• Keine Ergebnisse gefunden

FF Füllfaktor

Jsc Kurzschlussstromdichte Voc Leerlaufspannung η Wirkungsgrad

Leff effective Diffusionslänge Lbulk Diffusionslänge im Volumen τVol Volumenlebensdauer α Absorptionskoeffizient XL Absorptionslänge Rs Serienwiderstand Rsh Parallelwiderstand Rsheet Schichtwiderstand

J01 Diodenstrom der ersten Diode J02 Diodenstrom der zweiten Diode JPh Photostrom

N Ladungsträgerkonzentration

Ns Oberflächenladungsträgerkonzentration D Diffusionskoeffizient

Ea Aktivierungsenergie

PmPP Leistung am maximalen Power Point VmPP Spannung am maximalen Power Point ImPP Strom am maximalen Power Point

Literaturverzeichnis

[1] Cuevas, A., The early history of bifacial solar cells. Proc. 20th EPVSC Barcelona, 2005:

Seite 801-805.

[2] Hirchman, W.P. and m. Schmela, Silicon shortage-so what! Market survey on cell and module production 2005. Photon International, 2006. 3: Seite 100-125.

[3] Homan, G. and S.C. Hemlock, Silicon Supply options for the PV industrie. Proc. 3rd Solar Silicon Conference, Munich, Germany, 2006: Präsentation.

[4] Schlummberger, A., (K)ein historischer Augenblick. Photon, 2006. 09: Seite 14-16.

[5] Götzberger, A., B. Voß, and J. Knobloch, Sonnenenergie: Photovoltaik. Teubner Studienbücher. 1997: Teubner.

[6] Friestad, K., et al., Solar Grade Silicon from Metallurgical Route. Proc. 19th European PVSEC Paris, 2004: Seite 568-571.

[7] Hahn, G. and A. Schönecker, New crystalline silicon ribbon materials for photovoltaics. Journal of Physics: Condensed Matter, 2004, 16: Seite 1615-1648.

[8] Hilleringmann, U., Silizium-Halbleitertechnologie. 1999, Teubner.

[9] Hauser, A., et al., A simplified process for isotropic textturing of mc-Si. Proc. 3rd WCPSEC Osaka Japan, 2003: Seite 1447-1450

[10] Schumacher, Process guidelines for using Phosphorus Oxychloride as n-type silicon dopant.

Produktbeschreibung, 1993.

[11] Hauser, A., et al., Comparison of different techniques for edges isolation. Proc. 17th European Photovoltaic Solar Energy Conference Munich 2001, 2001.

[12] Delahaye, F., et al., Edge Isolation: Innovative Inline Wet Processing -Ready for Industrial Production. Proc. 19th European PVSEC Paris, 2003: Seite 416-418.

[13] Wyers, P., Photovoltaics. status and Perspectives. Vortrag: Gründungsfeier ISC Konstanz, 2006.

[14] Buonassisi, T., et al., Engineering metal-impurity nanodefects for low-cost solar cells. Nature Materials, 2005.

[15] Peter, K., et al., Inverstigation of multicrystalline silicon solar cells from solar grade silicon feedstock. Proc. 20th EPVSC Barcelona, 2005: Seite 615-618.

[16] Blood, P., Capacitance-volatge profiling and the characterisation of III-V semiconductors using electrolyte barriers. Semiconductor Science & Technology, 1986. 1: Seite 7-27.

[17] Tool, C.J.J., et al., Almost 1% absolute efficiency increase in mc-Si soilar cell manufacturing with simple adjustments to the processing sequence. Proc. 21th EUPVSC Dresden Germany, 2006.

[18] Clugston, D. and P.A. Basore, PC1D Version 5: 32-Bit solar cell modeling on personal computers. Proc. 26th IEEE Anaheim California, 1997: Seite 207-210.

[19] Basore, P.A., Extended spectral analysis of internal quantum efficiency. Proc. 23rd IEEE PVSC Louisville, USA, 1993: Seite 147-152.

[20] Koenen, H.S.S., Präzisionssiebe für den technischen Siebdruck. Produktkatalog, 2003.

[21] Raabe, B., et al., High aspect ratio screen printed fingers. Proc. 20th EPVSC Barcelona, 2005:

Seite 930-933.

[22] Schneider, A., et al., Mechanical and Electrical Characterisation of thin multi-crystalline Silicon Solar Cells. Proc. 19th European PVSEC Paris, 2004: Seite 496-499.

