• Keine Ergebnisse gefunden

LetΞbery×ry diagonal matrix that consist of the firstrylargest eigenvalues of theT×T matrix (N T)1PN i=1ubiubi. Then by the definition of eigenvalues andH,b b = (N T)1PN

i=1ubiubiH. It’s easy to show thatb Ξis invertible following the proof of Proposition A.1 (i) inBai(2009) given the covergence rate of ˆθto θ is

N T. Then Hb H0R

= 1 N T

XN i=1

Ci

θθˆ θθˆ

Cib 1+ 1 N T

XN i=1

Ci

θθˆ

uib 1+ 1 N T

XN i=1

ui

θθˆ

Cib 1 + 1

N T XN i=1

H0ϕ0iεiHb + 1 N T

XN i=1

εiϕ0iH0b 1+ 1 N T

XN i=1

εiεib 1

(B.1)

whereR= N T1 PN

i=1ϕ0iϕ0iH0b 1. Following the proof of Proposition A.1 (ii) in Bai(2009), we can show that Ris invertible.

Lemma B.1 Under AssumptionsBtoD, we have (a) T1 bHH0R2=Op δNT2

,

(b) T1

Hb H0R

H0=Op δNT2 , T1

Hb H0R

F0=Op δNT2 ,

(c) T1

Hb H0R

Hb =Op δNT2 ,

(e) Ξ=Op(1),R=Op(1),Ξ1=Op(1),R1=Op(1). (f) RR

H0H0 T

1

=Op δNT2 ,

(g) MHbMH0 =Op δNT1 ,

(h) 1

N T XN ℓ=1

ϕε

Hb H0R

=Op

rT N

! +Op

T δ2NT

! ,

(i)

1 N T

XN h=1

hεhEhεh))H0

=Op(1), (j)

1 N T

XN h=1

H0hεhEhεh))H0

=Op(1), (m)

1 N

T XN ℓ=1

Eε)

=O(1),

(n) 1

N T XN ℓ=1

εEε)] =Op(1).

Proof of Lemma B.1. We can follow the way of the proof of Lemma A.1to prove this lemma. Thus, we omitted the details.

Lemma B.2 Under AssumptionsBtoD, we have 1

N T XN

i=1

ZbiMHbCi 1 N T

XN i=1

ZiMH0Ci=Op δNT1

1 N T

XN i=1

ZbiMHbZbi 1 N T

XN i=1

ZiMH0Zi=Op δNT1

34

Proof of Lemma B.2. With LemmaB.1 (g), we can follow the way of the proof of LemmaA.3 to prove this lemma.

Thus, we omitted the details.

Lemma B.3 Under AssumptionsA toD, we have (a) 1

Proof of LemmaB.3. Following the proof of LemmaA.9(a), (b) and (d), we can easily prove parts (a)-(c), respectively.

35

Consider (d). Since HbR1H0

= 1 N T

XN i=1

Ci

θθˆ θˆθ

CiHb H0Hˆ T

!1

0ϕ)1+ 1 N T

XN i=1

Ci

θˆθ

uiHb H0Hˆ T

!1

0ϕ)1

+ 1 N T

XN i=1

ui

θˆθ

CiHb H0Hˆ T

!1

0ϕ)1+ 1 N T

XN i=1

H0ϕ0iεiHb H0Hˆ T

!1

0ϕ)1

+ 1 N

XN i=1

εiϕ0i0ϕ)1+ 1 N T

XN i=1

εiεiHb H0Hˆ T

!1

0ϕ)1

36

We have

Consider the first result in (f). We have

by LemmasA.1(i), (m) and (n) and LemmaB.3(a). The other variant is derived in a similar manner.

Replacing ϕ0i by T1

Hb H0R

εi, with Lemma B.3 (d) and (e), we can prove (g). Following the way of proof of

38

LemmaA.4(i), we can prove (h). Now consider (i).

1 N

XN ℓ=1

XN h=1

Γ0VVh

T Γ0h

1 N T

XN ℓ=1

XN h=1

XT t=1

Γ0E(VℓtVht0h +

1 N T

XN ℓ=1

XN h=1

XT t=1

Γ0

VℓtVhtE(VℓtVht) Γ0h

1 N

XN ℓ=1

XN h=1

kΓ0kkΓ0hk¯σℓh+ 1

T

1 N

T XN ℓ=1

XN h=1

XT t=1

Γ0

VℓtVhtE(VℓtVht) Γ0h

=Op(1) since

E 1 N

XN ℓ=1

XN h=1

kΓ0kkΓ0hkσ¯ℓh

!

