• Keine Ergebnisse gefunden

Abe H., Yamaguchi-Shinozaki K., Iwasaki T. und Hosokawa D. (1997): Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell, 9:1859-1868

Aharoni A., Dixit S., Jetter R., Thoenes E., van Arkel G. and Pereira A. (2004): The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis.

Plant Cell, 16:2463-2480

Apel K. und Hirt H. (2004): Reactive oxygen species: Metaboism, oxidative stress, and signal transduction. Annu. Rev. Plant Biology. 55:373-399

Apostol I, Heinstein P. F. und Low P. S. (1989): Rapid stimulation of an oxidative burst during elicidation of cultured plant cells. Role in defense and signal transduction.

Plant Phys., 90:106-116

Baker M. A. und Orlandi E. W. (1995): Active oxygen in plant pathogenesis. Annu.

Rev. Phytopathologie, 33:299-321

Bartsch K., Kriete G., Broer I. und Pühler A. (1996): Novel genes coding for amino acid deacetylases with specificity for N-Acetyl-Phosphinothricin, their isolation and their use. Patent No. WO 98/27201. Hoechst Schreing Agrevo GmbH, EUR

Benfey P. N., Ren L. und Chua N.-H. (1989): The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue specific expression patterns. EMBO J., 8:2195-2202

Benfey P. N. und Chua N.-H. (1990): The cauliflower mosaic virus 35S promotor:

Combinatorial regulation of transcription in plants. Science, 250:959-966

Bent A. F. (2000): Arabidopsis in plant transformation. Uses, mechanisms and prospects for transformation of other species. Plant Physiol., 124:1540-1547

Birnboim H. C. und Doly J. (1979): A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res., 7:1513-1523

Blanco F., Garreton V., Frey N., Dominguez C., Perez-Acle T., Van der Straeten D., Jordana X. und Holoigue L. (2005): Identification of NPR1-dependent and independent genes early induced by salicylic acid treatment in Arabidopsis. Plant Mol.

Biology, 59:927-944

Blatt M. R. (2000): Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell Dev. Biology, 16:221-241

Boch J., Verbsky M. L., Robertson T. L., Larkin J. C. und Kunkel B. N. (1998):

Analysis of resistance gene-mediated defense responses in Arabidopsis thaliana plants carrying a mutation in CPR5. Mol. Plant-Microbe Interactions, 12:1196-1206

Bouchez D., Tokuhisa J. G., Llewellyn D. J., Dennis E. S. und Ellis, J. G. (1989):

The ocs element is a component of the promoters of several T-DNA and plant viral genes. EMBO J., 8:4197-4204

Bowling S. A., Guo A., Cao H., Gordon A. S., Klessig D. F. und Dong X. (1994): A mutation in Arabidopsis that leads to constitutive expression of systemic aquired resistance. Plant Cell, 6:1845-1857

Bowling S. A., Clarke J. D., Liu Y., Klessig D. F. and Dong X. (1997): The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell, 9:1573-1584

Bray E. A. (1997): Plant responses to water deficit. Trends in Plant Science, 2:48-54 Brenner W. (2002): Etablierung eines induzierbaren Suizidsystems zur Identifizierung von Mutanten der salizylsäureabhängigen Signaltransduktion. Dissertation, Georg- August-Universität Göttingen

Cao H., Bowling S. A., Gordon A. S. und Dong X. (1994): Characterization of an Arabidopsis Mutant that is nonresponsive to inducers of systemic acquired resistance.

Plant Cell, 6:1583-1592

Cao H., Glazebrook J., Clark J. D., Volko S. und Dong X. (1997): The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 88:57-63

Cao H., Li X. und Dong X. (1998): Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc.

Natl. Acad. Sci., 95:6531-6536

Chen G., Sagi M., Weining S., Krugman T., Fahima T., Korol A. B. und Nevo E.

