• Keine Ergebnisse gefunden

Throughout the appendix, we useCto denote a generic finite constant large enough, which need not to be the same at each appearance. Denote the projection matrixPA=A(AA)1Aand the residual makerMA=IPAfor a matrixA.

LetΞberx×rxdiagonal matrix that consist of the firstrxlargest eigenvalues of the T×T matrix (N T)1PN

i=1XiXi. Then by the definition of eigenvalues andF,b b = (N T)1PN

i=1XiXiF. It’s easy to show thatb Ξ is invertible following the proof of Lemma A.3 inBai(2003). Then

FbF0R= 1 N T

XN i=1

F0Γ0iVib 1+ 1 N T

XN i=1

ViΓ0iF0b 1+ 1 N T

XN i=1

ViVib 1 (A.1) and

ˆftRft0= 1 N T

XN i=1

Ξ1FbViΓ0ift0+ 1 N T

XN i=1

Ξ1FbF0Γ0ivit+ 1 N T

XN i=1

Ξ1FbVivit (A.2) whereR= (N T)1PN

i=1Γ0iΓ0iF0b 1. Following the proof of Lemma A.3 inBai(2003) again, we can show thatRis invertible.

LetΞLbe arx×rxdiagonal matrix that consists of the firstrxlargest eigenvalues of theT×Tmatrix (N T)1PN

i=1Xi,1Xi,1. Then by the definition of eigenvalues andFb1,Fb1ΞL= (N T)1PN

i=1Xi,1Xi,1Fb1. It’s easy to show thatΞL is in-vertible following the proof of Lemma A.3 inBai(2003). Then

Fb1F01R

= 1 N T

XN i=1

F01Γ0iVi,1Fb1ΞL1+ 1 N T

XN i=1

Vi,1Γ0iF01Fb1ΞL1+ 1 N T

XN i=1

Vi,1Vi,1Fb1ΞL1 (A.3)

where R = (N T)1PN

i=1Γ0iΓ0iF01Fb1ΞL1. Following the proof of Lemma A.3 in Bai (2003) again, we can show thatRis invertible.

1

Lemma A.1 Under AssumptionsBtoD, we have

(a) T1kFbF0Rk2=OpNT2), T1kFb1F01Rk2=OpNT2), (b) T1(bFF0R)F0=OpNT2), T1(bFF0R)F01=OpNT2),

T1(Fb1F01R)F0=OpNT2), T1(bF1F01R)F01=OpNT2), (c) T1(bFF0R)Fb=OpNT2), T1(bFF0R)Fb1=Op δNT2

, T1(Fb1F01R)Fb =OpNT2), T1(bF1F01R)Fb1=OpNT2), (d) T1(bFF0R)H0=OpNT2), T1(bF1F01R)H0=OpNT2), (e) Ξ=Op(1) ,R=Op(1),Ξ1=Op(1),R1=Op(1),

ΞL=Op(1),R=Op(1),ΞL1=Op(1),R1=Op(1)

(f) RR(T1F0F0)1=OpNT2),RR(T1F01F01)1=Op δNT2 , (g) MbFMF0=OpNT1),MbF1MF0

1 =OpNT1), (h) N1/2T1/2

XN ℓ=1

Γ00 V(bFF0R) =Op(N1/2T1/2) +OpNT2T1/2),

N1/2T1/2 XN ℓ=1

Γ00 Vℓ,1(bF1F01R) =Op(N1/2T1/2) +OpNT2T1/2),

(i) kN1/2T1 XN h=1

(VhVhE(VhVh))F0k=Op(1),

(j) kN1/2T1 XN h=1

F0(VhVhE(VhVh))F0k=Op(1),

(k) kN1/2T1 XN h=1

(VhVhE(VhVh))H0k=Op(1),

(l) kN1/2T1 XN h=1

F0(VhVhE(VhVh))H0k=Op(1),

(m) kN1T1/2 XN ℓ=1

E(VV)k=O(1),

(n) N1/2T1 XN ℓ=1

[VVE(VV)] =Op(1).

