• Keine Ergebnisse gefunden

Aasted, C. M., Yücel, M. A., Cooper, R. J., Dubb, J., Tsuzuki, D., Becerra, L., … Boas, D. A.

(2015). Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial. Neurophotonics, 2(2), 020801. https://doi.org/10.1117/1.nph.2.2.020801 Ahn, M., Cho, H., Ahn, S., & Jun, S. C. (2018). User’s self-prediction of performance in

motor imagery brain–Computer interface. Frontiers in Human Neuroscience, 12(February), 1–12. https://doi.org/10.3389/fnhum.2018.00059

Andrés, P., Guerrini, C., Phillips, L. H., & Perfect, T. J. (2008). Differential Effects of Aging on Executive and Automatic Inhibition. Developmental Neuropsychology, 33(2), 101–

123. https://doi.org/10.1080/87565640701884212

Barczi, S. R., Sullivan, P. A., & Robbins, J. A. (2000). How should dysphagia care of older adults differ? Establishing optimal practice patterns. Seminars in Speech and Language, 21(4), 347–361. https://doi.org/10.1055/s-2000-8387

Bart, V. K. E., Koch, I., & Rieger, M. (2021). Inhibitory mechanisms in motor imagery:

disentangling different forms of inhibition using action mode switching. Psychological Research, 85(4), 1418–1438. https://doi.org/10.1007/s00426-020-01327-y

Batula, A. M., Mark, J. A., Kim, Y. E., & Ayaz, H. (2017). Comparison of Brain Activation during Motor Imagery and Motor Movement Using fNIRS. Computational Intelligence and Neuroscience, 2017. https://doi.org/10.1155/2017/5491296

Bautista, T. G., Sun, Q. J., & Pilowsky, P. M. (2014). The generation of pharyngeal phase of swallow and its coordination with breathing: Interaction between the swallow and respiratory central pattern generators. Progress in Brain Research, 212(C), 253–275.

https://doi.org/10.1016/B978-0-444-63488-7.00013-6

Berman, B. D., Horovitz, S. G., Venkataraman, G., & Hallett, M. (2012). Self-modulation of primary motor cortex activity with motor and motor imagery tasks using real-time fMRI-based neurofeedback. NeuroImage, 59(2), 917–925.

https://doi.org/10.1016/j.neuroimage.2011.07.035

Binkofski, F., Amunts, K., Stephan, K. M., Posse, S., Schormann, T., Freund, H.-J., … Seitz, R. J. (2000). Broca’s region subserves imagery of motion: A combined cytoarchitectonic and fMRI study. Human Brain Mapping, 11(4), 273–285. https://doi.org/10.1002/1097-0193(200012)11:4<273::AID-HBM40>3.0.CO;2-0

Brigadoi, S., Ceccherini, L., Cutini, S., Scarpa, F., Scatturin, P., Selb, J., … Cooper, R. J.

50

(2014). Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. NeuroImage, 85, 181–191.

https://doi.org/10.1016/j.neuroimage.2013.04.082

Brigadoi, S., & Cooper, R. J. (2015). How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy. Neurophotonics, 2(2), 025005. https://doi.org/10.1117/1.nph.2.2.025005

Chen, W., Wagner, J., Heugel, N., Sugar, J., Lee, Y., Conant, L., … Whelan, H. T. (2020).

Functional Near-Infrared Spectroscopy and Its Clinical Application in the Field of Neuroscience : Advances and Future Directions. Frontiers in Neuroscience, 14(July), 724. https://doi.org/10.3389/fnins.2020.00724

Chholak, P., Niso, G., Maksimenko, V. A., Kurkin, S. A., Frolov, N. S., Pitsik, E. N., … Pisarchik, A. N. (2019). Visual and kinesthetic modes affect motor imagery classification in untrained subjects. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-46310-9

Chiew, M., Laconte, S. M., & Graham, S. J. (2012). NeuroImage Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery. NeuroImage, 61(1), 21–31. https://doi.org/10.1016/j.neuroimage.2012.02.053 Cocks, M., Moulton, C. A., Luu, S., & Cil, T. (2014). What surgeons can learn from athletes:

Mental practice in sports and surgery. Journal of Surgical Education, 71(2), 262–269.

https://doi.org/10.1016/j.jsurg.2013.07.002

Coffman, D. D. (1990). Effects of Mental Practice, Physical Practice, and Knowledge of Results on Piano Performance. Journal of Research in Music Education, 38(3), 187–196.

https://doi.org/10.2307/3345182

Cooper, R. J., Selb, J., Gagnon, L., Phillip, D., Schytz, H. W., Iversen, H. K., … Boas, D. A.