1 N

XN ℓ=1

XN h=1

EkΓ0k2EkΓ0hk21/2

¯ σℓh C

N XN ℓ=1

XN h=1

¯

σℓhC2 by AssumptionB3.

Lemma B.4 Under AssumptionsA toD, we have

1 N T

XN i=1

XN j=1

wijVjMbFMHbui= 1

N T XN i=1

XN j=1

wijVjMF0MH0εi+Op

1 δNT

+Op

N T δNT3

!

Proof of Lemma B.4. SinceMH0ui=MH0εi and MbFMHbMF0MH0=MF0

MHb MH0

+

MFbMF0

MH0+

MbFMF0 MHb MH0

we have

1 N T

XN i=1

XN j=1

wijVjMbFMHbui 1

N T XN i=1

XN j=1

wijVjMF0MH0εi

= 1

N T XN i=1

XN j=1

wijVjMF0

MHb MH0

ui+ 1

N T XN i=1

XN j=1

wijVj

MbFMF0 MH0ui

+ 1

N T XN i=1

XN j=1

wijVj

MbFMF0 MHbMH0

ui

=H1+H2+H3

39

Now we consider the term H1. Since MHb MH0 = T1(Hb H0R)RH0T1H0R(Hb H0R) T1(Hb H0R)(Hb H0R)T1H0

RR T1H0H01

H0, we have

1 N T

XN i=1

XN j=1

wijVjMF0

MHb MH0 ui

= 1

N T XN i=1

XN j=1

wijVj1

T(HbR1H0)

H0H0 T

1

H0ui

1

N T XN i=1

XN j=1

wijVj1

T(HbR1H0) RR

H0H0 T

1! H0ui

1

N T XN i=1

XN j=1

wijVj1

TH0R(Hb H0R)ui 1

N T XN i=1

XN j=1

wijVj1

T(Hb H0R)(Hb H0R)ui

1

N T XN i=1

XN j=1

wijVj1

TH0 RR

H0H0 T

1! H0ui

+ 1

N T XN i=1

XN j=1

wijVjF0 F0F01

F01

T(HbR1H0)

H0H0 T

1

H0ui

+ 1

N T XN i=1

XN j=1

wijVjF0 F0F01

F01

T(HbR1H0) RR

H0H0 T

1! H0ui

+ 1

N T XN i=1

XN j=1

wijVjF0 F0F01

F01

TH0R(Hb H0R)ui

+ 1

N T XN i=1

XN j=1

wijVjF0 F0F01

F01

T(Hb H0R)(Hb H0R)ui

+ 1

N T XN i=1

XN j=1

wijVjF0 F0F01

F01

TH RR

H0H0 T

1! H0ui

=H1.1+H1.2+H1.3+H1.4+H1.5+H1.6+H1.7+H1.8+H1.9

We first consider the termsH1.2 toH1.9. Note thatui=H0ϕ0i +εi. ForH1.2, we have

kH1.2k=

1 N T

XN i=1

XN j=1

wijVj1

T(Hb H0R)R1 RR

H0H0 T

1! H0ui

N T× 1 N

XN i=1

XN j=1

|wij| 1

TVj(Hb H0R)

ϕ0i1 TH0H0

RR

H0H0 T

1 R1

+ N× 1

N XN

i=1

XN j=1

|wij| 1

TVj(Hb H0R) 1

TH0εi

RR

H0H0 T

1 R1

=Op

N T δNT3

!

by LemmaA.1(f) and LemmasA.9(g), (h).

