peiris, J. S. M., Guan, Y., Markwell, D., Ghose, P., & Webster, R. G. (2001). Cocircula-tion of Avian H9N2 and Contemporary â Human â H3N2 Influenza A Viruses in Pigs in Southeastern China : Potential for Genetic Reassortment. Journal of V, 75(20), 9679–9686. doi: 10.1128/JVI.75.20.9679

Perk, S., Banet-Noach, C., Shihmanter, E., Pokamunski, S., Pirak, M., Lipkind, M., &

Panshin, A. (2006, July). Genetic characterization of the H9N2 influenza viruses circulated in the poultry population in Israel. Comparative immunology, microbiology and infectious diseases, 29(4), 207–23. Retrieved from doi: 10.1016/j.cimid.2006 .06.004

Pleschka, S., Wolff, T., Ehrhardt, C., Hobom, G., Planz, O., Rapp, U. R., & Lud-wig, S. (2001, March). Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nature cell biology,3(3), 301–5. Retrieved from doi: 10.1038/35060098

Portela, A., & Digard, P. (2002, April). The influenza virus nucleoprotein: a multi-functional RNA-binding protein pivotal to virus replication. The Journal of general virology,83(Pt 4), 723–34. Retrieved from

Punyadarsaniya, D., Liang, C.-H., Winter, C., Petersen, H., Rautenschlein, S., Hennig-Pauka, I., . . . Herrler, G. (2011, January). Infection of differentiated porcine airway epithelial cells by influenza virus: differential susceptibility to infection by porcine and avian viruses. PloS one, 6(12), e28429. Retrieved from doi: 10.1371/journal.pone .0028429

Reid, A. H., Janczewski, T. A., Lourens, R. M., Elliot, A. J., Daniels, R. S., Berry, C. L., . . . Taubenberger, J. K. (2003, October). 1918 influenza pandemic caused by highly conserved viruses with two receptor-binding variants. Emerging infectious diseases, 9(10), 1249–53. Retrieved from doi: 10.3201/eid0910.020789

Resa-Infante, P., Jorba, N., Coloma, R., & Ortin, J. (2011, March). The influenza virus RNA synthesis machine: Advances in its structure and function. RNA Biology,8(2), 207–215. Retrieved from doi: 10.4161/rna.8.2.14513

Russell, C., Hanna, A., Barrass, L., Matrosovich, M., Núñez, A., Brown, I. H., . . . Banks, J. (2009, December). Experimental infection of turkeys with pandemic (H1N1) 2009 influenza virus (A/H1N1/09v). Journal of virology,83(24), 13046–7. Retrieved from doi: 10.1128/JVI.01645-09

Samji, T. (2009). Influenza A: Understanding the Viral Life Cycle. Yale J Biol Med..

Schultze, B., & Herrler, G. (1992, April). Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. The Journal of general virology,73 ( Pt 4), 901–6. Retrieved from

Shelton, H., Ayora-Talavera, G., Ren, J., Loureiro, S., Pickles, R. J., Barclay, W. S.,

& Jones, I. M. (2011, February). Receptor binding profiles of avian influenza virus hemagglutinin subtypes on human cells as a predictor of pandemic potential.Journal of virology,85(4), 1875–80. Retrieved from doi: 10.1128/JVI.01822-10

Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N., & Kawaoka, Y. (2006, March).

Avian flu: influenza virus receptors in the human airway. Nature,440(7083), 435–6.

Retrieved from doi: 10.1038/440435a

Shope, R. E. (1931, February). The Etiology of Swine Influenza. Science (New York, N.Y.),73(1886), 214–5. Retrieved from doi: 10.1126/science.73.1886.214

Sieczkarski, S., & Whittaker, G. (2002). Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. Journal of virology, 76(20), 10455–

10464. Retrieved from doi: 10.1128/JVI.76.20.10455

Simossis, V. a., & Heringa, J. (2005, July). PRALINE: a multiple sequence align-ment toolbox that integrates homology-extended and secondary structure informa-tion. Nucleic acids research,33(Web Server issue), W289–94. Retrieved from doi:

10.1093/nar/gki390

Skehel, J. J., & Wiley, D. C. (2000). Receptor binding and membrane fusion in virus entry: The Influenza Hemagglutinin. Annu.Rev.Biochem..

Song, X., Yu, H., & Chen, X. (2011). A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. Journal of Biological . . .,286(36), 31610–31622. Retrieved from doi: 10.1074/jbc.M111.274217

Stevens, J., Blixt, O., Glaser, L., Taubenberger, J. K., Palese, P., Paulson, J. C., . . . Place, L. L. (2006). Glycan Microarray Analysis of the Hemagglutinins from Modern and Pandemic Influenza Viruses Reveals Different Receptor Specificities. J. Mol.

Biol.(355), 1143–1155. doi: 10.1016/j.jmb.2005.11.002

Stray, S., Cummings, R., & Air, G. (2000). Influenza virus infection of desialylated cells.

Glycobiology,10(7), 649–658. Retrieved from

Takeda, M., Leser, G. P., Russell, C. J., & Lamb, R. A. (2003, December). Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion.

Proceedings of the National Academy of Sciences of the United States of America, 100(25), 14610–7. Retrieved from doi: 10.1073/pnas.2235620100

Tatu, U., Hammond, C., & Helenius, A. (1995). Folding and oligomerization of influenza hemagglutinin in the ER and the intermediate compartment. The EMBO journal, 14(7), 1340–1348. Retrieved from

Taubenberger, J., & Morens, D. (2006). 1918 Influenza: the mother of all pandemics.

Rev Biomed,12(1), 15–22. Retrieved from

Taubenberger, J. K. (2008). Influenza hemagglutinin attachment to target cells:

birds do it, we do it. Future Virol, 1(4), 415–418. doi: 10.2217/17460794.1.4.415 .Influenza

Taubenberger, J. K., Hultin, J. V., & Morens, D. M. (2008). Discovery and character-ization of the 1918 pandemic influenza virus in historical context. Antivir Ther, 12, 581–591.

Taubenberger, J. K., & Kash, J. C. (2010). Influenza Virus evolution, Host Adaptation and Pandemic Formation. Cell Host Microbe, 7(6), 440–451. doi: 10.1016/j.chom .2010.05.009.Influenza

Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D. A. A., Chen, L.-M., . . . Donis, R. O. (2012, March). A distinct lineage of influenza A virus from bats. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4269–

74. Retrieved from doi: 10.1073/pnas.1116200109

Tosh, C., Nagarajan, S., Behera, P., Rajukumar, K., Purohit, K., Kamal, R. P., . . . Dubey, S. C. (2008, January). Genetic analysis of H9N2 avian influenza viruses isolated from India. Archives of virology, 153(8), 1433–9. Retrieved from doi: 10.1007/

s00705-008-0131-9

Traving, C., & Schauer, R. (1998). Structure, function and metabolism of sialic acids.

Cellular and molecular life sciences,54, 1330–1349. Retrieved from

Van Poucke, S. G. M., Nicholls, J. M., Nauwynck, H. J., & Van Reeth, K. (2010,

Van Poucke, S. G. M., Nicholls, J. M., Nauwynck, H. J., & Van Reeth, K. (2010,