(2012). A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Frontiers in Neuroscience, 6(OCT), 1–10.

https://doi.org/10.3389/fnins.2012.00147

Cuevas, J. L., Cook, E. W., Richter, J. E., McCutcheon, M., & Taub, E. (1995). Spontaneous swallowing rate and emotional state - Possible mechanism for stress-related

gastrointestinal disorders. Digestive Diseases and Sciences, 40(2), 282–286.

https://doi.org/10.1007/BF02065410

Cui, X., Bray, S., & Reiss, A. L. (2010). Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated

51

hemoglobin dynamics. NeuroImage, 49(4), 3039–3046.

https://doi.org/10.1016/j.neuroimage.2009.11.050

Cumming, J., & Eaves, D. L. (2018). The Nature, Measurement, and Development of Imagery Ability: Imagination, Cognition and Personality, 37(4), 375–393.

https://doi.org/10.1177/0276236617752439

Dahm, S.F., Bart, V. K. E., Pithan, J. M., & Rieger, M. (2020). Dahm, S. F., Bart, V. K. E., Pithan, J. M. & Rieger, M. (2020). VMIQ-2. Vividness of Movement Imagery

Questionnaire 2 - deutsche Fassung [Verfahrensdokumentation aus PSYNDEX Tests-Nr.

9007988, Fragebogen]. In Leibniz-Zentrum für Psychologische Information und Dokumentation (ZPID) (Hrsg.), Testarchiv. Trier: ZPID.

https://doi.org/https://doi.org/10.23668/psycharchives.2755

Dahm, Stephan Frederic. (2020). On the Assessment of Motor Imagery Ability: A Research Commentary. Imagination, Cognition and Personality, 39(4), 397–408.

https://doi.org/10.1177/0276236619836091

Decety, J., & Grèzes, J. (1999). Neural mechanisms subserving the perception of human actions. Trends in Cognitive Sciences, 3(5), 172–178. https://doi.org/10.1016/S1364-6613(99)01312-1

Decety, J., Jeannerod, M., Germain, M., & Pastene, J. (1991). Vegetative response during imagined movement is proportional to mental effort. Behavioural Brain Research, 42(1), 1–5. https://doi.org/10.1016/S0166-4328(05)80033-6

Di Lorenzo, R., Pirazzoli, L., Blasi, A., Bulgarelli, C., Hakuno, Y., Minagawa, Y., &

Brigadoi, S. (2019). Recommendations for motion correction of infant fNIRS data applicable to multiple data sets and acquisition systems. NeuroImage, 200(April), 511–

527. https://doi.org/10.1016/j.neuroimage.2019.06.056

Ehrsson, H. H., Geyer, S., & Naito, E. (2003). Imagery of Voluntary Movement of Fingers, Toes, and Tongue Activates Corresponding Body-Part-Specific Motor Representations.

Journal of Neurophysiology, 90(5), 3304–3316. https://doi.org/10.1152/jn.01113.2002 Ertekin, C. (2011). Voluntary versus spontaneous swallowing in man. Dysphagia, 26(2), 183–

192. https://doi.org/10.1007/s00455-010-9319-8

Eslick, G. D., & Talley, N. J. (2008). Dysphagia: Epidemiology, risk factors and impact on quality of life - A population-based study. Alimentary Pharmacology and Therapeutics, 27(10), 971–979. https://doi.org/10.1111/j.1365-2036.2008.03664.x

Espinosa-Val, C., Martín-Martínez, A., Graupera, M., Arias, O., Elvira, A., Cabré, M., …

52

Ortega, O. (2020). Prevalence, risk factors, and complications of oropharyngeal dysphagia in older patients with dementia. Nutrients, 12(3).

https://doi.org/10.3390/nu12030863

Faralli, A., Bigoni, M., Mauro, A., Rossi, F., & Carulli, D. (2013). Noninvasive Strategies to Promote Functional Recovery after Stroke. Neural Plasticity, 2013, 16.

https://doi.org/10.1155/2013/854597

Filipp, S.-H., & Freudenberg, E. (1989). Der Fragebogen zur Erfassung dispositionaler Selbstaufmerksamkeit:(SAM-Fragebogen). Hippokrates-Verlag.