Proof of Lemma A.1. For the proofs of (a) to (f), and (h), see Proof of Lemma 4 in Supplemental Material,Norkute et al.(2020). For (g), we decompose the left hand side term as

MbFMF0 = Fb

FbF0R

T

FbF0R RF0

T 1

TF0 RR

F0F0 T

1! F0 then it will be bounded in norm by

Fb

T

FbF0R

T +kRk

F0

T

FbF0R

T +

F0

T

2RR

F0F0 T

1=Op δNT1

with LemmasA.1(a), (e), (f) and the facts that T1/2Fb2 =rx andET1/2F02C by AssumptionC. For (i), we have

2

1 N T

XN h=1

(VhVhE(VhVh))F0 =

1 T

XT s=1

1 N T

XN h=1

XT t=1

[vhsvhtE(vhsvht)]ft0

2

1/2

=Op(1) sinceEN T1 PN

h=1

PT

t=1[vhsvhtE(vhsvht)]ft0

2

C by AssumptionB7. For (j), it holds because

E

1 N T

XN h=1

F0(VhVhE(VhVh))F0

2

C

which can be proved following the proof of Lemma A.2(i) in Bai(2009) with Assumption B8. The proofs of (k) and (l) are similar to those of (i) and (j), respectively.

Consider (m). Since

1 N

XN i=1

|E(visvit)| ≤ 1 N

XN i=1

(E(visvis)E(vitvit))1/2

1 N

XN i=1

E(visvis) 1 N

XN j=1

E vjtvjt

1/2

C

we have

1 N

T XN ℓ=1

E(VV)

2

= 1 T

XT s=1

XT t=1

1 N

XN i=1

E(visvit)

2

1 T

XT s=1

XT t=1

1 N

XN i=1

|E(visvit)| 1 N

XN j=1

E vjsvjt C T

XT s=1

XT t=1

1 N

XN i=1

|E(visvit)| ≤ C T

XT s=1

XT t=1

˜

σstC2,

by AssumptionB3.

Consider (n), we can derive that

E

1 N T

XN ℓ=1

[VVE(VV)]

2

=E

1 T2

XT s=1

XT t=1

"

1 N

XN ℓ=1

(vℓsvℓtE(vℓsvℓt))

#2

= 1 T2

XT s=1

XT t=1

E

"

1 N

XN ℓ=1

(vℓsvℓtE(vℓsvℓt))

#2

C ,

by AssumptionB4. Then we can prove part (n) by Markov inequality. This completes the proof.

3

Lemma A.2 Under AssumptionsAtoD, for alli, we have

Proof of Lemma A.2. (a) can be derived easily with AssumptionA.

Consider (b). with AssumptionsAandC, we have E

Consider (c). By Cauchy-Schwardz inequality, we have

E by AssumptionsA, B3, andC.

Consider (d). We have

E

by AssumptionsA, B8, andC.

Consider (e). We have

E

1 N T

XN ℓ=1

εi[VVE(VV)]

2

= 1 T

XT t=1

E

1 N T

XN ℓ=1

XT s=1

εis[vℓsvℓtE(vℓsvℓt)]

2

C

Consider (f). We have E

1

TViF

2

= 1 T

XT s=1

XT t=1

tr [E(visvit)]E fs0ft0

1 T

XT s=1

XT t=1

kEvisvitk

Efs02Eft021/2

C T

XT s=1

XT t=1

˜ σstC2

by AssumptionsB3andC. This completes the proof.