[23] Uematsu, M., Simulation of boron, phosphorus, and arsenic diffusion in silicon based on an integrated diffusion model, and the anomalous phosphorus diffusion mechanism. Journal of Applied Physics, 1997. 82(5): Seite 2228-2246.

[24] Goris, M.J.A.A., et al., Comparison of Emitters Diffused Using an IR Belt Furnace and a POCl3 System. Proc. 17th European Photovoltaic Solar Energy Conference Munich 2001, 2001: Seite 1535-1538.

[25] Krygowski, T. and A. Rohatagi, Simultaneous P and b diffusion, in situ surface passivation, impurity filtering and gettering for high efficiency silicon solar cells. Proc. 26th IEEE Anaheim California, 1997: Seite 19-24

[26] Biro, D., et al., Screen printed selective emitters prepared by fast and rapid thermal diffusion.

17th European Solar Energy Conference and Exhibition, Munich, 2001: Seite 1593-1596 [27] Horzel, J., et al., A simple processing sequence for selective emitters. Proc. 26th IEEE

Anaheim California, 1997: Seite 139-142.

[28] Benick, J., et al., PECVD PSG dopant source for industrial solar cells. Proc. 21st EU PVSC Dresden, 2006: im Druck.

[29] Voyer, C., et al., Progress in the use of sprayed phosphoric acid as an inexpensive dopant source for industrial solar cells. Proc. 20th EPVSC Barcelona, 2005: Seite 1415-1418.

[30] GLS Pforzheim / EFD Inc., Produktkatalog.

[31] filmtronics, Spin On Diffusants -Product information. product catalog. 1999, Butler PA:

filmtronics.

[32] Peter, K., Optische Charakterisierung von Halbleiterschichten, in Fakultät für Physik. 1993, University Konstanz: Konstanz.

[33] Goris, M.J.A.A., A.W. Weeber, and J.H. Bultmann, Narrower distribution formulticrystalline silicon solar cells by double sided emitter diffusion. Proc. 29th IEEE PVSC New Orleans, 2002:

Seite 379-382.

[34] Schneider, A., et al., Comparison of gettering effects during phosphorus diffusion for one- and double sided emitters. Proc. 31st IEEE PVSC Lake Buena Vista, 2005: Seite 051-1054.

[35] Herzog, B. and K. Peter, Ultra-large 20 x20 cm² mc-Si solar cells: Improved cell process resulting in efficiencies exceeding 15%. Proc. 21th EUPVSC Dresden Germany, 2006: im Druck.

[36] Schneider, A., et al., Al BSF for thin screenprinted multicrystalline Si solar cells. Proc. 17th European Photovoltaic Solar Energy Conference Munich 2001, 2001: Seite 1768-1771.

[37] Huster, F., Aluminiumback surface field: Bow investigation and elimination. Proc. 20th EPVSC Barcelona, 2005: Seite 635-638

[38] Schumacher, Boron Tribromide as a p-type silicon dopant. Produktbeschreibung, 1991.

[39] Libal, J., et al., N-type multicrystalline silicon solar cells with BBr3-diffused front junction. Proc.

31st IEEE PVSC Lake Buena Vista, 2005: Seite 1209-1203

[40] Koyanagi, K., et al., Improvement of minority carrier lifetimes in multicrystalline cast Si wafers by boron gettering. Proc. 12th PVSEC Jeju, Korea, 2001: Seite 275-276.

[41] Buck, T., et al., Large area screen printed n-type mc- Si solar cells with B-emitter: efficiencies close to15% and innovative module interconnection. Proc. 4th WCPEC Hawaii, USA, 2005:

Seite 2060-2063.

[42] Schumacher, Process guidelines for Trans-LC. Produktbeschreibung, 1991.

[43] Glunz, S.W., et al., Comparison of different dielectric passivation layers for application in industrially feasible high efficiency crystalline silicon solar cells. Proc. 20th EPVSC Barcelona, 2005: Seite 572-577.

[44] Stocks, M., A. Blakers, and A. Cuevas, Multicrystalline silicon solar cells with low rear surface recombination. Proc. 26th IEEE Anaheim California, 1997: Seite 67-70.

[45] Pernau, T., Lebensdauerbestimmung und ortsaufgelöste Messung der Quantenausbeute an kristallinem Silizium, in Fakultät für Physik. 1999, Universität Konstanz: Konstanz.

[46] Kühn, R., Herstellung, Charkterisierung und Simulation semitransparenter, bifacialer kristalliner Siliziumsolarzellen, in Fb Physik. 2000, Universität Konstanz: Konstanz.