40

ForH1.3, we have

by Lemma B.1 (b), Lemmas A.9 (b)-(c) and Lemma B.3 (c). Similarly, we can show that H1.7 = Op Now we consider the termH1.1. Since

HbR1H0 we can decompose the termH1.1 as follows

1

We consider the last five termsH1.1.2 toH1.1.6. ForH1.1.2, we can derive that

For the termH1.1.5, we have

For the termH1.1.6, we have

Combining the above terms, we can show that H1= 1

1

by Lemma B.3 (e). In similar manner,

kH2.2k=

by Lemma B.1 (b) and Lemma B.3 (e) (g).

kH2.4k=

1 N T

XN i=1

XN j=1

wijVjT1F0

RR T1F0F01

F0MH0ui

(B.18)

1 N T

XN i=1

XN j=1

wijVjT1F0

RR T1F0F01 F0εi

(B.19)

+

1 N T

XN i=1

XN j=1

wijVjT1F0

RR T1F0F01

F0H0 H0H01

H0εi

(B.20)

rN

T 1 N

XN i=1

XN j=1

|wij|

VjF0

T

RR T1F0F01 F0εi

T

(B.21)

+ rN

T 1 N

XN i=1

XN j=1

|wij|

VjF0

T

RR T1F0F01 F0H0

T

H0H0 T

1 H0εi

T

(B.22)

=Op

rN T

1 δ2N T

!

by Lemma B.1 (f) and B.3 (c). To sum up,kH2k=Op

N δN T2

+Op

N T δ3N T

. Now we consider the termH3. Using

MbFMF0 =T1(bFF0R)RF0T1F0R(bFFR)0T1(bFF0R)(bFF0R)T1F0

RR T1F0F01 F0 andMHbMH0 =T1(HbH0R)RH0T1H0R(HbH0R)T1(HbH0R)(HbH0R)T1H0

RR T1H0H01 H we have

H3= 1

N T XN i=1

XN j=1

wijVj

MbFMF0 MHbMH0

ui (B.23)

= 1

N T XN i=1

XN j=1

wijVjT1(bFF0R)RF0T1(Hb H0R)RH0ui (B.24)

+ 1

N T XN i=1

XN j=1

wijVjT1(bFF0R)RF0T1H0R(Hb H0R)ui (B.25)

+ 1

N T XN i=1

XN j=1

wijVjT1(bFF0R)RF0T1(Hb H0R)(Hb H0R)ui (B.26)

+ 1

N T XN i=1

XN j=1

wijVjT1(bFF0R)RF0T1H0

RR T1H0H1 H0ui

+ 1

N T XN i=1

XN j=1

wijVjT1F0R(FbF0R)T1(Hb H0R)RH0ui (B.27)

+ 1

N T XN i=1

XN j=1

wijVjT1F0R(bFF0R)T1H0R(Hb H0R)ui (B.28)

+ 1

N T XN i=1

XN j=1

wijVjT1F0R(FbF0R)T1(Hb H0R)(Hb H0R)ui (B.29)

+ 1

N T XN i=1

XN j=1

wijVjT1F0R(bFF0R)T1H0

RR T1H0H1 H0ui

47

+ 1

N T XN

i=1

XN j=1

wijVjT1(FbF0R)(FbF0R)T1(Hb H0R)RHui (B.30)

+ 1

N T XN

i=1

XN j=1

wijVjT1(bFF0R)(bFF0R)T1H0R(Hb H0R)ui (B.31)

+ 1

N T XN

i=1

XN j=1

wijVjT1(FbF0R)(FbF0R)T1(Hb H0R)(Hb H0R)ui (B.32)

+ 1

N T XN

i=1

XN j=1

wijVjT1(bFF0R)(bFF0R)T1H0

RR T1H0H01 H0ui

+ 1

N T XN

i=1

XN j=1

wijVjT1F0

RR T1F0F01

F0T1(Hb H0R)RH0ui (B.33)

+ 1

N T XN

i=1

XN j=1

wijVjT1F0

RR T1F0F01

F0T1H0R(Hb H0R)ui (B.34)

+ 1

N T XN

i=1

XN j=1

wijVjT1F0

RR T1F0F01

F0T1(Hb H0R)(Hb H0R)ui (B.35)

+ 1

N T XN

i=1

XN j=1

wijVjT1F0

RR T1F0F01

F0T1H0

RR T1H0H01 H0ui

=H3.1.1+H3.1.2+H3.1.3+H3.1.4+ (B.36)

H3.2.1+H3.2.2+H3.2.3+H3.2.4+ (B.37)

H3.3.1+H3.3.2+H3.3.3+H3.3.4+ (B.38)