Fonagy, P., & Calloway, S. P. (1986). The effect of emotional arousal on spontaneous swallowing rates. Journal of Psychosomatic Research, 30(2), 183–188.

https://doi.org/10.1016/0022-3999(86)90048-6

Fuchs, M. (1997). Funktionelle Entspannung: Theorie und Praxis eines körperbezogenen Psychotherapieverfahrens. Hippokrates-Verlag.

Gagnon, L., Perdue, K., Greve, D. N., Goldenholz, D., Kashkedikar, G., & Boas, D. A.

(2011). Improved recovery of the hemodynamic response in Diffuse Optical Imaging using short optode separations and state-space modeling. Neuroimage, 56(3), 1362–

1371. https://doi.org/10.1038/jid.2014.371

Gagnon, L., Yücel, M. A., Boas, D. A., & Cooper, R. J. (2014). Further improvement in reducing superficial contamination in NIRS using double short separation measurements.

NeuroImage, 85, 127–135. https://doi.org/10.1016/j.neuroimage.2013.01.073

Gentili, R. J., Shewokis, P. A., Ayaz, H., & Contreras-Vidal, J. L. (2013). Functional near-infrared spectroscopy-based correlates of prefrontal cortical dynamics during a

cognitive-motor executive adaptation task. Frontiers in Human Neuroscience, 0(MAY), 277. https://doi.org/10.3389/FNHUM.2013.00277

Goyal, R., & Mashimo, H. (2006). Physiology of oral, pharyngeal, and esophageal motility.

GI Motility Online. https://doi.org/10.1038/gimo1

Guillot, A., & Collet, C. (2005). Duration of mentally simulated movement: A review.

Journal of Motor Behavior, 37(1), 10–20. https://doi.org/10.3200/JMBR.37.1.10-20 Guillot, A., & Collet, C. (2008). Construction of the Motor Imagery Integrative Model in

Sport: a review and theoretical investigation of motor imagery use. International Review of Sport and Exercise Psychology, 1(1), 31–44.

https://doi.org/10.1080/17509840701823139

Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2008).

53

Functional neuroanatomical networks associated with expertise in motor imagery.

NeuroImage, 41(4), 1471–1483. https://doi.org/10.1016/j.neuroimage.2008.03.042 Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2009). Brain

activity during visual versus kinesthetic imagery: An fMRI study. Human Brain Mapping, 30(7), 2157–2172. https://doi.org/10.1002/hbm.20658

Guillot, A., Di Rienzo, F., & Collet, C. (2014). The Neurofunctional Architecture of Motor Imagery. Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications, (June). https://doi.org/10.5772/58270

Guillot, A., Di Rienzo, F., Macintyre, T., Moran, A., & Collet, C. (2012). Imagining is not doing but involves specific motor commands: A review of experimental data related to motor inhibition. Frontiers in Human Neuroscience, 6(247), 1–22.

https://doi.org/10.3389/fnhum.2012.00247

Guillot, A., Lebon, F., Rouffet, D., Champely, S., Doyon, J., & Collet, C. (2007). Muscular responses during motor imagery as a function of muscle contraction types. International Journal of Psychophysiology, 66(1), 18–27.

https://doi.org/10.1016/j.ijpsycho.2007.05.009

Hamdy, S., Mikulis, D. J., Crawley, A., Xue, S., Lau, H., Henry, S., & Diamant, N. E. (1999).

Cortical activation during human volitional swallowing: An event- related fMRI study.

American Journal of Physiology - Gastrointestinal and Liver Physiology, 277(1 40-1), 219–225. https://doi.org/10.1152/ajpgi.1999.277.1.g219

Hamdy, S., Rothwell, J. C., Brooks, D. J., Bailey, D., Aziz, Q., & Thompson, D. G. (1999).