Lemma A.3 Under AssumptionsAtoD, we have (a) N1T1

XN i=1

XiMbFXiN1T1 XN i=1

XiMF0Xi=OpNT1),

(b) N1T1 XN

i=1

XN j=1

XN ℓ=1

wijwiℓXjMbFXN1T1 XN i=1

XN j=1

XN ℓ=1

wijwiℓXjMF0X=OpNT1),

(c) N1T1 XN i=1

XN j=1

wijXjMbFMbF1Xi,1N1T1 XN i=1

XN j=1

wijXjMF0MF0

1Xi,1=OpNT1) (d) N1T1

XN i=1

XN j=1

wijXjMbFXiN1T1 XN i=1

XN j=1

wijXjMF0Xi=OpNT1),

(e) N1T1 XN i=1

Xi,1MbF1Xi,1N1T1 XN i=1

Xi,1MF0

1Xi,1=OpNT1), (f) N1T1

XN i=1

Xi,1MbF1MbFXiN1T1 XN i=1

Xi,1MF0

1MF0Xi=OpNT1), (g) N1T1

XN i=1

XN j=1

wijwiYMbFXjN1T1 XN i=1

XN j=1

wijwiYMF0Xj =OpNT1),

(h) N1T1 XN i=1

wiYMbF1Xi,1N1T1 XN i=1

wiYMF0

1Xi,1=OpNT1), (i) N1T1

XN i=1

wiYMbFXiN1T1 XN i=1

wiYMF0Xi=OpNT1),

(j) N1T1 XN i=1

XN j=1

wijyi,1MbFXjN1T1 XN i=1

XN j=1

wijyi,1MF0Xj=OpNT1),

(k) N1T1 XN i=1

yi,1MbF1Xi,1N1T1 XN i=1

yi,1MF0

1Xi,1=OpNT1), (l) N1T1

XN i=1

yi,1MbFXiN1T1 XN

i=1

yi,1MF0Xi=OpNT1),

(m) N1T1 XN i=1

Xi,1MbF1XiN1T1 XN i=1

Xi,1MF0

1Xi=OpNT1).

Proof of Lemma A.3. For (a), please see Lemma 6 in Norkute et al.(2020). For (b), the left hand side is bounded in

5

norm by

by LemmaA.1(g). With AssumptionsB, CandD, it’s easy to show that

Ekxitk4C (A.4)

for alli andt. In addition, we can derive that

E

by AssumptionE3and the equation (A.4). Then by Markov inequality, we derive that 1

Combining the above equations, we can derive that (b). Consider (c), we can bound the left hand side term as

Similar to the equation (A.5), we can show that 1 N

XN i=1

XN j=1

|wij| Xj

T Xi,1

T

=Op(1)

with Markov inequality. Then we have (c). The cases (d) to (m) can be proved similarly. This completes the proof.

Lemma A.4 Under AssumptionsAtoE, we have (a) 1

N XN i=1

XN j=1

|wij|Γ0jϕ0i=Op(1)

(b) 1 N

XN i=1

XN j=1

|wij|Γ0jϕ0i=Op(1)

(c) 1 N

XN i=1

XN j=1

|wij|Γ0j εi

T

=Op(1)

(d) 1 N

XN i=1

XN j=1

|wij|Γ0j ui

T

=Op(1)

(e) 1 N

XN i=1

XN j=1

|wij|Γ0j 1

TF0εi

=Op(1), XN j=1

|wij|Γ0j 1

TH0εi

=Op(1)

(f) 1 N

XN i=1

XN j=1

|wij|Γ0j

1 N T

XN ℓ=1

εiE(VV)F0

=Op(1) (g) 1

N XN i=1

XN j=1

|wij|Γ0j

1 N T

XT ℓ=1

εi[VVE(VV)]F0

=Op(1) (h) 1

N XN i=1

XN j=1

|wij|Γ0j

1 N T

XT ℓ=1

εi[VVE(VV)]

=Op(1) (i) 1

N XN i=1

XN j=1

|wij|Γ0j1 T

F0FRb 1 εi

=Op δNT2 Proof of Lemma A.4. Consider (a). By Cauchy-Schwardz inequality, we have

E 1 N

XN i=1

XN j=1

|wij|Γ0jϕ0i = 1

N XN i=1

XN j=1

|wij|E Γ0jϕ0i

1 N

XN i=1

XN j=1

|wij|

EΓ0j2Eϕ0i21/2

C N

XN i=1

XN j=1

|wij| ≤C2

Then we derive that P

1 N

XN i=1

XN j=1

|wij|Γ0jϕ0iM

EN1

PN i=1

PN

j=1|wij|Γ0jϕ0i

M C2

M

by the Markov inequality. Thus, for anyǫ >0, there existsM =C2/ǫ, such that

P

1 N

XN i=1

XN j=1

|wij|Γ0jϕ0iM

ǫ .