[47] Joge, T., et al., Applications and field tests of bifacial solar cell modules. Proc. 29th IEEE PVSC New Orleans, 2002: Seite 1549-1552.

[48] Götzberger, A. and G. Walze, Application of Bifacial modules. TD 14th PVSEC Bangkok, Thailand, TD, 2004: p. 719-722.

[49] bp, s., Photovoltaik Projekt Flughafen München Terminal 2. Produktbeschreibung, 2004.

[50] Cuevas, A., et al., 50 per cent more output power from an albedocollecting flat panel using bifacial solar cells. Solar Energy, 1982. 29(5): Seite 419-420.

[51] Hezel, R., Novel Applications of Bifacial Solar Cells. Progress in Photovoltaics: Research and Applications, 2003. 11: Seite 549-556.

[52] Kopecek, R., et al., Module Interconnection with alternate p- and n- type Si solar cells. Proc.

21th EUPVSC Dresden Germany, 2006: im Druck.

[53] Schneider, A., L. Rubin, and G. Rubin, Solar cell efficiency Improvement by new metallization techniques- The day4TM electorde concept. Proc. 4th WCPEC Hawaii, USA, 2006: Seite 1095-1098.

[54] Schneider, A., et al., A new approach in solar cell module interconnection technique resulting in 5-10% higher module power output. Proc. 4th WCPEC Hawaii, USA, 2006: Seite 2073-2076.

[55] Raabe, B., Elekm SoG, 2006, Elkem Präsentation.

[56] Lee, J.Y. and S.W. Glunz, Boron-back surface field with spin-on dopants by rapid thermal processing. Proc. 19th European PVSEC Paris, 2004: Seite 998-1001.

[57] Silva, J.A., et al., Progrss in the use of sprayed boric acid as dopant source for silicon ribbons.

Proc. 21th EUPVSC Dresden Germany, 2006: im Druck.

[58] Schultz, O., S.W. Glunz, and G. Willeke, Multicrystalline silicon colar cells exceeding 20%

efficiency. Progress in Photovoltaics: research and Applications, 2004. 12: Seite 53-558.

[59] Taguchi, M., et al., HITTM Cells- High efficiency crystalline Si cells with novel structure.

Progress in Photovoltaics: research and Applications, 2000. 8: Seite 503-513.

[60] Dauwe, S., et al., Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells. Progress in Photovoltaics: Research and Applications, 2002. 10:

Seite 271-278.

[61] Cuevas, A., M.J. Kerr, and J. Schmidt, Passivation of crystalline silicon using silicon nitride.

Proc. 3rd WCPSEC Osaka Japan, 2003.

[62] Janßen, L., et al., Thin bifacial multicrystalline solar cells for industrial production. Proc. 21st EU PVSC Dresden, 2006: im Druck.

[63] Romijn, I.G., et al., High efficiencies on mc-Si solar cells enabled by industrial firing through rear side passivating SiNx:H. Proc. 21th EUPVSC Dresden Germany, 2006: im Druck.

[64] Petres, R., et al., Improvements in the passivation of p+-Si surfaces by PECVD silicion carbide films. Proc. 4th WCPEC Hawaii, USA, 2006: Seite 1012-1015.

[65] Mori, H., Radiation enrgy trasducing device, in US Patent US 3278811. 1966.

[66] Zhou, C.Z., P.J. Verlinden, and R.A.S. Crane, R.M., 21.9% efficient silicon bifacial solar cells.

Proc. 26th IEEE Anaheim California, 1997: Seite 287-290.

[67] Ghozati, S.B., et al., Improved fill-factor for the double-sided buried-contact bifacial silicon solar cell. Solar Energy materials &Solar Cells, 1998(51): Seite 121-128.

[68] Blakers, A., et al., Sliver cells - a complete photovoltaic solution. Proc. 4th WCPEC Hawaii, USA, 2006: Seite 2181-2184.

[69] Weber, K., et al., The effect of bifacial sliver® module orientation on energy production. Proc.

19th European PVSEC Paris, 2004: Seite 2792-2795.

[70] Warabisako, T., et al., Bifacial multicrystalline silicon solar cells. Proc. 23rd IEEE PVSC Louisville, USA:1993: Seite 248-251.

[71] Coello, J., C.d. Canizo, and A. Luque, Review on bifacialsolar cell structures for industialization. Proc. 21st EU PVSC Dresden, 2006: im Druck.