Identification of the cerebral loci processing human swallowing with H215O PET activation. Journal of Neurophysiology, 81(4), 1917–1926.

https://doi.org/10.1152/jn.1999.81.4.1917

Hammer, E. M., Halder, S., Blankertz, B., Sannelli, C., Dickhaus, T., Kleih, S., … Kübler, A.

(2012). Psychological predictors of SMR-BCI performance. Biological Psychology, 89(1), 80–86. https://doi.org/10.1016/j.biopsycho.2011.09.006

Hardwick, R. M., Caspers, S., Eickhoff, S. B., & Swinnen, S. P. (2018, November 1). Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution.

Neuroscience and Biobehavioral Reviews. Elsevier Ltd.

https://doi.org/10.1016/j.neubiorev.2018.08.003

Hétu, S., Grégoire, M., Saimpont, A., Coll, M. P., Eugène, F., Michon, P. E., & Jackson, P. L.

(2013). The neural network of motor imagery: An ALE meta-analysis. Neuroscience and

54

Biobehavioral Reviews, 37(5), 930–949. https://doi.org/10.1016/j.neubiorev.2013.03.017 Holmes, P. S., & Calmels, C. (2008). A Neuroscientific Review of Imagery and Observation

Use in Sport. Journal of Motor Behavior, 40(5), 433–445.

https://doi.org/10.3200/JMBR.40.5.433-445

Hovington, C. L., & Brouwer, B. (2010). Guided motor imagery in healthy adults and stroke:

Does strategy matter? Neurorehabilitation and Neural Repair, 24(9), 851–857.

https://doi.org/10.1177/1545968310374190

Humbert, I. A., & Robbins, J. A. (2007). Normal swallowing and functional magnetic resonance imaging: A systematic review. Dysphagia, 22(3), 266–275.

https://doi.org/10.1007/s00455-007-9080-9

Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2009). HomER: a review of time-series analysis methods for near- infrared spectroscopy of the brain. Applied Optics, 48(10), D280–D298.

Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C., & Doyon, J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation. Archives of Physical Medicine and Rehabilitation, 82(8), 1133–1141.

https://doi.org/10.1053/apmr.2001.24286

Jahani, S., Setarehdan, S. K., Boas, D. A., & Yücel, M. A. (2018). Motion artifact detection and correction in functional near-infrared spectroscopy: a new hybrid method based on spline interpolation method and Savitzky–Golay filtering. Neurophotonics, 5(01), 1.

https://doi.org/10.1117/1.nph.5.1.015003

Jean, A. (2001). Brain stem control of swallowing: Neuronal network and cellular mechanisms. Physiological Reviews. American Physiological Society.

https://doi.org/10.1152/physrev.2001.81.2.929

Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17(2), 187–202.

https://doi.org/10.1017/S0140525X00034026

Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14, 103–109. https://doi.org/10.1006/nimg.2001.0832

Jeunet, C., N’Kaoua, B., & Lotte, F. (2016). Advances in user-training for mental-imagery-based BCI control: Psychological and cognitive factors and their neural correlates.

Progress in Brain Research, 228, 3–35. https://doi.org/10.1016/bs.pbr.2016.04.002 Kirilina, E., Jelzow, A., Heine, A., Niessing, M., Wabnitz, H., Brühl, R., … Tachtsidis, I.

55

(2012). The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy. NeuroImage, 61(1), 70–81.

https://doi.org/10.1016/j.neuroimage.2012.02.074

Kirilina, E., Yu, N., Jelzow, A., Wabnitz, H., Jacobs, A. M., & Tachtsidis, I. (2013).

Identifying and quantifying main components of physiological noise in functional near infrared spectroscopy on the prefrontal cortex. Frontiers in Human Neuroscience, 7(DEC), 864. https://doi.org/10.3389/FNHUM.2013.00864

Kleih, S., Riccio, A., Mattia, D., Kaiser, V., Friedrich, E., Scherer, R., … Kübler, A. (2011).

Motivation influences performance in SMR-BCI. Proceedings of the Fifth International Brain-Computer Interface Conference 2011.

Kober, S. E., Bauernfeind, G., Woller, C., Sampl, M., Grieshofer, P., Neuper, C., & Wood, G.