(2004): Wild barley eibi1 mutation identifies a gene essential for leaf water conservation. Planta, 219:684-693

Chen S. X. und Schopfer P. (1999): Hyroxylradical production in physiological reactions. A novel function of Peroxidase. Eur. J. Biochem., 260:726-735

Chen W., Chao G. und Singh K. B. (1996): The promotor of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites. Plant Journal, 10:955-966

Chen Z., Sliva H. und Klessig D. F. (1993): Active oxygene species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262:1883-1868

Chomczynski P. (1993): A Reagent for the Single-Step Simultaneous Isolation of RNA, DNA and Proteins from Cell and Tissue Samples. BioTechinques, 15:532-538 Chomczynski P. und Sacchi N. (1987): Single-Step Method of RNA isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction. Anal Biochem., 162:156-159 Church G. M. und Gilbert W. (1984): Genomic Sequencing. Proc. Natl. Acad. Sci., 81:1991-1995

Clarke J. D., Liu Y., Klessig D. F. und Dong X. (1998): Uncoupling PR gene expression from NPR1 and bacterial resistance: Characterisation of the dominant Arabidopsis cpr6-1 mutant. Plant Cell, 10:557-569

Clarke J. D., Aarts N., Feys B. J., Dong X. und Parker J. E. (2001): Constitutive disease resistance requires EDS1 in the Arabidopsis mutants cpr1 and cpr6 and is partially EDS1-dependent in cpr5. Plant Journal, 26:409-420

Clough S. und Bent A. (2000): Vapor-Phase Sterilization of Arabidopsis Seed.

http://plantpath.wisc.edu/~afb/vapster.html.

Clough S. J. und Bent A. F. (1998): Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant Journal, 16:735-743

Daniel, V. (1993): Glutathion S-transferases: gene structure and regulation of expression. Crit. Rev. Biochem. Mol. Biol., 24:337-384

Dangl J. L. und Jones J. D. G. (2001): Plant pathogend and integrated defense responses to infection. Nature, 411:826-833

Delany T. P. (1997): Genetic dissection of acquired resistance to disease. Plant Phys., 113:5-12

Desveaux D., Allard J., Brisson N. und Sygusch J. (2002): A new family of plant transcription factors displays a novel ssDNA-binding surface. Nat. Struct. Biol., 9:512-517

Desveaux D., Subramaniam R., Despres C., Mess J.-N., Levesque C., Fobert P. R., Dangl J. L. und Brisson N. (2004): A ″whirly″ transcription factor is required for salicylic-acid-dependent disease resistance in Arabidopsis. Dev. Cell, 6:229-240

De Wet J. R., Wood K. V., DeLuca M., Helinski D. R. und Subramani S. (1987):

Firefly Luciferase Gene: Structure and Expression in Mammalian Cells. Molecular and Cellular Biol., 7(2):725-737

Dietrich R. A., Delaney T. P., Uknes S. J., Ward E. R., Ryals J. A. und Dangl J. L.

(1994): Arabidopsis mutants simulating disease resistance response. Cell, 77:565-577

Dietrich R. A., Richberg M. H., Schmidt R., Dean C. und Dangl J. L. (1997): A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 88:685-694

Dower W. J., Miller J. F. und Ragsdale C. W. (1988): High efficiency transformation of E. coli with high voltage electroporation. Nucl. Acids Res., 16:6127-6145

Draper J. (1997): Salicylate, superoxide synthesis and cell suicide in plant defence.

Trends Plant Sci., 2:162-165

Durner J. und Klessig D. F. (1995): Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc.

Natl. Acad. Sci., 92:11312-11316

Durrant W. E. und Dong X. (2004): Systemic acquired resistance. Annu. Rev.

Phytopathol., 43:185-209

Edwards R., Blount J. W. und Dixon R. A. (1991): Glutathione and elicitation of the phytoalexin response in legume cultures. Planta, 184:403-409

Falk A., Feys B. J., Frost L. N., Jones J. D. G., Daniels M. J. und Parker J. E.