Then we complete the proof of (a). Following the proof of part (a), we can prove part (b) with Ekϕik2C, and prove part (c) with Lemma A.2(a).

7

Consider (d). Note that T1/2F0 = Op(1) and T1/2H0 =Op(1). With LemmasA.4 (a) to (c), we can prove (d) easily with the definition ofui.

Following the proof part of (a), we can prove part (e) with Lemma A.2(b), and we can prove part (f) with Lemma A.2(c).

Consider (g). We can show that

E

by AssumptionD and LemmaA.2(d).

Following the proof of (g), we can prove part (h) with AssumptionDand Lemma A.2(e).

Consider (i). With the equation (A.1), we have 1

Lemma A.5 Under AssumptionsAtoD, we have

1 N T

XN i=1

XN j=1

wijΓ0jF0MbFui

= 1

N3/2T1/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMbFui

1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1 FbF0 T

!1

FbVVMbFui+Op

1 δNT2

+Op

r T N3

!

Proof of Lemma A.5. First, we have

1 N T

XN i=1

XN j=1

wijΓ0j(F0FRb 1)MbFui

= 1

N T XN i=1

XN j=1

wijΓ0j 1 N T

XN ℓ=1

R1Ξ1FbVΓ0F0MbFui

1

N T XN i=1

XN j=1

wijΓ0j 1 N T

XN ℓ=1

R1Ξ1FbF0Γ0VMbFui

1

N T XN i=1

XN j=1

wijΓ0j 1 N T

XN ℓ=1

R1Ξ1FbVVMbFui

=B1+B2+B3

We consider the termB1. By LemmaA.1(h), we have 1

N T XN ℓ=1

FbVΓ0 =R 1 N T

XN ℓ=1

F0VΓ0+ 1 N T

XN ℓ=1

FbF0R

VΓ0

=Op

1

N T

+Op

1 N

+Op

1 N δNT2

! .

(A.6)

Note that thatMbFF0=MbF

F0FRb 1

andMbF=IT T1FbbF. Given the equation (A.6), we can derive that

B1= 1

N T XN i=1

XN j=1

wijΓ0j 1 N T

XN ℓ=1

R1Ξ1FbVΓ0

F0FRb 1

ui (A.7)

1

N T XN i=1

XN j=1

wijΓ0j 1 N T2

XN ℓ=1

R1Ξ1FbVΓ0

F0FRb 1

FRb F0ui (A.8)

1

N T XN i=1

XN j=1

wijΓ0j 1 N T2

XN ℓ=1

R1Ξ1FbVΓ0

F0FRb 1

Fb

FbF0R

ui (A.9)

=B1.1+B1.2+B1.3.

kB1.1k ≤

1 N T

XN i=1

XN j=1

wijΓ0j 1 N T

XN ℓ=1

R1Ξ1FbVΓ0

F0FRb 1

H0ϕ0i

(A.10)

+

1 N T

XN i=1

XN j=1

wijΓ0j 1 N T

XN ℓ=1

R1Ξ1FbVΓ0

F0FRb 1

εi

(A.11)

9

Consider the termB2. With the definition ofR, B2can be reformulated as

B2= 1

Consider the termB3. With the definition ofR, B3can be written as B3= 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1 FbF0 T

!1

FbVVMbFui

Combining the above three terms, we can complete the proof.

Lemma A.6 Under AssumptionsAtoD, we have

1

N3/2T1/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMbFui

= 1

N3/2T1/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMF0ui

+ rT

N 1 N

XN i=1

XN j=1

wijΓ0j0)1 1 N

XN ℓ=1

XN h=1

Γ0VVh

T Γ0h

! 0)1

F0F0 T

1

F0ui

T +Op

1 δNT

+Op

T N

!

Proof of Lemma A.6. Note thatMF0MbF =PbFPF0 andPbF =T1FbbF. We can derive that

1

N3/2T1/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMbFui− − 1 N3/2T1/2

XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VMF0ui

= 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0V(bFF0R)RF0ui

+ 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VF0R(bFF0R)ui

+ 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0V(bFF0R)(bFF0R)ui

+ 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0VF0 RR(T1F0F0)1 F0ui

=C1+C2+C3+C4

We first consider the last three terms. Consider the termC2. By Lemmas A.1(b) and (d), LemmasA.4(a), (b) and (i), we can derive that

kC2k ≤

1 N

XN i=1

XN j=1

|wij|Γ0jϕ0i

1 N T

XN ℓ=1

Γ0VF0 1

T

FbF0R

H0

0)1kRk

+

1 N

XN i=1

XN j=1

|wij|Γ0j1 T

FbF0R

εi

1 N T

XN ℓ=1

Γ0VF0

0)1kRk

=Op δNT2 given the fact that (N T)1/2PN

ℓ=1Γ0VF0=Op(1) andui =H0ϕ0i +εi.

11

Consider the termC3. Sinceui=H0ϕ0i +εi, we can derive that

We first consider the termC1.2. We have

We consider the term C1.1. By the equation (A.1), we have The termC1.1.1 can be decomposed as

1

The termC1.1.1.1is bounded in norm by

1

by LemmaA.1(e) and LemmaA.4(d). Similarly, we can show the termC1.1.1.2is bounded in norm by

1

For the termC1.1.3, we can decompose it as 1

N3/2T1/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0V 1 N T

XN h=1

E(VhVh)F00R F0Fˆ T

!1

0)1

F0F0 T

1

F0ui

T

+ 1

N3/2T1/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0V 1 N T

XN h=1

(VhVhE(VhVh))F0R F0Fˆ T

!1

0)1

F0F0 T

1

F0ui

T

+ 1

N3/2T1/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0V 1 N T

XN h=1

E(VhVh)

FbF0R F0Fˆ T

!1

0)1

F0F0 T

1

F0ui

T

+ 1

N3/2T1/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1Γ0V 1 N T

XN h=1

(VhVhE(VhVh))

FbF0R F0Fˆ T

!1

0)1

F0F0 T

1

F0ui

T

which are bounded by 1 N

XN i=1

XN j=1

|wij|Γ0j 1

Tui F0Fb

T

!1

F0F0 T

1 F0

T

0)12kRk

× 1

T 1

T XT s=1

XT t=1

1

N XN ℓ=1

Γ0vℓs

ft0E1 N

XN h=1

vhsvht + 1

N 1

N T XN ℓ=1

Γ0V 1

N T XN h=1

(VhVhE(VhVh))F0

+ 1

N T XN ℓ=1

Γ0V 1 N

T XN h=1

E(VhVh)FbF0R

T +

rT N

1

N T XN ℓ=1

Γ0V

1 N T

XN

h=1

VhVhE(VhVh)

FbF0R

T

!

=Op

T δ2NT

! +Op

1

N

by LemmasA.1(a), (i), (m) and (n) and LemmaA.4(d), and the fact that

1 T

XT s=1

XT t=1

1 N

XN ℓ=1

Γ0vℓs

!

ft0E 1 N

XN h=1

vhsvht

!=Op(1)

14

because

by AssumptionsB3,CandD.

Combining the above terms, we can derive that

1

This completes the proof.

Lemma A.7 Under AssumptionsAtoD, we have

1

Proof of Lemma A.7. Denote the left-hand-side of the above equation

C5= 1

1

kC5.3.1k ≤

+

+ 1

×

FbF0R

T

2

kRk

FbF0R

H0 T

ϕ0i (A.81)

+ T 1

N XN i=1

XN j=1

|wij|Γ0j0)1

FbF0 T

!1

PN

ℓ=1(VVE(VV))

N T

(A.82)

×

FbF0R

T

2

kRk

FbF0R εi

T

(A.83)

=Op

T /δN T2

by Lemma A.1 (a), Lemma A.2 (n) and Lemma A.4 (a) (e) (i). Thus we concludeC5 =Op

T /δN T2

+Op T1/2 as required.