(2015). Hemodynamic signal changes accompanying execution and imagery of

swallowing in patients with dysphagia : a multiple single-case near-infrared spectroscopy study. Frontiers in Neurology, 6, 151. https://doi.org/10.3389/fneur.2015.00151

Kober, S. E., Gressenberger, B., Kurzmann, J., Neuper, C., & Wood, G. (2015). Voluntary Modulation of Hemodynamic Responses in Swallowing Related Motor Areas : A Near-Infrared Spectroscopy-Based Neurofeedback Study. PLoS ONE, 10(11).

https://doi.org/10.1371/journal.pone.0143314

Kober, S. E., Grössinger, D., & Wood, G. (2019). Effects of Motor Imagery and Visual Neurofeedback on Activation in the Swallowing Network : A Real ‑ Time fMRI Study.

Dysphagia, 34(6), 879–895. https://doi.org/10.1007/s00455-019-09985-w

Kober, S. E., Hinterleitner, V., Bauernfeind, G., Neuper, C., & Wood, G. (2018). Trainability of hemodynamic parameters : A near-infrared spectroscopy based neurofeedback study.

Biological Psychology, 136(January), 168–180.

https://doi.org/10.1016/j.biopsycho.2018.05.009

Kober, S. E., Spörk, R., Bauernfeind, G., & Wood, G. (2019). Age-related differences in the within-session trainability of hemodynamic parameters: a near-infrared spectroscopy–

based neurofeedback study. Neurobiology of Aging, 81, 127–137.

https://doi.org/10.1016/j.neurobiolaging.2019.05.022

Kober, S. E., & Wood, G. (2014). Changes in hemodynamic signals accompanying motor imagery and motor execution of swallowing : A near-infrared spectroscopy study.

NeuroImage, 93, 1–10. https://doi.org/10.1016/j.neuroimage.2014.02.019

Kober, S. E., & Wood, G. (2018). Hemodynamic signal changes during saliva and water

56

swallowing : a near- infrared spectroscopy study. Journal of Biomedical Optics, 23(1).

https://doi.org/10.1117/1.JBO.23.1

Kober, S. E., Wood, G., Kurzmann, J., Friedrich, E. V. C., Stangl, M., Wippel, T., … Neuper, C. (2014). Near-infrared spectroscopy based neurofeedback training increases specific motor imagery related cortical activation compared to sham feedback. Biological Psychology, 95, 21–30. https://doi.org/10.1016/j.biopsycho.2013.05.005

Koski, L., Wohlschläger, A., Bekkering, H., Woods, R. P., Dubeau, M.-C., Mazziotta, J. C.,

& Iacoboni, M. (2002). Modulation of Motor and Premotor Activity during Imitation of Target-directed Actions. Cerebral Cortex, 12(8), 847–855.

https://doi.org/10.1093/CERCOR/12.8.847

Kraeutner, S. N., El-Serafi, M., Lee, J. W., & Boe, S. G. (2019). Disruption of motor imagery performance following inhibition of the left inferior parietal lobe. Neuropsychologia, 127, 106–112. https://doi.org/10.1016/j.neuropsychologia.2019.02.016

Kremer, P., Spittle, M., McNeil, D. G., & Shinners, C. (2009). Amount of Mental Practice and Performance of a Simple Motor Task. Perceptual and Motor Skills, 109, 347–356.

Kuhtz-Buschbeck, J. P., Mahnkopf, C., Holzknecht, C., Siebner, H., Ulmer, S., & Jansen, O.

(2003). Effector-independent representations of simple and complex imagined finger movements: A combined fMRI and TMS study. European Journal of Neuroscience, 18(12), 3375–3387. https://doi.org/10.1111/j.1460-9568.2003.03066.x

Langmore, S. E., & Pisegna, J. M. (2015). Efficacy of exercises to rehabilitate dysphagia: A critique of the literature. International Journal of Speech-Language Pathology, 17(3), 222–229. https://doi.org/10.3109/17549507.2015.1024171

Lim, V. K., Polych, M. A., Holländer, A., Byblow, W. D., Kirk, I. J., & Hamm, J. P. (2006).

