• Keine Ergebnisse gefunden

2. Einleitung

2.4. Literaturverzeichnis

[1] www.bundesregierung.de/Content/DE/StatischeSeiten/Breg/Energiekonzept/0-Buehne/ma%C3%9Fnahmen-im-ueberblick.html abgerufen am 20.12.2016

[2] Z. Er and I. B. Turna, Future Expectation of the Photovoltaics Role in Compensating Energy Demand Acta Phys Pol A 2016 129, 865-868.

[3] www.heliatek.com/en/press/press-releases/details/heliatek-sets-new-organic-photovoltaic-world-record-efficiency-of-13-2 abgerufen am 20.12.2016

[4] World Energy Council, World Energy Resources: Solar,2013

[5] www.solarte.de/en/#applications abgerufen am 20.12.2016

[6] W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of P-N Junction Solar Cells J Appl Phys 1961 32, 510-519.

[7] R. A. J. Janssen and J. Nelson, Factors Limiting Device Efficiency in Organic Photovoltaics Adv Mater 2013 25, 1847-1858.

[8] M. Gruber, J. Wagner, K. Klein, U. Hörmann, A. Opitz, M. Stutzmann, and W.

Brütting, Thermodynamic Efficiency Limit of Molecular Donor-Acceptor Solar Cells and its Application to Diindenoperylene/C60-Based Planar Heterojunction Devices Adv Energy Mater 2012 2, 1100-1108.

[9] N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, Thermodynamic Efficiency Limit of Excitonic Solar Cells Phys Rev B 2011 83

[10] A. Köhler and H. Bässler, Electronic Processes in Organic Semiconductors: An Introduction. Wiley VCH, 2015.

[11] K. Vandewal, S. Albrecht, E. T. Hoke, K. R. Graham, J. Widmer, J. D. Douglas, M.

Schubert, W. R. Mateker, J. T. Bloking, and G. F. Burkhard, Efficient Charge Generation by Relaxed Charge-Transfer States at Organic Interfaces Nature Materials 2014 13, 63-68.

[12] C. M. Proctor, M. Kuik, and T.-Q. Nguyen, Charge Carrier Recombination in Organic Solar Cells Progress in Polymer Science 2013 38, 1941-1960.

[13] D. Veld a , “. C. Meskers, a d R. A. Ja sse , The E erg of Charge‐Tra sfer “tates i Electron Donor–Acceptor Blends: Insight into the Energy Losses in Organic Solar Cells Advanced Functional Materials 2009 19, 1939-1948.

[14] L. Onsager, Initial Recombination of Ions Phys Rev 1938 54, 554.

[15] D. Pai and R. Enck, Onsager Mechanism of Photogeneration in Amorphous Selenium Phys Rev B 1975 11, 5163.

24

[16] C. L. Braun, Electric Field Assisted Dissociation of Charge Transfer States as a Mechanism of Photocarrier Production The Journal of Chemical Physics 1984 80, 4157-4161.

[17] C. Deibel, T. Strobel, and V. Dyakonov, Origin of the Efficient Polaron-Pair Dissociation in Polymer-Fullerene Blends Phys Rev Lett 2009 103

[18] V. Arkhipov, P. Heremans, and H. Bässler, Why is Exciton Dissociation so efficient at the Interface between a Conjugated Polymer and an Electron Acceptor? Applied Physics Letters 2003 82, 4605-4607.

[19] A. Nenashev, S. Baranovskii, M. Wiemer, F. Jansson, R. Österbacka, A. Dvurechenskii, and F. Gebhard, Theory of Exciton Dissociation at the Interface between a Conjugated Polymer and an Electron Acceptor Phys Rev B 2011 84, 035210.

[20] H. D. de Gier, F. Jahani, R. Broer, J. C. Hummelen, and R. W. A. Havenith, Promising Strategy To Improve Charge Separation in Organic Photovoltaics: Installing Permanent Dipoles in PCBM Analogues J Phys Chem A 2016 120, 4664-4671.

[21] M. Wiemer, A. Nenashev, F. Jansson, and S. Baranovskii, On the Efficiency of Exciton Dissociation at the Interface between a Conjugated Polymer and an Electron Acceptor Applied Physics Letters 2011 99, 013302.

[22] T. Offermans, S. C. Meskers, and R. A. Janssen, Monte-Carlo Simulations of Geminate Electron–Hole Pair Dissociation in a Molecular Heterojunction: A two-Step Dissociation Mechanism Chemical Physics 2005 308, 125-133.