Lemma A.8 Under AssumptionsAtoD, we have 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1 FbF0 T

!1

FbE(VV)MbFui

= 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1

F0F0 T

1

F0E(VV)MF0ui+Op

1

T

+Op

N T

!

ifT /N20 asN, T → ∞.

Proof of Lemma A.8. Note that by AssumptionsB5, we have

E(VV)MbFui

µmax(E(VV))MbFui

Ckuik and

E(VV)

MbFMF0 ui

µmax(E(VV))

MbFMF0 ui

CMbFMF0kuik=OpNT1)kuik In addition,

FbF0 T

!1

Fb

T

F0F0 T

1

F0

T

=

FbF0 T

!1

Fb

T

FbF0 T

!1

Fb

T

PF0

=

FbF0 T

!1

Fb

T

MF0

=

FbF0 T

!1

FbF0R

T MF0

FbF0 T

!1

FbF0R

T

=Op δNT1

20

By substracting and adding terms, we have 1

N3/2T3/2 XN

i=1

XN ℓ=1

XN j=1

wijΓ0j0)1 FbF0 T

!1

FbE(VV)MbFui

1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1

F0F0 T

1

F0E(VV)MF0ui

= 1

N3/2T3/2 XN

i=1

XN ℓ=1

XN j=1

wijΓ0j0)1

FbF0 T

!1

Fb

F0F0 T

1

F0

E(VV)MFbui

+ 1

N3/2T3/2 XN i=1

XN ℓ=1

XN j=1

wijΓ0j0)1

F0F0 T

1

F0E(VV)

MbFMF0

ui

which are bounded in norm by rN

T 1 N2

XN i=1

XN j=1

XN ℓ=1

|wij|Γ0j

E(VV)MbFui

T

FbF0 T

!1

Fb

T

F0F0 T

1

F0

T

0)1

+ rN

T 1 N2

XN i=1

XN j=1

XN ℓ=1

|wij|Γ0j

E(VV)

MbFMF0 ui

T

F0F0 T

1 F0

T

0)1

rN

T 1 N

XN i=1

XN j=1

|wij|Γ0j ui

T

FbF0 T

!1

Fb

T

F0F0 T

1

F0

T

0)1

+ 1 δNT

rN T

1 N

XN i=1

XN j=1

|wij|Γ0j ui

T

F0F0 T

1 F0

T

0)1

=Op

N δNT

T

!

by the above three facts and LemmaA.4(d). This completes the proof.

21

Lemma A.9 Under AssumptionsAtoD, we have (a) 1

N XN

i=1

XN j=1

|wij| 1

TVj

ϕ0i=Op(1)

(b) 1 N

XN i=1

XN j=1

|wij| 1

TVjF0

ϕ0i=Op(1)

(c) 1 N

XN i=1

XN j=1

|wij| 1

TVjF0

ϕ0i=Op(1)

(d) 1 N

XN i=1

XN j=1

|wij| 1

TVjF0 1

TεiF0

=Op(1)

(e) 1 N

XN i=1

XN j=1

|wij| 1

TVj

1

T

FbF0R

εi

=Op

1 δ2NT

(f) 1 N

XN i=1

XN j=1

|wij| 1

TVjF0 1

T

FbF0R εi

=Op

1 δNT2

(g) 1 N

XN i=1

XN j=1

|wij| 1

TVj

FbF0R

ϕ0i=Op

1 δNT

(h) 1 N

XN i=1

XN j=1

|wij| 1

TVj

FbF0R

ϕ0i=Op

1 δNT

(i) 1 N

XN i=1

XN j=1

|wij| 1

TVj

FbF0R 1

T

FbF0R

εi

=Op

1 δ3NT

Proof of LemmaA.9. With AssumptionB1and LemmaA.2(f), we can easily prove parts (a)-(d) by following the proof of LemmaA.4(a).

Parts (e) and (f) can be proved similar to the proof ofA.4(i).

22

Consider (g). With the equation (A.1), we have LemmaA.9(e) and LemmaA.9(f). This completes the proof.

Lemma A.10 Under Assumptions AtoD, we have

1

T1F0

RR T1F0F01

F0, we have

1 N T

XN i=1

XN j=1

wijVj

MbFMF0 ui

= 1

N T XN i=1

XN j=1

wijVj1

T(bFR1F0)

F0F0 T

1

F0ui

1

N T XN i=1

XN j=1

wijVj1

T(FRb 1F0) RR

F0F0 T

1! F0ui

1

N T XN i=1

XN j=1

wijVj1

TF0R(bFF0R)ui 1

N T XN i=1

XN j=1

wijVj1

T(bFF0R)(bFF0R)ui

1

N T XN i=1

XN j=1

wijVj1

TF0 RR

F0F0 T

1! F0ui

=D1+D2+D3+D4+D5

We first consider the last four terms. By LemmaA.1(f) and LemmasA.9(g), (h), we have

kD2k=

1 N T

XN i=1

XN j=1

wijVj1

T(bFF0R)R1 RR

F0F0 T

1! F0ui

N T × 1 N

XN i=1

XN j=1

|wij| 1

TVj(FbF0R)

ϕ0i1 TF0H0

RR

F0F0 T

1 R1

+ N× 1

N XN i=1

XN j=1

|wij| 1

TVj(FbF0R) 1

TF0εi RR

F0F0 T

1 R1

=Op

N T δNT3

!

ForD3, we have

kD3k=

1 N T

XN i=1

XN j=1

wijVj1

TF0R(bFF0R) H0ϕ0i +εi

N× 1

N XN i=1

XN j=1

|wij| 1

TVjF0

ϕ0i1

T(bFF0R)H0 kRk

+ N× 1

N XN i=1

XN j=1

|wij| 1

TVjF0 1

T(FbF0R)εi

kRk

=Op

N δNT2

!

by LemmasA.1(b), (d) and (e) and LemmasA.9(b), (c) and (f).

24

ForD4, we have

kD4k ≤

N T × 1 N

XN i=1

XN j=1

|wij| 1

TVj(bFF0R)

ϕ0i1

T(bFF0R)H0 +

N T × 1 N

XN i=1

XN j=1

|wij| 1

TVj(bFF0R) 1

T(bFF0R)εi

=Op

N T δNT3

!

by LemmasA.1(b), (d) and LemmasA.9(g), (h) and (i).

ForD5, we have

kD5k=

1 N T

XN i=1

XN j=1

wijVj1

TF0 RR

F0F0 T

1!

F0 H0ϕ0i +εi

N× 1

N XN i=1

XN j=1

|wij| 1

TVjF0

ϕ0i1 TF0H0

RR

F0F0 T

1

+ rN

T × 1 N

XN i=1

XN j=1

|wij| 1

TVjF0 1

TF0εi

RR

F0F0 T

1

=Op

N δNT2

!

by LemmaA.1(f) and LemmasA.9(b), (c) and (d).

Now we consider the termD1. With (A.1), we can decompose the termD1 as follows

1

N T XN i=1

XN j=1

wijVj1

T(bFR1F0)

F0F0 T

1

F0ui

= 1

N T XN i=1

XN j=1

wijVj 1 N T

XN h=1

VhΓ0h0)1

F0F0 T

1

F0ui

1

N T XN i=1

XN j=1

wijVj 1 N T2

XN h=1

F0Γ0hVhFb F0Fˆ T

!1

0)1

F0F0 T

1

F0ui

1

N T XN i=1

XN j=1

wij

1 N T2

XN h=1

E VjVh

VhFb F0Fˆ T

!1

0)1

F0F0 T

1

F0ui

1

N T XN i=1

XN j=1

wij

1 N T2

XN h=1

VjVhE VjVh

VhFb F0Fˆ T

!1

0)1

F0F0 T

1

F0ui

=D1.1+D1.2+D1.3+D1.4

25

We consider the last three termsD1.2,D1.3, andD1.4. ForD1.2, we can derive that

ForD1.3, we can decompose it as follows

1

which are bounded in norm by

Easily, we can show that

1

Similarly, we can show that

Combining the above equations and the equation (A.84), we can derive that D1.3=Op

Consider the termD1.4.1. With LemmaA.2(f), we haveN1PN Then we can derive that

E

Then from the equation (A.85), we have 1

by Markov inequality. Thus, for the termD1.4.1, we can derive that kD1.4.1k

= vec

1

T 1 N

XN h=1

1 N T

XN i=1

XN j=1

wij VjVhE VjVh

× 1

TVhF0

×R F0Fˆ T

!1

0)1

F0F0 T

1

F0H0 T ×ϕ0i

=

1 T

1 N

XN h=1

1

N T XN i=1

XN j=1

XT t=1

ϕ0iwij(vjtvhtE(vjtvht))

×

R F0Fˆ T

!1

0)1

F0F0 T

1

F0H0 T

Ik

×vec 1

T XT s=1

vhsfs0

!

1

T 1 N

XN h=1

1 N T

XN i=1

XN j=1

XT t=1

ϕ0iwij(vjtvhtE(vjtvht))

1 T

XT s=1

vhsfs0

× kRk

F0Fˆ T

!1

0)1

F0F0 T

1 F0H0

T kIkk

=Op

1

T 1

N XN h=1

1 N T

XN i=1

XN j=1

XT t=1

ϕ0iwij(vjtvhtE(vjtvht))

1 T

XT s=1

vhsfs0

=Op

1

T

with the above equation, where the third and the fourth equations use the fact that vec (ABC) = (CA)vec(B) for any comfortable matricesA, BandC. Similarly, we can show that the termD1.4.2isOp T1/2

.

30

For the termD1.4.3, we have The equality can be proved similar to the equation (A.85).

Similarly, we can derive that the termD1.4.2 andD1.4.4 areOp δNT1

. Combining the above termsD1.4.1to D1.4.4, we derive thatD1.4=Op δNT1

. This completes the proof.

Proof of Proposition 3.1. With the definition ofZbi, we have

1

ByNorkute et al. (2020), we have

1

where

Combining LemmasA.5,A.6,A.7,A.8andA.10, we can derive that

1

whereZi=PN

j=1wijMF0Xj,MF0

1

Xi,1,MF0Xi

,b1= (b11,b12,b13) andb2= (b21,b22,b23). This completes the proof.

Proof of Theorem3.1 We have

N T bθθ

=

AbBb1Ab1

AbBb1 1

N T XN

i=1

Zbiui.

By LemmaA.3, Ab Ap 0and Bb B p 0, andBb1B1 p 0by continuous mapping theorem, thus, AbBb1Ab AB1A p 0. Under Assumption F AB1A is positive definite which implies

AbBb1Ab1

AbBb1 = Op(1). By Proposition3.1 1

N T

PN

i=1Zbiui=1 N T

PN

i=1Zi H0ϕ0i +εi +q

T

Nb1+q

N

Tb2+op(1). First, due to the independence betweenεiandZi, a suitable central limit theorem ensures that 1

N T

PN

i=1Ziεi=Op(1). Consider the first component of

1 N T

PN

i=1ZiH0ϕ0i. RecallingZi=PN

j=1wijMF0Vj,MF0MF0

1Vi,1,MF0Vi

whereVi=ViN1

PN

ℓ=1VΓ00)1Γ0i, Vi,1=Vi,1N1

PN

ℓ=1Vℓ,1Γ00)1Γ0i, and notingMF0 =MF= FFT, 1 N T

PN i=1

PN

j=1wijVjF

T

FH0

T ϕ0i =Op(1) due to the independence betweenVjandFand cross-sectional independence betweenPN

j=1wijVjandϕ0i. In a similar manner, we can show that other components in 1

N T

PN

i=1ZiH0ϕ0i and the bias termsb1 and b2are Op(1). Together with the conditionN/T c where 0< c≤ ∞asN, T → ∞, we have

N T θbθ

=Op(1) as required.

33

Online Appendix B: Proofs of the main theoretical results for