Kinesthetic but not visual imagery assists in normalizing the CNV in Parkinson’s disease. Clinical Neurophysiology, 117(10), 2308–2314.

https://doi.org/10.1016/j.clinph.2006.06.713

Lorey, B., Bischoff, M., Pilgramm, S., Stark, R., Munzert, J., & Zentgraf, K. (2009). The embodied nature of motor imagery: The influence of posture and perspective.

Experimental Brain Research, 194(2), 233–243. https://doi.org/10.1007/s00221-008-1693-1

Lotze, M. (2013). Kinesthetic imagery of musical performance. Frontiers in Human Neuroscience, 7(June), 280. https://doi.org/10.3389/fnhum.2013.00280

Lotze, M., & Cohen, L. G. (2006). Volition and imagery in neurorehabilitation. Cognitive and

57 Behavioral Neurology, 19(3), 135–140.

https://doi.org/10.1097/01.wnn.0000209875.56060.06

Lotze, M., & Halsband, U. (2006). Motor imagery. Journal of Physiology Paris, 99(4–6), 386–395. https://doi.org/10.1016/j.jphysparis.2006.03.012

Lotze, M., & Zentgraf, K. (2010). Contribution of the primary motor cortex to motor imagery.

In The neurophysiological foundations of mental and motor imagery (pp. 31–46). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199546251.003.0003

Lutz, R., Landers, D., & Linder, D. (2001). Procedural variables and skill level influences on pre-performance mental practice efficacy. Journal of Mental Imagery, 115–134.

Malouin, F., Richards, C. L., Jackson, P. L., Dumas, F., & Doyon, J. (2003). Brain activations during motor imagery of locomotor-related tasks: A PET study. Human Brain Mapping, 19(1), 47–62. https://doi.org/10.1002/hbm.10103

Martin, R. E., Goodyear, B. G., Gati, J. S., & Menon, R. S. (2001). Cerebral cortical representation of automatic and volitional swallowing in humans. Journal of Neurophysiology, 85(2), 938–950. https://doi.org/10.1152/jn.2001.85.2.938

McNeill, E., Ramsbottom, N., Toth, A. J., & Campbell, M. J. (2020). Kinaesthetic imagery ability moderates the effect of an AO+MI intervention on golf putt performance: A pilot study. Psychology of Sport and Exercise, 46(September 2019), 101610.

https://doi.org/10.1016/j.psychsport.2019.101610

Milton, J., Small, S. L., & Solodkin, A. (2008). Imaging motor imagery: Methdological issues related to expertise. Methods, 45(4), 336–341.

https://doi.org/10.1016/j.ymeth.2008.05.002.Imaging

Mizuguchi, N., & Kanosue, K. (2017). Changes in brain activity during action observation and motor imagery: Their relationship with motor learning. Progress in Brain Research (1st ed., Vol. 234). Elsevier B.V. https://doi.org/10.1016/bs.pbr.2017.08.008

Mizuguchi, N., Nakamura, M., & Kanosue, K. (2017). Task-dependent engagements of the primary visual cortex during kinesthetic and visual motor imagery. Neuroscience Letters, 636, 108–112. https://doi.org/10.1016/j.neulet.2016.10.064

Molavi, B., & Dumont, G. A. (2012). Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiological Measurement, 33(2), 259–270.

https://doi.org/10.1088/0967-3334/33/2/259

Morash, V., Bai, O., Furlani, S., Lin, P., & Hallett, M. (2008). Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries.

58 Clinical Neurophysiology, 119(11), 2570–2578.

https://doi.org/10.1016/j.clinph.2008.08.013

Moriuchi, T., Nakashima, A., Nakamura, J., Anan, K., Nishi, K., Matsuo, T., … Higashi, T.

(2020). The Vividness of Motor Imagery Is Correlated With Corticospinal Excitability During Combined Motor Imagery and Action Observation. Frontiers in Human Neuroscience, 14(September), 1–9. https://doi.org/10.3389/fnhum.2020.581652 Munzert, J., Lorey, B., & Zentgraf, K. (2009, May). Cognitive motor processes: The role of

motor imagery in the study of motor representations. Brain Research Reviews.

https://doi.org/10.1016/j.brainresrev.2008.12.024

Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews. Neuroscience, 9(11), 856–869.

https://doi.org/10.1038/NRN2478

Neuper, C., Scherer, R., Reiner, M., & Pfurtscheller, G. (2005). Imagery of motor actions:

Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG.