(1999): EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci., 96:3292-3297 Feinberg A. P. und Vogelstein B. (1983): A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem., 132:6-13 Feys B. J., Moisan L. J., Newman M.-A. und Parker J. E. (2001): Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J., 20:5400-5411

Flor H. H. (1955): Host-parasite interactions in flax rust – its genetic and other implications. Phytopathology, 45:680-685

Gaffney T., Friedrich L., Vernooij B., Negretto D., Nye G., Uknes S., Ward E., Kessmann H. und Ryals J. (1993): Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261:754-756

Garretón V., Carpinelli J., Jordana X. und Holuigue L. (2002): The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Phys., 130:1516-1526

Glazebrook J. (2001): Genes controlling expression of defense responses in Arabidopsis – 2001 status. Curr. Opin. Plant Biology, 4:301-308

Goh C.-H., Nam H. G. und Park Y. S. (2003): Stress memory in plants: a negative regulation of stomatal response and transient induction of rd22 gene to light in abscisic acid-entrained Arabidopsis plants. Plant Journal, 36:240-255

Greenberg J. T., Guo A., Klessig D. F. und Ausubel F. M. (1994): Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense functions. Cell, 77:551-563

Hanahan D. (1983): Studies on transformation of Escherichia coli with plasmids. J.

Mol. Biol., 166:557-580

Hu X., Jiang M., Zhang A. und Lu J. (2005): Abscisic acid-induced apoplastic H2O2

accumulation up-regulates the activities of chloroplastic and cytisolic antioxidant enzymes in maize leaves. Planta

Ingram J. und Bartels D. (1996): The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47:377-403

Innes R. W., Bent A. F., Kunkel B. N., Bisgrove S. R. und Staskawicz B. J. (1993):

Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J.

Bacteriol., 175:4859-4869

Inoue H., Nojima H. und Okayama H. (1990): High efficiency transformation of Escherichia coli with plasmids. Gene, 96:23

Ish-Horowicz D. und Burke J. F. (1981): Rapid and efficient cosmid cloning. Nucleic Acids Res., 9:2989-2998

Jenns A. E. und Kuc J. (1979): Graft transmission of systemic acquired resistance of cucumber to anthracnose induced by Colletotricho lagenarium and tobacco necrosis irus. Phytopathology 7:753-756

Jirage D., Tootle T. L., Reuber T. L., Frost L. N. und Feys B. J. (1999): Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signalling.

Proc. Natl. Acad. Sci., 96:13583-13588

Katagiri F., Lam E. und Chua N.-H. (1989): Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340:727-730

Kim M. G., da Cunha L., McFall A. J., Belkhadir Y., DebRoy S., Dangl J. L. und Machey D. (2005): Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell, 121:749-759

King E. O., Ward M. K. und Raney D. E. (1954): Two simple media for the demonstration of phycocyanin and fluorescin. J. Lab. Clin. Med., 44:301-307

Kirik V., Bouyer D., Schöbinger U., Bechtold N., Herzog M., Bonneville J.-M. und Hülskamp M. (2001): CPR5 is involved in cell proliferation and cell death control and encodes a novel transmembrane protein. Current Biology, 11:1891-1895

Klessig D. F. und Malamy J. (1994): The salicylic acid signal in plants. Plant Mol.

Biol., 26:1439-1458

Klessig D. F., Durner J., Noad R., Navarre D. A. und Wendehenne D. (2000): Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci., 97:8849-8855 Knoche H. und Duvick, J. P. (1987): The role of fungal toxins in plant disease. Brit Mycol. Soc. Symp. Ser. 13:158-192

Kombrink E. und Somssich I. E. (1997): Pathogenisis-related proteins and plant defense. The Mycota, Springer-Verlag, Berlin, 107-128

Kriete G., Niehaus K., Perlick A. M., Puhler A. und Broer I. (1996): Male sterility in transgenic tobacco plants induced by tapetum-specific deacetylation of the externally applied non-toxic compound N-acetyl-L-phosphinothricin. Plant Journal, 9:809-818 Lam E., Kato N. und Lawton M. (2001): Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 411:848-853

Lamb C. J. und Dixon R. A. (1997): The oxidative burst in plant disease resistance.

Ann. Rev. Plant Mol. Biol., 48:251-275

Lebel E., Heifetz P., Thorne L., Uknes S., Ryals J. und Ward E. (1998): Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant Journal, 16:223-233

Leon J., Lawton M. A. und Raskin I. (1995): Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiology, 108:1673-1678

Levine A., Tenhaken R., Dixon R. und Lamb C. (1994): H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583-593 Li X., Zhang Y., Clarke J. D., Li Y. Und Dong X. (1999): Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for supressors of npr1-1. Cell, 98:329-339

Liu X. und Lam E. (1994): Two binding sites for the plant transcription factor ASF-1 can respond to auxin treatments in transgenic tobacco. J. Biol. Chem., 269:668-675 Lolle S. J., Hsu W. und Pruitt R. E. (1998): Genetic analysis of organ fusion in Arabidopsis thaliana. Genetics, 149:607-619

Malamy J., Carr J. P., Klessig D. F. und Raskin I. (1990): Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250:1002-1004

Maldonado A. M., Doerner P., Dixon R. A., Lamb C. J. und Cameron R. K. (2002):

A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 419:399-403

Medberry S. L., Lockhart B. E. L. und Olszewski N. E. (1992): The commelina yellow mottle virus promoter is a strong promoter in vascular and reproductive tissues.

Plant Cell 4:185-192

Mittler R., Herr E. H., Orvar B. L., van Camp W. und Willekens H. (1999):

Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infections. Proc. Natl. Acad. Sci., 96:14165-14170

Mou Z., Fan W. und Dong X. (2003): Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113:935-944

Mullis K. B. und Faloona F. A. (1987): Specific synthesis of DNA in vitro via a polymerasecatalysed chain reaction. Methods Enzymol., 155:335-350

Narusaka Y., Nakashima K., Shinwari Z. K., Sakuma Y., Furihata T., Abe H., Narusaka M., Shinozaki K. und Yamaguchi-Shinozaki K. (2003): Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stress. Plant Journal, 34: 137-148

Nawarath C. und Metraux J.-P. (1999): Salicylic acid induction-deficient mutants of Arabidopsis express PR2 and PR5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell, 11:1393-1404

Neuenschwander U., Vernooij B., Friedrich L., Uknes S., Kessman H. und Ryals J.

(1995): Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant Journal, 8:227-233

Noctor G., Gomez L., Vanacker H. und Foyer C. H. (2002): Interaction between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J. of Exp. Botany, 53:1283-1304

Noutoshi Y., Ito T., Seki M., Nakashita H., Yoshida S., Marco Y., Shirasu K. und Shinozaki K. (2005): A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death.

Plant Journal, 43:873-888

Odell G. T., Nagy F. und Chua N.-H. (1985): Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature, 313:810-812 Parker J. E. (2003): Plant recognition of microbial patterns. Trends in Plant Science, 8:245-247

Pei Z.-M., Murata Y., Benning G., Thomine S. und Klusener B. (2000): Calcium channels activated by hydrogen peroxide mediate abscisic signaling in guard cells.

Nature, 406:731-734

Perlmann D. C. und Halvorson H. O. (1987): Improved resolution of DNA fragments in polysaccharid-supplemented agarose gels. Analytical Biochem., 163:247-256

Petersen M., Brodersen P., Naested H., Andreasson E., Lindhart U., Johansen B., Nielsen H. B., Lacy M., Austin M. J., Parker J. E., Sharma S. B., Klessig D. F., Martienssen R., Mattsson O., Jensen A. B. und Mundy J. (2000): Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell, 103:1111-1120

Pnueli L., Liang H., Rozenberg M. und Mittler R. (2003): Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant Journal, 34:187-203 Qin X. F., Holuigue L., Horvath D. M. und Chua N.-H. (1994): Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element.

Plant Cell, 6:863-874

Rizhsky L., Davletovas S., Liang H. und Mittler R.(2004): The zinc finger protein Zat12 is required for Cytosolic Ascorbate Peroxidase 1 expression during oxidative stress in Arabidopsis. J. of Biol. Chem., 12:11736-11743

Sagi M. und Fluhr R. (2001): Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Phys., 126:1281-1290

Sambrook J., Fritsch E. F. und Maniatis T. (1989): Molecular cloning: A Laboratory Manual. 2nd edition. Cold Spring Habor, New York: Cold Spring Habor Laboratory Press

Sanger F., Nicklen S. und Coulson A. R. (1977): DNA sequencing with chainterminating inhibitors. Proc. Natl. Acad. Sci., 74:5463-5467

Schneider M., Ow D. W. und Howell S. H. (1990): The pattern of firefly luciferase expression in transgenic plants. Plant Mol. Biol., 14:935-947

Schroeder J. I., Allen G. J., Hugouvieux V., Kwak J. M. und Waner D. (2001):

Guard cell signal transduction. Annu. Rev. Plant Phys. Plant Mol. Biology, 52:627-658 Schweigert N., Zehnder A. J. B. und Eggen R. I. L. (2001): Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environmental Microbiol., 3:81-91

Shirano Y., Kachroo P., Shah J. und Klessig D. F. (2002): A gain-of-function mutation in an Arabidopsis toll interleukin 1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell, 14:3149-3162

Shulaev V., Leon J. und Raskin I. (1995): Is salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell, 7:1691-1701

Smith I. K., Kendall A. C., Keys A. J., Turner J. C. und Lea P. J. (1984): Increased levels of glutathione in a catalase-deficient mutant of barley. Plant Science Letters, 37:29-33

Summermatter K., Sticher L. und Metraux J.-P. (1995): Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae.

Plant Physiology, 108:1379-1385

Suzuki H., Xia Y., Cameron R., Shadle G., Blount J., Lamb C. und Dixon R. A.

(2004): Signals for local and systemic responses of plants to pathogen attack. J. of Exp.

Botany, 55:169-179

Uknes S., Dincher S., Friedrich L., Negretto D., Williams S., Thompson-Taylor H., Potter S., Ward E. und Ryals J. (1993): Regulation of pathogenesis-related protein-1a gene expression in tobacco. Plant Cell, 5:159-169

Vanacker H., CarverT. L. W. und Foyer C. H. (2000): Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Phys., 123:1289-1300

Van der Biezen E. A. und Jones J. D. (1998): Plant disease-resistance proteins and the gene-for-gene concept. Trends. Biochem. Sci., 23:454-456

Van Loon L. C. und Van Strien E. A. (1999): The families of pathogenisis-related proteins, their activites, and comparative analysis of PR-1 type proteins. Physiol. Mol.

Plant Pathol., 55:85-97

Van Wees S. C. und Glazebrook J. (2003): Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. Phaseolicola is due to degradation products of salicylic acid. Plant Journal, 33:733-742

Vernooij B., Friedrich ., Morse A., Reist R. und Kolditz-Jawhar R. (1994): Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell, 6:959-965

Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Metraux J.-P. und Ryals J. A. (1991): Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell, 3:1085-1094

Whalen M. C., Innes R. W., Bent A. F. und Staskawicz B (1991): Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell, 3:49-59

Wildermuth M. C., Dewdney J., Wu G. und Ausubel F. M. (2001): Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414:562-565 Yamaguchi-Shinozaki K. und Shinozaki K. (1992): A novel Arabidopsis DNA binding protein contains the conserved motif of HMG-box proteins. Nucleic Acids Res., 20:6737

Yang K. Y., Kim E. Y., Kim C. S., Guh J. O., Kim K. C. und Cho B. H. (1998):

Characterization of a glutathione S-transferase gene ATGST1 in Arabidopsis thaliana.

Plant Cell Rep., 17:700-704

Zhang C. und Shapiro A. D. (2002): Two pathways act in an additive rather than obligatorily synergistic fashion to induce systemic acquired resistance and PR gene expression. BMC Plant Biology 2(9)

Zhang Y., Tessaro M. J., Lassner M. und Li X. (2003): Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell, 15:2647-2653

Zhou N., Tootle T. L., Tsui F., Klessig D. F. und Glazebrook J. (1998): PAD4 functions upstream from salicylic-acid to control defense responses in Arabidopsis.

Plant Cell, 10:1021-1030