[23] H. van Eersel, R. A. Janssen, and M. Kemerink, Mechanism for Efficient Photoinduced Charge Separation at Disordered Organic Heterointerfaces Advanced Functional Materials 2012 22, 2700-2708.

[24] S. N. Hood and I. Kassal, Entropy and Disorder enable Charge Separation in Organic Solar Cells arXiv preprint arXiv:1603.06304 2016

[25] V. Arkhipov, E. Emelianova, and H. Bässler, Dopant-assisted Charge Carrier Photogeneration in Conjugated Polymers Chem Phys Lett 2003 372, 886-892.

[26] T. Ziegler, M. Seth, M. Krykunov, J. Autschbach, and F. Wang, Is Charge Transfer Transitions really too difficult for Standard Density Functionals or are they just a Problem for Time-Dependent Density Functional Theory based on a linear Response Approach Journal of Molecular Structure: Theochem 2009 914, 106-109.

[27] D. J. Tozer, Relationship Between Long-Range Charge-Transfer Excitation Energy Error and Integer Discontinuity in Kohn–Sham Theory The Journal of Chemical Physics 2003 119, 12697-12699.

[28] A. Dreuw and M. Head-Gordon, Failure of Time-Dependent Density Functional Theory for long-Range Charge-Transfer Excited States: The Zincbacteriochlorin-Bacteriochlorin and Bacteriochlorophyll-Spheroidene Complexes J Am Chem Soc 2004 126, 4007-4016.

25

[29] R. Baer and D. Neuhauser, Density Functional Theory with correct Long-Range Asymptotic Behavior Phys Rev Lett 2005 94, 043002.

[30] E. Livshits and R. Baer, A well-tempered density functional theory of electrons in molecules Physical Chemistry Chemical Physics 2007 9, 2932-2941.

[31] L. Hedin, New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem Phys Rev 1965 139, A796.

[32] E. E. Salpeter and H. A. Bethe, A Relativistic Equation for Bound-State Problems Phys Rev 1951 84, 1232.

[33] Y. Ma, M. Rohlfing, and C. Molteni, Excited States of Biological Chromophores studied using Many-Body Perturbation Theory: Effects of Resonant-Antiresonant Coupling and dynamical Screening Phys Rev B 2009 80, 241405.

[34] B. Baumeier, D. Andrienko, and M. Rohlfing, Frenkel and Charge-Transfer Excitations in Donor–Acceptor Complexes from Many-Bod Gree ’s Fu tio s Theor Journal of Chemical Theory and Computation 2012 8, 2790-2795.

[35] B. Baumeier, D. Andrienko, Y. Ma, and M. Rohlfing, Excited States of Dicyanovinyl-Substituted Oligothiophenes from Many-Bod Gree ’s Fu tio s Theor Journal of Chemical Theory and Computation 2012 8, 997-1002.

[36] D. Niedzialek, I. Duchemin, T. B. de Queiroz, S. Osella, A. Rao, R. Friend, X. Blase, S.

Kümmel, and D. Beljonne, First Principles Calculations of Charge Transfer Excitations in Polymer–Fullerene Complexes: Influence of Excess Energy Advanced Functional Materials 2015 25, 1972-1984.

[37] G. Raos, M. Casaleg o, a d J. Id́, A Effe ti e T o-Orbital Quantum Chemical Model for Organic Photovoltaic Materials Journal of Chemical Theory and Computation 2013 10, 364-372.

[38] P. K. Watkins, A. B. Walker, and G. L. Verschoor, Dynamical Monte Carlo Modelling of Organic Solar Cells: The Dependence of Internal Quantum Efficiency on Morphology Nano Lett 2005 5, 1814-1818.

[39] R. Marsh, C. Groves, and N. Greenham, A microscopic Model for the Behavior of Nanostructured Organic Photovoltaic Devices J Appl Phys 2007 101, 083509.

[40] M. C. Heiber, T.-Q. Nguyen, and C. Deibel, Charge Carrier Concentration Dependence of Encounter-limited Bimolecular Recombination in Phase-separated Organic Semiconductor Blends Phys Rev B 2016 93, 205204.

[41] R. Chance and C. Braun, Temperature Dependence of Intrinsic Carrier Generation in Anthracene Single Crystals The Journal of Chemical Physics 1976 64, 3573-3581.

[42] H. Bässler a d A. Köhler, Hot or old : Ho do Charge Tra sfer “tates at the Do or–

Acceptor Interface of an Organic Solar Cell Dissociate? Physical Chemistry Chemical Physics 2015 17, 28451-28462.

26

[43] E. Silinsh and A. Jurgis, Photogenerated Geminate Charge-Pair Separation Mechanisms in Pentacene Crystals Chemical Physics 1985 94, 77-90.

[44] L. Sebastian, G. Weiser, G. Peter, and H. Bässler, Charge-Transfer Transitions in Crystalline Anthracene and their role in Photoconductivity Chemical Physics 1983 75, 103-114.

[45] L. Sebastian, G. Weiser, and H. Bässler, Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption Chemical Physics 1981 61, 125-135.

[46] L. Onsager, Deviations from Ohm's Law in Weak Electrolytes The Journal of Chemical Physics 1934 2, 599-615.

[47] P. Langevin, Recombinaison et Mobilités des Ions Dans les Gaz Annales de Chimie et de Physique 1903 28, 433-530.

[48] M. Fuoss and F. Accascina, Electrolytic Conductance Interscience, 1959.

[49] T. Goliber and J. Perlstein, Analysis of Photogeneration in a Doped Polymer System in Ter s of a Ki eti Model for Ele tri ‐Field‐assisted Disso iatio of Charge‐Tra sfer States The Journal of Chemical Physics 1984 80, 4162-4167.

[50] P. Peumans and S. R. Forrest, Separation of Geminate Charge-Pairs at Donor– Acceptor Interfaces in disordered Solids Chem Phys Lett 2004 398, 27-31.

[51] M. Wojcik and M. Tachiya, Accuracies of the Empirical Theories of the Escape Probability based on Eigen Model and Braun Model compared with the exact Extension of Onsager Theory The Journal of Chemical Physics 2009 130, 104107.

[52] Z. Guan, H.-W. Li, J. Zhang, Y. Cheng, Q. Yang, M.-F. Lo, T.-W. Ng, S.-W. Tsang, and C.-S. Lee, Evidence of Delocalization in Charge-Transfer State Manifold for Donor:

Acceptor Organic Photovoltaics Acs Appl Mater Inter 2016 8, 21798-21805.

[53] A. Miller and E. Abrahams, Impurity Conduction at low Concentrations Phys Rev 1960 120, 745.

[54] M. Wiemer, M. Koch, U. Lemmer, A. Pevtsov, and S. Baranovskii, Efficiency of Exciton Dissociation at Internal Organic Interfaces beyond Harmonic Approximation Organic Electronics 2014 15, 2461-2467.

[55] I. A ilo , V. Geski , a d J. Cor il, Qua tu ‐Che i al Chara terizatio of the Origi of Dipole Formation at Molecular Organic/Organic Interfaces Advanced Functional Materials 2009 19, 624-633.

[56] S. Verlaak, D. Beljonne, D. Cheyns, C. Rolin, M. Linares, F. Castet, J. Cornil, and P.

Heremans, Electronic Structure and Geminate Pair Energetics at Organic–Organic Interfaces: The Case of Pentacene/C60 Heterojunctions Advanced Functional Materials 2009 19, 3809-3814.

27

[57] H. Aarnio, P. Sehati, S. Braun, M. Nyman, M. P. de Jong, M. Fahlman, and R.

Österbacka, Spontaneous Charge Transfer and Dipole Formation at the Interface between P3HT and PCBM Adv Energy Mater 2011 1, 792-797.

[58] F. Fischer, T. Hahn, H. Bässler, I. Bauer, P. Strohriegl, and A. Köhler, Measuring reduced C60 Diffusion in Crosslinked Polymer Films by Optical Spectroscopy Advanced Functional Materials 2014 24, 6172-6177.

[59] “. Atha asopoulos, “. T. Hoff a , H. Bässler, A. Köhler, a d D. Beljo e, To Hop or not to Hop? Understanding the Temperature Dependence of Spectral Diffusion in Organic Semiconductors The Journal of Physical Chemistry Letters 2013 4, 1694-1700.

[60] “. T. Hoff a , “. Atha asopoulos, D. Beljo e, H. Bässler, a d A. Köhler, Ho do Triplets and Charges move in Disordered Organic Semiconductors? A Monte Carlo Study comprising the Equilibrium and Nonequilibrium Regime The Journal of Physical Chemistry C 2012 116, 16371-16383.

28

29

3. Überblick über die Publikationen