Cognitive Brain Research, 25(3), 668–677.

https://doi.org/10.1016/j.cogbrainres.2005.08.014

Nguyen, H. D., Yoo, S. H., Bhutta, M. R., & Hong, K. S. (2018). Adaptive filtering of physiological noises in fNIRS data. BioMedical Engineering Online, 17(1), 4–9.

https://doi.org/10.1186/s12938-018-0613-2

O’shea, H., & Moran, A. (2019). Are Fast Complex Movements Unimaginable? Pupillometric Studies of Motor Imagery in Expert Piano Playing. Journal of Motor Behavior, 51(4), 371–384. https://doi.org/10.1080/00222895.2018.1485010

Obrig, H. (2014). NIRS in clinical neurology - a “promising” tool? NeuroImage, 85, 535–546.

https://doi.org/10.1016/j.neuroimage.2013.03.045

Papaxanthis, C., Schieppati, M., Gentili, R., & Pozzo, T. (2002). Imagined and actual arm movements have similar durations when performed under different conditions of direction and mass. Experimental Brain Research, 143, 447–452.

https://doi.org/10.1007/s00221-002-1012-1

Pfurtscheller, G., & Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters, 239(2–3), 65–68.

https://doi.org/10.1016/S0304-3940(97)00889-6

Raggam, P., Bauernfeind, G., & Wriessnegger, S. C. (2020). NICA: A Novel Toolbox for Near-Infrared Spectroscopy Calculations and Analyses. Frontiers in Neuroinformatics,

59 14. https://doi.org/10.3389/FNINF.2020.00026

Reips, U. D., & Funke, F. (2008). Interval-level measurement with visual analogue scales in internet-based research: VAS generator. Behavior Research Methods, 40(3), 699–704.

https://doi.org/10.3758/BRM.40.3.699

Ridderinkhof, K. R., & Brass, M. (2015). How kinesthetic motor imagery works: A

predictive-processing theory of visualization in sports and motor expertise. Journal of Physiology Paris, 109(1–3), 53–63. https://doi.org/10.1016/j.jphysparis.2015.02.003 Rieger, M., Dahm, S. F., & Koch, I. (2016). Inhibition in motor imagery: a novel action mode

switching paradigm. Psychonomic Bulletin & Review 2016 24:2, 24(2), 459–466.

https://doi.org/10.3758/S13423-016-1095-5

Robbins, J. A., Butler, S. G., Daniels, S. K., Gross, R. D., Langmore, S., Lazarus, C. L., … Rosenbek, J. C. (2008). Swallowing and dysphagia rehabilitation: Translating principles of neural plasticity into clinically oriented evidence. Journal of Speech, Language, and Hearing Research, 51(1). https://doi.org/10.1044/1092-4388(2008/021)

Roberts, R., Callow, N., Hardy, L., Markland, D., & Bringer, J. (2008). Movement imagery ability: Development and assessment of a revised version of the vividness of movement imagery questionnaire. Journal of Sport and Exercise Psychology, 30(2), 200–221.

https://doi.org/10.1123/jsep.30.2.200

Ross, S. L. (1985). The Effectiveness of Mental Practice in Improving the Performance of College Trombonists. Journal of Research in Music Education, 33(4), 221–230.

https://doi.org/10.2307/3345249

Ruffino, C., Papaxanthis, C., & Lebon, F. (2017). Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience, 341, 61–78.

https://doi.org/10.1016/j.neuroscience.2016.11.023

Saager, R. B., & Berger, A. J. (2008). Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy. Journal of Biomedical Optics, 13(3), 034017.

https://doi.org/10.1117/1.2940587

Saruco, E., Guillot, A., Bernard, C., Saimpont, A., Mercier, C., Rienzo, F., … Jackson, P.

(2017). Motor imagery ability of patients with lower-limb amputation: exploring the course of rehabilitation effects. European Journal of Physical and Rehabilitation Medicine, 55. https://doi.org/10.23736/S1973-9087.17.04776-1

Sato, T., Nambu, I., Takeda, K., Aihara, T., Yamashita, O., Isogaya, Y., … Osu, R. (2016).