H3.4.1+H3.4.2+H3.4.3+H3.4.4.

kH3.1.1k=

1 N T

XN i=1

XN j=1

wijVjT1(bFF0R)RF0T1(Hb H0R)RH0ui

(B.39)

1 N T

XN i=1

XN j=1

wijVjT1(bFF0R)RF0T1(Hb H0R)RH0H0ϕ0i

(B.40)

+

1 N T

XN i=1

XN j=1

wijVjT1(bFF0R)RF0T1(Hb H0R)RH0εi

N T 1

N XN i=1

XN j=1

|wij|T1Vj(FbF0R)kRkT1F0(Hb H0R)RH0H0 T

ϕ0i (B.41)

+ N 1

N XN i=1

XN j=1

|wij|T1Vj(bFF0R)kRkT1F0(Hb H0R) H0εi

T

(B.42)

=Op

N T δN T3

!

by Lemma B.1 (b) and Lemma B.3 (e) (f).

kH3.1.2k=

1 N T

XN i=1

XN j=1

wijVjT1(bFF0R)RF0T1H0R(Hb H0R)ui

(B.43)

48

+

+

+

=Op Then, we have

1

Now we consider the termH1.1.1, then we have H1.1.1= 1

The termH1.1.1.2 is bounded in norm by

This completes the proof.

Lemma B.5 Under AssumptionsA toD, we have

1 N T

XN i=1

XN j=1

wijΓ0jF0MbFMHbui

= 1

N3/2T1/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMbFMHbui

1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1 FbF0 T

!1

FbVVMbFMHbui+Op

1 δ2NT

+Op

r T N3

!

Proof of Lemma B.5. We can follow the way of the proof of Lemma A.5to prove this lemma. Thus, we omitted the details.

Lemma B.6 Under AssumptionsA toD, we have 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1 FbF0 T

!1

FbVVMbFMHbui=Op

1 δNT

+Op

N T

! +Op

T N

!

Proof of Lemma B.6. We can follow the way of the proof of Lemma A.7to show that 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1 FbF0 T

!1

FbVVMbFMHbui

= 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1 FbF0 T

!1

FbE(VV)MbFMHbui+Op

1 δNT

+Op

T N

!

To proceed, we can follow the way of the proof of LemmaA.8to show that 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1 FbF0 T

!1

FbE(VV)MbFMHbui (B.103)

= 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1

F0F0 T

1

F0E(VV)MF0MH0εi+Op

1

T

+Op

N T

!

(B.104)

We write

H4= 1 N3/2T3/2

XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1

F0F0 T

1

F0E(VV)MF0MH0εi (B.105)

= 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1

F0F0 T

1

F0E(VV) (IT PH0PF0+PH0PF0)εi (B.106)

=H4.1+H4.2+H4.3+H4.4. First considerH4.1.

vec (H4.1) = vec

1 N3/2T3/2

XN i=1

XN ℓ=1

XN j=1

wijΓ0jΓ0

F0F0 T

1

F0E(VV)εi

(B.107)

= vec

1 N3/2T3/2

XN i=1

XN ℓ=1

XN j=1

wijΓ0jΥ0)1

F0F0 T

1XT s=1

XT t=1

fsE(vℓsvℓt)εit

(B.108)

= 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

XT s=1

XT t=1

wijE(vℓsvℓt)εitfs0Γ0jvec 0)1 F0F

T

1!

(B.109)

55

= 1

by LemmaA.1(m) and AssumptionB3. Then we have 1

. Next, in a similar manner we obtain

vec (H4.2) = vec

Similar toH4.1we can show that

1

. Combining the above facts, we derive thatH4=Op 1

T

,which completes the proof.

56

Lemma B.7 Under AssumptionsA toD, we have

1

N3/2T1/2 XN

i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMbFMHbui

= 1

N3/2T1/2 XN

i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMF0MH0εi+Op

1 δNT

+Op

T N

!

Proof of Lemma B.7. We can follow the way of the proof of Lemma A.6to show that 1

N3/2T1/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMF0MHbui 1 N3/2T1/2

XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMbFMHbui

= rT

N 1 N

XN i=1

XN j=1

wijΓ0j0)1 1 N

XN ℓ=1

XN h=1

Γ0VVh

T Γ0h

! 0)1

F0F0 T

1F0MHbui

T +Op

1 δNT

+Op

T N

!

(B.114) Now we consider the first term on the right hand side in (B.114). Note thatMH0ui=MH0εiandMH0MHb =PHbPH0. We can derive that

1

N3/2T1/2 XN

i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMF0MHbui

1 N3/2T1/2

XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMF0MH0εi

= 1

N3/2T1/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMF0PHbui 1 N3/2T1/2

XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMF0PH0ui

= 1

N3/2T1/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0V1

TMF0HbHbui 1 N3/2T1/2

XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMF0PH0ui

= 1

N3/2T1/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0V1 TMF0

Hb H0R

RH0ui

+ 1

N3/2T1/2 XN

i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0V1

TMF0H0R

Hb H0R

ui

+ 1

N3/2T1/2 XN

i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0V1 TMF0

Hb H0R Hb H0R

ui

+ 1

N3/2T1/2 XN

i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0V1

TMF0H0 RR

H0H0 T

1! H0ui

=I1+I2+I3+I4

We first consider the last three terms. Consider the termI2. By LemmasA.1(b) and (d), Lemmas A.4(a), (b) and (i),

57

we can derive that

Consider the termI3. We can derive that

kI3k ≤

by LemmaA.1(f) and LemmaA.4(d).

We first consider the termI1.2. We have

We consider the term I1.1. By the equation (B.1), we have 1

For the termI1.1.1, we have

The term I1.1.1.1 is bounded in norm by

1

by LemmaA.1(e) and LemmaA.4(d). Similarly, we can show the termI1.1.1.2is bounded in norm by

1

For the termI1.1.3, with the fact thatEhεh) =σε2IT, we can decompose it as which are bounded in norm by

1

For the termI1.1.5, with the fact thatkMF0Chk ≤ kChk, we have

Similarly, we can derive thatI1.1.6=Op

which is bounded in norm by 1

given the facts that

by AssumptionB3.

Combining the above terms, for the first term on the right hand side in (B.114), we can derive that

1

Next, we consider the second term on the right hand side in (B.114). It can be written as rT

+

by Lemma A.4 (a) (b), Lemma B.1 (b) and Lemma B.3 (h) (i).

kI6.3k ≤

rT N

1 N

XN i=1

XN j=1

wijΓ0j0)1 1 N

XN ℓ=1

XN h=1

Γ0VVh

T Γ0h

! 0)1

F0F0 T

1

T2F0

Hb H0R Hb H0R

H0ϕ0i +

rT N

1 N

XN i=1

XN j=1

wijΓ0jΓ0 1 N

XN ℓ=1

XN h=1

Γ0VVh

T Γ0h

! 0)1

F0F0 T

1

T2F0

Hb H0R Hb H0R

εi

rT

N 1 N

XN i=1

XN j=1

|wij|Γ0j0)1 1 N

XN ℓ=1

XN h=1

Γ0VVh

T Γ0h

0)1

F0F0 T

1

F0

Hb H0R T

×

Hb H0R H0 T

ϕ0i

+ rT

N 1 N

XN i=1

XN j=1

|wij|Γ0j0)1

1 N

XN ℓ=1

XN h=1

Γ0VVh

T Γ0h

0)1

F0F0 T

1

F0

Hb H0R T

×

Hb H0R

εi

T

=Op

rT N

1 δ4N T

!

by Lemma A.4 (a) (b), Lemma B.1 (b) and Lemma B.3 (h) (i).

65

kI6.4k

by Lemma A.4 (a) (b) (e), Lemma B.1 (f) and Lemma B.3 (i). Therefore, noting that T /N tends to a finite positive constant we concludeI6=Op δN T2 with (B.115), we complete the proof.

66

Lemma B.8 Under AssumptionsAtoD, we have

1 N T

XN i=1

Γ0iF01MbF1MHbui

= 1

N3/2T1/2 XN i=1

XN ℓ=1

Γ0i0)1Γ0Vℓ,1MbF1MHbui

1

N3/2T3/2 XN i=1

XN ℓ=1

Γ0i0)1 Fb1F01 T

!1

Fb1Vℓ,1Vℓ,1MbF1MHbui+Op δNT2 +Op

r T N3

!

Proof of Lemma B.8. First, we have

1 N T

XN i=1

Γ0i(F01Fb1R1)MbF1MHbui

= 1

N T XN i=1

Γ0i 1 N T

XN ℓ=1

R1ΞL1Fb1Vℓ,1Γ0F01MbF1MHbui

1

N T XN i=1

Γ0i 1 N T

XN ℓ=1

R1ΞL1Fb1F01Γ0Vℓ,1MbF1MHbui

1

N T XN i=1

Γ0i 1 N T

XN ℓ=1

R1ΞL1Fb1Vℓ,1Vℓ,1MbF1MHbui

=J1+J2+J3

We consider the term J1. By LemmaA.1(h), we have 1

N T XN ℓ=1

Fb1Vℓ,1Γ0=R 1 N T

XN ℓ=1

F01Vℓ,1Γ0+ 1 N T

XN ℓ=1

Fb1F01R

Vℓ,1Γ0

=Op

1

N T

+Op

1 N

+Op

1 N δ2NT

! .

(B.123)

Note that thatMHbH0=MHb

H0HbR1

. Given the equation (B.123), we can derive that

kJ1k=

With the definition ofR,J2can be reformulated as J2=N3/2T1/2

Combining the above three terms, we can complete the proof.

Lemma B.9 Under AssumptionsAtoD, we have

1

Proof of Lemma B.9. Note thatMH0εi =MH0ui, we can derive that

1

N3/2T1/2 XN i=1

XN ℓ=1

Γ0i0)1Γ0Vℓ,1MbF1MHbui 1 N3/2T1/2

XN i=1

XN ℓ=1

Γ0i0)1Γ0Vℓ,1MF0

1MH0εi

!

= 1

N3/2T1/2 XN i=1

XN ℓ=1

Γ0i0)1Γ0Vℓ,1

MbF1MF0

1

MH0εi

1

N3/2T1/2 XN i=1

XN ℓ=1

Γ0i0)1Γ0Vℓ,1MF0

1

MHbMH0 ui

1

N3/2T1/2 XN i=1

XN ℓ=1

Γ0i0)1Γ0Vℓ,1

MbF1MF0

1 MHbMH0 ui

=K1+K2+K3

Now we consider the termK1. Then

1

N3/2T1/2 XN i=1

XN ℓ=1

Γ0i0)1Γ0Vℓ,1(MbF1MF0

1)MH0εi

= 1

N3/2T3/2 XN i=1

XN ℓ=1

Γ0i0)1Γ0Vℓ,1(Fb1F01R)RF01MH0εi

+ 1

N3/2T3/2 XN i=1

XN ℓ=1

Γ0i0)1Γ0Vℓ,1F01R(bF1F01R)MH0εi

+ 1

N3/2T3/2 XN i=1

XN ℓ=1

Γ0i0)1Γ0Vℓ,1(bF1F01R)(bF1F01R)MH0εi

+ 1

N3/2T3/2 XN i=1

XN ℓ=1

Γ0i0)1Γ0Vℓ,1F01 RR(T1F01F01)1

F01MH0εi

=K1.1+K1.2+K1.3+K1.4 The term K1.1 is bounded in norm by

kK1.1k ≤ 1 N

XN i=1

Γ0i

1 N T

XN ℓ=1

Γ0Vℓ,1

Fb1F01R

T

kRk0)1

F01MH0εi

T

1 N

XN i=1

Γ0i

1 N T

XN ℓ=1

Γ0Vℓ,1

Fb1F01R

T

kRk0)1

× F01εi

T +

F01F0 T

F0F0 T

1 F0εi

T +

F01H0 T

H0H0 T

1 H0εi

T

!

=Op

1 δNT

Similarly, with the fact that 1 N T

PN

ℓ=1Γ0Vℓ,1F01=Op(1), we can show thatK1.4=Op T1/2δNT2 .

For the termK1.2, we have

This completes the proof.

Lemma B.10 Under AssumptionsA toD, we have N3/2T3/2

XN i=1

XN ℓ=1

Γ0i0)1(T1Fb1F01)1Fb1Vℓ,1Vℓ,1MbF1MHbui

=OpNT1) +Op(N1/2δNT2) +Op(T1/2δNT2)

Proof of Lemma B.10. Following the way of the proof of LemmaB.6, we can prove this lemma. Thus, we omit the details.

Lemma B.11 Under AssumptionsA toD, we have

1 N T

XN i=1

ViMbF1MHbui= 1

N T XN i=1

ViMF0

1MH0εi+Op

1 δNT

+Op

N T δ3NT

!

Proof of Lemma B.11. Following the way of the proof of LemmaB.4, we can show that

1 N T

XN i=1

ViMbF1MHbui= 1

N T XN i=1

ViMFb1MH0εi+Op

1 δNT

+Op

N T δ3NT

!

Then, similar to the proof of the termH2, we can prove that

1 N T

XN i=1

ViMFb1MH0εi= 1

N T XN i=1

ViMF0

1MH0εi+Op

N T δNT3

!

This completes the proof.

Proof of Proposition 3.2. The termN1/2T1/2PN

i=1ZbiMHbui, is equal to

N1/2T1/2PN i=1

PN

j=1wijXjMbFMHbui

N1/2T1/2PN

i=1Xi,1MbF1MHbui

N1/2T1/2PN

i=1XiMbFMHbui

(B.124)

Consider the first term in (B.124). By LemmasB.4,B.5,B.6 andB.7and the fact thatMH0Xj =MH0Vj, we can derive that

1 N T

XN i=1

XN j=1

wijXjMbFMHbui

= 1

N T XN i=1

XN j=1

wijVjMH0εi 1 N3/2T1/2

XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMH0εi+Op

1 δNT

+Op

N T δ3NT

!

= 1

N T XN i=1

XN j=1

wijXjMH0εi+Op

1 δNT

+Op

N T δ3NT

!

whereXj=XjN1 PN

ℓ=1XΓ00)1Γ0j.

Consider the second term in (B.124). By LemmasB.8,B.9,B.10andB.11, we have

1 N T

XN i=1

Xi,1MbF1MHbui = 1

N T XN i=1

Xi,

1MF0

1MH0εi+Op

1 δNT

+Op

N T δNT3

!

Similarly, for the third term, we can show that

1 N T

XN i=1

XiMbFMHbui= 1

N T XN i=1

XiMH0εi+Op

1 δNT

+Op

N T δ3NT

!

then

To proceed, we consider another asymptotic representation. Since

E

by Assumptions B3andE3. Then, we can derive that 1

Similarly, we can show that 1 N T

PN i=1

PN

j=1wijVjPH0εi=Op(T1/2). Then

1 N T

XN i=1

XN j=1

wijXjMH0εi

= 1

N T XN i=1

XN j=1

wijVjεi 1

N T XN i=1

XN j=1

wijVjPH0εi 1 N3/2T1/2

XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMH0εi

= 1

N T XN i=1

XN j=1

wijVjεi+Op

1 δNT

Following the way of the proof of the above term, we can prove that

1 N T

XN i=1

Xi,

1MF0

1MH0εi= 1

N T XN i=1

Vi,1εi+Op

1 δNT

1 N T

XN i=1

X

iMH0εi= 1

N T XN i=1

Viεi+Op

1 δNT

Thus, we have

1 N T

XN i=1

ZbiMHbui=

1 N T

PN i=1

PN

j=1wijVjεi

1 N T

PN

i=1Vi,1εi

1 N T

PN i=1Viεi

+Op

1 δNT

+Op

N T δ3NT

!

With the above proof, we can also show that

1 N T

XN i=1

ZbiMHbui=

1 N T

PN i=1

PN

j=1wijXjMF0εi

1 N T

PN

i=1Xi,1MF0

1εi

1 N T

PN

i=1XiMF0εi

+Op

1 δNT

+Op

N T δNT3

!

This completes the proof.

Proof of Theorem 3.2. Substituting yi=Ciθ+ui intoecy and multiplying by

N T we have

N T(eθθ) =(AeBe1A)e 1AeBe1·N1/2T1/2 XN i=1

ZeiMHbui.

With LemmasA.3andB.2, we have Ae A=N1T1

XN i=1

ZbiMHbCiN1T1 XN i=1

ZiMH0Ci=OpNT1), BbB=N1T1

XN i=1

ZbiMHbZbiN1T1 XN i=1

ZiMH0Zi=OpNT1).

(B.125)

SinceZi= (PN

j=1wijMF0Xj,MF0

1Xi,1,MF0Xi), we have N1T1

XN i=1

ZiPH0Ci=

N1T1PN i=1

PN

j=1wijVj(PH0PF0)Ci

N1T1PN

i=1Vi,1

PH0PF0

1PH0

Ci

N1T1PN

i=1Vi(PH0PF0)Ci

The first block in the above matrix isOp(T1/2), since it is bounded in norm by kN1T1

XN i=1

XN j=1

wijVjPH0Cik+kN1T1 XN i=1

XN j=1

wijVjPF0Cik

T1/2·N1 XN i=1

XN j=1

|wij|kT1/2VjH0kkT1/2Cik · kT1/2H0kk(T1H0H0)1k

+T1/2·N1 XN

i=1

XN j=1

|wij|kT1/2VjF0kkT1/2Cik · kT1/2F0kk(T1F0F0)1k

=Op(T1/2),

with the similar argument, the other blocks can be proved to beOp(T1/2). Then N1T1

XN i=1

ZiPH0Ci=Op(T1/2). (B.126) A similar derivation gives

N1T1 XN i=1

ZiPH0Zi=Op(T1/2). (B.127) By Proposition3.2, (B.125)(B.126), and (B.127), we obtain

N T .(eθθ) = (AB1A)1AB1·N1/2T1/2 XN i=1

Ziεi+OpNT1) +Op(N1/2T1/2δNT3).

As N, T → ∞ with N/T2 0 and T /N2 0, the central limit theorem of the martingale difference in Kelejian and Prucha(2001) can be applicable. Then

N T(eθθ)−→d N(0,Ψ).

With the equation (B.125), it’s sufficient to prove ˜σ2ε is the consistent estimator ofσε2. Note that MHb(yiCi˜θ) =Ci˜θ) +MHbH0ϕ0i +MHbεi,

then

˜ σ2εσ2ε

=N1T1 XN i=1

θ)˜ CiCiθ)˜

+ 2N1T1 XN i=1

˜θ)CiMHbH0ϕ0i + 2N1T1 XN i=1

˜θ)CiMHbεi

+N1T1 XN i=1

ϕ0iH0MHbH0ϕ0i + 2N1T1

XN i=1

ϕ0iH0MHbεiN1T1 XN i=1

εiPHbεi+N1T1 XN i=1

XT t=1

2itσ2ε).

The first term can be easily shown both to beOpNT4). The last term is Op(N1/2T1/2). SinceMHbH0= MHb(H0HbR1), the second term is bounded in norm by

N1 XN i=1

kT1/2Cikkϕ0ik · kT1/2(H0HbR1)kkθθ˜k=Op(N1/2T1/2δNT1) +OpNT4),

the fourth term is bounded in norm by N1

XN i=1

kϕ0ik2· kT1/2(H0HbR1)k2=OpNT2), the fifth term is bounded in norm by

2N1 XN

i=1

kT1/2εikkϕ0ik · kT1/2(H0HbR1)k=OpNT1). The third term is bounded in norm by

2N1T1 XN i=1

kT1/2CikkT1/2εik · kθθ˜k=Op(N1/2T1/2) +OpNT3), the sixth term is bounded in norm by

N1T2 XN i=1

kεiHbk2N1T1 XN i=1

kT1/2εiH0k2· kRk2+N1T1 XN i=1

kεik2· kT1/2(Hb H0R)k2, which isOp δNT2

. Collecting the above terms, we have ˜σε2σε2=OpNT1). Thus, we complete the proof.

Proof of Theorem3.3. Notingeui=uiCi

θeθ

we have 1 N T

PN

i=1ZbiMHbeui= 1 N T

PN

i=1ZbiMHbui Ae

N T e θθ

. Since N T

e θθ

= AB1A1

AB11 N T

PN

i=1ZiMH0εi+op(1) by Proposition 3.2 and definingL =1/2Awe have ˆ1/21

N T

PN

i=1ZbiMHbeui =ML1/21 N T

PN

i=1ZiMH0εi+op(1) withML=I3kL(LL)1L whose rank isν= 3k(k+ 2), which yields

1 N T

PN

i=1ueMHbZb

iˆN T1 PN

i=1ZbiMHbued χ2ν as required. Thus, we complete the proof.