60

Reduction of global interference of scalp-hemodynamics in functional near-infrared spectroscopy using short distance probes. NeuroImage, 141, 120–132.

https://doi.org/10.1016/j.neuroimage.2016.06.054

Satow, T., Ikeda, A., Yamamoto, J. I., Begum, T., Thuy, D. H. D., Matsuhashi, M., …

Shibasaki, H. (2004). Role of primary sensorimotor cortex and supplementary motor area in volitional swallowing: A movement-related cortical potential study. American Journal of Physiology - Gastrointestinal and Liver Physiology, 287, 459–470.

https://doi.org/10.1152/ajpgi.00323.2003

Schecklmann, M., Mann, A., Langguth, B., & Ehlis, A. (2017). The Temporal Muscle of the Head Can Cause Artifacts in Optical Imaging Studies with Functional Near-Infrared Spectroscopy. Frontiers in Neuroscience, 11, 456.

https://doi.org/10.3389/fnhum.2017.00456

Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Mata Pavia, J., Wolf, U., & Wolf, M. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology A review on continuous wave functio. NeuroImage, 6–27.

https://doi.org/10.1016/j.neuroimage.2013.05.004

Scholkmann, F., Spichtig, S., Muehlemann, T., & Wolf, M. (2010). How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiological Measurement, 31(5), 649–662. https://doi.org/10.1088/0967-3334/31/5/004

Seiler, B. D., Newman-Norlund, R. D., & Monsma, E. V. (2017). Inter-individual neural differences in movement imagery abilities. Psychology of Sport and Exercise, 30, 153–

163. https://doi.org/10.1016/j.psychsport.2017.02.007

Selb, J., Yücel, M. A., Phillip, D., Schytz, H. W., Iversen, H. K., Vangel, M., … Boas, D. A.

(2015). Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data: a study in healthy subjects and stroke patients. Journal of Biomedical Optics, 20(5), 056011. https://doi.org/10.1117/1.jbo.20.5.056011

Singh, A. K., & Dan, I. (2006). Exploring the false discovery rate in multichannel NIRS.

NeuroImage, 33(2), 542–549. https://doi.org/10.1016/j.neuroimage.2006.06.047 Smits, M., Peeters, R. R., Hecke, P., & Sunaert, S. (2007). A 3 T event-related functional

magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex

61

localization using natural tastants. Neuroradiology, 49(1), 61–71.

https://doi.org/10.1007/s00234-006-0160-6

Solodkin, A., Hlustik, P., Chen, E. E., & Small, S. L. (2004). Fine modulation in network activation during motor execution and motor imagery. Cerebral Cortex, 14(11), 1246–

1255. https://doi.org/10.1093/cercor/bhh086

Sood, B. G., McLaughlin, K., & Cortez, J. (2015). Near-infrared spectroscopy: Applications in neonates. Seminars in Fetal and Neonatal Medicine, 20, 164–172.

https://doi.org/10.1016/j.siny.2015.03.008

Sorös, P., Inamoto, Y., & Martin, R. E. (2009). Functional Brain Imaging of Swallowing : An Activation Likelihood Estimation Meta-Analysis. Human Brain Mapping, 30, 2426–

2439. https://doi.org/10.1002/hbm.20680

Subirats, L., Allali, G., Briansoulet, M., Salle, J. Y., & Perrochon, A. (2018). Age and gender differences in motor imagery. Journal of the Neurological Sciences, 391(June), 114–117.

https://doi.org/10.1016/j.jns.2018.06.015

Szynkiewicz, S. H., Nobriga, C. V., & Donoghue, C. (2018). Motor Imagery and Swallowing:

Introduction to Literature and Discussion of Research needs in Dysphagia. Health Care : Current Reviews, 06(01), 1–4. https://doi.org/10.4172/2375-4273.1000218

Tinaz, S., Para, K., Vives-Rodriguez, A., Martinez-Kaigi, V., Nalamada, K., Sezgin, M., … Constable, R. T. (2018). Insula as the interface between body awareness and movement:

Tinaz, S., Para, K., Vives-Rodriguez, A., Martinez-Kaigi, V., Nalamada, K., Sezgin, M., … Constable, R. T. (2018). Insula as the interface between body awareness and movement: