• Keine Ergebnisse gefunden

Chapter 1 General Introduction

1.3 Inflammatory bowel disease (IBD)

1.3.1 Cytokines in inflammatory bowel disease

1.3.1.1 Interleukin (IL)-1

IL-1 is a potent pro-inflammatory cytokine that activates many immune and inflammatory cells. It is a type 1 pro-inflammatory cytokine that is up regulated in the intestinal mucosa of IBD patients (Ligumsky et al., 1990). It is released by monocytes, macrophages, neutrophils and endothelial cells. IL-1 consists of IL-1α and IL-1β, which bind to IL-1 receptor on target cells: IL-1α is expressed in many cell types while IL-1β expression is induced mostly in response to microbial molecules (Dinarello, 2009). IL-1 is up regulated in plasma and tissue in CD and UC (Mahida et al., 1989 ; Casini-Raggi et al., 1995 ; Turner et al., 2014).

26 1.3.1.2 Tumor Necrosis Factor (TNF-α)

Tumor Necrosis Factor (TNF) is an important mediator of inflammation and it is secreted early on in the inflammatory response from macrophages, monocytes, T cells, mast cells, fibroblasts and neurons (Tracey et al., 2008). TNF binds to its receptors, TNFR1 and TNFR2 and subsequently activates NF-αB and leads to the induction of pro-inflammatory gene expression. A hallmark of severe IBD is the overproduction of TNF-α in colonic mucosa (Li et al., 2010). In addition, TNF-α induced necroptotic cell death in the terminal ileum of patients with CD (Günther et al., 2011). Interestingly, Mucin genes and protein expression in intestinal cell lines and animal models are similarly influenced by TNF (Elson et al., 1995 ; Enss et al., 2000) .

1.3.1.3 Monocyte chemoattractant protein 1 (MCP1)

Chemokines play an important role particularly in the recruitment of monocytes, neutrophils, and lymphocytes, as well as inducing chemotaxis through the activation of G-protein-coupled receptors. MCP1 is one of the chemokines produced by different cells such as dendritic cells, macrophage, endothelial cells, and fibroblasts. It is responsible for monocytes and T-lymphocytes recruitment to sites of inflammation (Tesch et al., 1999).

Interestingly, MCP1 levels are elevated after inflammatory stimuli such as IL-1 and TNF-α (Luther and Cyster, 2001). IL-1β can induce the expression of MCP1 and the absence of IL-1β leads to down-regulation of MCP1 at the mRNA and protein levels (Rovin et al., 1999 ; Kirii et al., 2003). In UC cases, MCP1 is up-regulated and monocyte recruitment into the colonic mucosa is, leading to an intensified mucosal immune response (Reinecker et al., 1995; Grimm et al., 1996). The expression of MCP1 is significantly higher in the mucosa of UC patients as compared to mucosa of healthy patients, indicating that the production of MCP1 may contribute to the development of UC (MacDermott et al., 1998 ; Uguccioni et al., 1999 ; Banks et al., 2003).

27 Table 1 Selected key cytokines activities implicated in the pathogenesis of IBD

Cytokines Source in the mucosa Potential function in the IBD pathogenesis

IFNα, β DCs Promote epithelial regeneration and induce

IL-10 producing cells

TNF-β Th1 and Tc cells NO production, cell death

TNF-α Macrophages, mast cells induces death epithelial cells, inflammation, and pain

IL-1 Neutrophils Augments recruitment of neutrophils, Stimulates IL-6 Macrophages production by macrophages, inflammation.

IL-10 Inhibits IL-10 knockout mice develop enterocolitis

TNFα, IL-1, 2, 6, 8, IFNɣ IL- 10 reduced severity of colitis and nitric oxide production

Macrophages, T lymphocyte

TGFβ Promotes wound healing, Increase TGF-β levels in IBD epithelial restitution TGF-β knockout mice develop colitis

MCP-1 monocytes and T lymphocyte Recruiting leucocytes into the colonic lesions

1.4 Endoplasmic reticulum stress in the intestinal epithelial cell and inflammatory bowel disease

ER stress is a hallmark of several diseases. Numerous environmental and genetic factors can alter the functionality of the ER, leading to the accumulation of misfolded protein in this organelle, resulting in ER stress. As previously discussed, one of the cellular adaptations to unresolved ER-stress, is the activation of the unfolded protein response (UPR). Secretion of antimicrobial peptides and mucins is decreased after UPR

28 activation and this may reduce the capability of the mucosal barrier (McGuckin et al., 2010). The intestinal epithelium contains four types of secretory epithelial cells that are exposed to exogenous antigens and these include the absorptive epithelium, goblet, Paneth, and enteroendocrine cells (Barker et al., 2007). Interestingly, the secretory cells including Paneth cells and goblet cells are very susceptible to ER stress, and the UPR function is important to maintain epithelial cell homeostasis (Maloy and Powrie, 2011).

Importantly, intestinal secretory cells release important components of the mucosal barrier to prevent mucosal infection and inflammation. Chronic ER stress and defects in UPR signaling may contribute to inflammation and inflammation-related human diseases.

Recently, it has been reported that multiple components of the UPR signaling are linked to ER stress leading to inflammatory bowel disease (IBD) (McGuckin et al., 2010).

Activation of IRE1 pathway is also associated with intestinal inflammation. Several genes, including XBP1, AGR2 and ORMDL3, encode proteins associated with ER function and are implicated in susceptibility to Crohn’s and (CD) and Ulcerative colitis (UC) (Kaser et al., 2010). In fact, Agr2 knockout mice result in the accumulation of misfolded proteins in the ER (Zhao et al., 2010). The deletion of X-box-binding protein1 (XBP1), which is a key component of ER stress response, in the intestinal epithelium of mice led to the induction of ER stress, inflammation and spontaneous colitis (Kaser et al., 2008). Furthermore, XBP1 deficiency in intestinal tissues increases CHOP, BiP and ATF4 levels (Garg et al., 2012). In contrast, under ER stress-induced inflammation conditions, CHOP did not activate the apoptotic pathway even though it did induce activation of IL-1β (Endo et al., 2006).

The intestinal epithelium is the first to be exposed to trillions of commensal microbes and various metabolic products derived from the host and its microbiota.

Intestinal epithelial cells provide a barrier between the host and microbiota to maintain tissue homeostasis. However, disruption of the intestinal epithelium allows translocation of many commensal bacteria across the intestinal layer, thus inducing chronic mucosal inflammation. Furthermore, toxins or infectious components from invading pathogens can affect the protein folding machinery in the ER, ultimately causing ER stress (Kaser et al., 2013 ; Smith, 2014). Epithelial cells not only act as a physical barrier but can also function in the maintenance of mucosal homeostasis (Luo and Cao, 2015). Secretory cells

29 decrease the release of components in the mucosal barrier when faced with severe ER stress conditions and can lead to premature apoptosis (Kim et al., 2008). Paneth cells play an important role in mucosal innate immunity by secreting antimicrobial peptides and multiple defensins in the small intestine, and when Paneth cells are disrupted, the release of antimicrobial peptides is decreased and these has been linked to Crohn’s ileitis (Garrett et al., 2010). Additionally, changes in the expression of defensins and proliferation of Paneth cell are linked to IBD (Shi, 2007), Goblet cells produce mucins in both small and large intestines. MUC2 mucin is a highly glycosylated glycoprotein that undergoes N-glycosylation in the ER and O-N-glycosylation in the Golgi apparatus before being secreted into the intestinal lumen (Kim and Ho, 2010). Mutations in Muc2 lead to the accumulation of MUC2 in the ER of goblet cells of mice and resulted in decreased mucin secretion and an impaired mucus layer that may be ultimately linked to ulcerative colitis (Heazlewood et al., 2008). Taken together, the accumulation of immature glycoproteins induces ER stress in the cells and link to a reduction of mucin secretion. Furthermore, increased production of type1/ Th1 and type2/Th2 cytokines in mice expressing a mutant Muc2 gene led to the spontaneous development of distal colitis and an increased susceptibility to DSS-induced colitis (Heazlewood et al., 2008). Cytokines associated with infections and inflammations induce oxidative stress, and that has been shown to indirectly aggravate ER stress by, increasing misfolded proteins (Cornick et al., 2015).

30

1.5 Aim of the study

Considering the importance of proper ER performance on the overall cellular fitness and function of the intestinal epithelium, it is crucial to understand the factors that trigger ER stress and the ensuing effects on the epithelial barrier. Furthermore, with the instances of IBD on the rise, it has become necessary to unravel the link between cytokine-induced inflammation, ER malfunction and intestinal disease. This study focuses on analyzing the effects of pro-inflammatory mediators on ER fitness and the subsequent influence of ER stress on intestinal epithelial cell polarity, protein folding and expression of intestinal proteins.

The purpose of this study is 1) to determine the ability of a cytokine cocktail made of TNF-α, IL-1, MCP-1 to induce ER stress 2) to investigate the effect of cytokine induced-ER stress on intestinal epithelial cell polarity, barrier integrity, protein folding and the expression of specific proteins from the apical membrane such as sucrase-isomaltase and ezrin, and from the basolateral membrane such as ZO-1, and Cx43 and 3) to explore the role of hypoxia-induced ER stress and its effect on barrier integrity.

31 Reference

Al-Sadi, R., Boivin, M., Ma, T., 2009. Mechanism of cytokine modulation of epithelial tight junction barrier. Front. Biosci. 14, 2765–2778. doi:10.2741/3413

Al-Sadi, R.M., Ma, T.Y., 2007. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J. Immunol. 178, 4641–9. doi:178/7/4641 [pii]

Andresen, L., Jørgensen, V.L., Perner, A., Hansen, A., Eugen-Olsen, J., Rask-Madsen, J., 2005. Activation of nuclear factor kappaB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut 54, 503–9. doi:10.1136/gut.2003.034165 Antoni, L., Nuding, S., Wehkamp, J., Stange, E.F., 2014. Intestinal barrier in

inflammatory bowel disease. World J. Gastroenterol. 20, 1165–1179.

doi:10.3748/wjg.v20.i5.1165

Apodaca, G., Gallo, L.I., Bryant, D.M., 2012. Role of membrane traffic in the generation of epithelial cell asymmetry. Nat. Cell Biol. 14, 1235–1243. doi:10.1038/ncb2635 Banks, C., Bateman, A., Payne, R., Johnson, P., Sheron, N., 2003. Chemokine expression

in IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn’s disease. J. Pathol. 199, 28–35. doi:10.1002/path.1245

Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., Clevers, H., 2007.

Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007. doi:10.1038/nature06196

Baumgart, D.C., Sandborn, W.J., 2012. Crohn’s disease, in: The Lancet. pp. 1590–1605.

doi:10.1016/S0140-6736(12)60026-9

Berg, J.M., Tymoczko, J.L., Stryer, L., 2006. Biochemistry. 5th edition., in: Biochemistry Textbook. p. 1120. doi:10.1007/s13398-014-0173-7.2

Berryman, M., Franck, Z., Bretscher, A., 1993. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J. Cell Sci. 105, 1025–1043.

Bonizzi, G., Karin, M., 2004. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–8.

doi:10.1016/j.it.2004.03.008

Brown, E.M., Sadarangani, M., Finlay, B.B., 2013. The role of the immune system in governing host-microbe interactions in the intestine. Nat. Immunol. 14, 660–7.

doi:10.1038/ni.2611

32 Bruewer, M., Samarin, S., Nusrat, A., 2006. Inflammatory bowel disease and the apical junctional complex, in: Annals of the New York Academy of Sciences. pp. 242–252.

doi:10.1196/annals.1326.017

Budarf, M.L., Labbé, C., David, G., Rioux, J.D., 2009. GWA studies: rewriting the story of IBD. Trends Genet. doi:10.1016/j.tig.2009.01.001

Cao, S.S., Kaufman, R.J., 2012. Unfolded protein response. Curr. Biol.

doi:10.1016/j.cub.2012.07.004

Casini-Raggi, V., Kam, L., Chong, Y.J., Fiocchi, C., Pizarro, T.T., Cominelli, F., 1995.

Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation. J. Immunol.

(Baltimore, Md. 1950) 154, 2434–2440.

Cereijido, M., Contreras, R.G., Flores-Benítez, D., Flores-Maldonado, C., Larre, I., Ruiz, A., Shoshani, L., 2007. New Diseases Derived or Associated with the Tight Junction. Arch. Med. Res. doi:10.1016/j.arcmed.2007.02.003

Cheng, H., Leblond, C.P., 1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine I. Columnar cell. Am. J. Anat. 141, 461–479. doi:10.1002/aja.1001410403

Cohen, S.A., 2016. The clinical consequences of sucrase-isomaltase deficiency. Mol Cell Pediatr 3, 5. doi:10.1186/s40348-015-0028-0

Cornick, S., Tawiah, A., Chadee, K., 2015. Roles and regulation of the mucus barrier in the gut. Tissue Barriers 3, e982426. doi:10.4161/21688370.2014.982426

Crawley, S.W., Mooseker, M.S., Tyska, M.J., 2014. Shaping the intestinal brush border.

J. Cell Biol. doi:10.1083/jcb.201407015

Crawley, S.W., Mooseker, M.S., Tyska, M.J., 2014. Shaping the intestinal brush border.

J. Cell Biol. 207, 441–451. doi:10.1083/jcb.201407015

Cullinan, S.B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R.J., Diehl, J.A., 2003.

Nrf2 Is a Direct PERK Substrate and Effector of PERK-Dependent Cell Survival.

Mol. Cell. Biol. 23, 7198–7209. doi:10.1128/MCB.23.20.7198-7209.2003

Cyster, J.G., 2005. Chemokines and cell migration in secondary lymphoid organs. Annu.

Rev. Immunol. 23, 127–159. doi:10.1126/science.286.5447.2098

Dallas, D.C., Underwood, M. a, Zivkovic, A.M., German, J.B., 2012. Digestion of Protein in Premature and Term Infants. J. Nutr. Disord. Ther. 2, 112.

doi:10.4172/2161-0509.1000112

33 Danese, S., Fiocchi, C., 2011. Ulcerative Colitis. N. Engl. J. Med. 365, 1713–1725.

doi:10.1056/NEJMra1102942

Danielsen, E.M., van Deurs, B., 1997. Galectin-4 and small intestinal brush border enzymes form clusters. Mol. Biol. Cell 8, 2241–51.

Deng, J., Lu, P.D., Zhang, Y., Scheuner, D., Kaufman, R.J., Sonenberg, N., Harding, H.P., Ron, D., 2004. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol. Cell. Biol. 24, 10161–8. doi:10.1128/MCB.24.23.10161-10168.2004

Dewald, J.H., Colomb, F., Bobowski-Gerard, M., Groux-Degroote, S., Delannoy, P., 2016. Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer. Cells 5, 43.

doi:10.3390/cells5040043

Di Paolo, M.C., Merrett, M.N., Crotty, B., Jewell, D.P., 1996. 5-Aminosalicylic acid inhibits the impaired epithelial barrier function induced by gamma interferon. Gut 38, 115–9. doi:10.1136/gut.38.1.115

Dinarello, C.A., 2009. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–50.

doi:10.1146/annurev.immunol.021908.132612

Dkhil, M. a, Delic, D., Al-Quraishy, S., 2013. Goblet cells and mucin related gene expression in mice infected with Eimeria papillata. ScientificWorldJournal. 2013, 439865. doi:10.1155/2013/439865

Duque, G.A., Descoteaux, A., 2014. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. doi:10.3389/fimmu.2014.00491

Ebnet, K., 2008. Organization of multiprotein complexes at cell-cell junctions.

Histochem. Cell Biol. doi:10.1007/s00418-008-0418-7

Ellgaard, L., Helenius, a., 2003. Quality control in the endoplasmic reticulum. Nat. Rev.

Mol. Cell Biol. 4, 181–191. doi:10.1038/nrm1052

Elson, C.O., Sartor, R.B., Tennyson, G.S., Riddell, R.H., 1995. Experimental models of inflammatory bowel disease. Gastroenterology 109, 1344–1367. doi:10.1016/0016-5085(95)90599-5

Endo, M., Mori, M., Akira, S., Gotoh, T., 2006. C/EBP Homologous Protein (CHOP) Is Crucial for the Induction of Caspase-11 and the Pathogenesis of Lipopolysaccharide-Induced Inflammatio. J. Immunol. 176, 6245–6253.

doi:10.4049/jimmunol.176.10.6245

34 Enss, M.L., Cornberg, M., Wagner, S., Gebert, A., Henrichs, M., Eisenblätter, R., Beil, W., Kownatzki, R., Hedrich, H.J., 2000. Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm.

Res. 49, 162–169. doi:10.1007/s000110050576

Faderl, M., Noti, M., Corazza, N., Mueller, C., 2015. Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis. IUBMB Life.

doi:10.1002/iub.1374

Fanning, A.S., Jameson, B.J., Jesaitis, L.A., Anderson, J.M., 1998. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem. 273, 29745–29753. doi:10.1074/jbc.273.45.29745 Francescone, R., Hou, V., Grivennikov, S.I., 2015. Cytokines, IBD, and Colitis-associated Cancer. Inflamm. Bowel Dis. 21, 409–418.

doi:10.1097/MIB.0000000000000236

Garg, A.D., Kaczmarek, A., Krysko, O., Vandenabeele, P., Krysko, D. V., Agostinis, P., 2012. ER stress-induced inflammation: Does it aid or impede disease progression?

Trends Mol. Med. doi:10.1016/j.molmed.2012.06.010

Garrett, W.S., Gordon, J.I., Glimcher, L.H., 2010. Homeostasis and Inflammation in the Intestine. Cell. doi:10.1016/j.cell.2010.01.023

Gary, R., Bretscher, A., 1995. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol. Biol. Cell 6, 1061–75. doi:10.1091/mbc.E12-02-0152

Gassler, N., Rohr, C., Schneider, a, Kartenbeck, J., Bach, a, Obermüller, N., Otto, H.F., Autschbach, F., 2001. Inflammatory bowel disease is associated with changes of enterocytic junctions. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G216–G228.

Giepmans, B.N.G., Moolenaar, W.H., 1998. The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr. Biol.

B. N. G., Moolenaar, W. H. (1998). gap junction protein connexin43 interacts with Second PDZ domain Zo. occludens-1 protein. Curr. Biol. 8(16), 931–934.

http//doi.org/10.1016/S0960-9822(07)00375-2 8, 931–934. doi:10.1016/S0960-9822(07)00375-2

Gorman, A.M., Healy, S.J.M., Jäger, R., Samali, A., 2012. Stress management at the ER:

Regulators of ER stress-induced apoptosis. Pharmacol. Ther.

doi:10.1016/j.pharmthera.2012.02.003

Green, D.R., 2005. Apoptotic pathways: Ten minutes to dead. Cell.

doi:10.1016/j.cell.2005.05.019

35 Grenz, A., Clambey, E., Eltzschig, H.K., 2012. Hypoxia signaling during intestinal ischemia and inflammation. Curr. Opin. Crit. Care 18, 178–185.

doi:10.1097/MCC.0b013e3283514bd0

Grimm, M.C., Elsbury, S.K., Pavli, P., Doe, W.F., 1996. Enhanced expression and production of monocyte chemoattractant protein-1 in inflammatory bowel disease mucosa. J Leukoc Biol 59, 804–812.

Groschwitz, K.R., Hogan, S.P., 2009. Intestinal barrier function: molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 124, 3–20; quiz 21–2.

doi:10.1016/j.jaci.2009.05.038

Günther, C., Martini, E., Wittkopf, N., Amann, K., Weigmann, B., Neumann, H., Waldner, M.J., Hedrick, S.M., Tenzer, S., Neurath, M.F., Becker, C., 2011. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339. doi:10.1038/nature10400

Guttman, J.A., Finlay, B.B., 2009. Tight junctions as targets of infectious agents.

Biochim. Biophys. Acta - Biomembr. doi:10.1016/j.bbamem.2008.10.028

Hanby, a M., Chinery, R., Poulsom, R., Playford, R.J., Pignatelli, M., 1996.

Downregulation of E-cadherin in the reparative epithelium of the human gastrointestinal tract. Am. J. Pathol. 148, 723–729.

Harding, H., Zhang, Y., Zeng, H., Novoa, I., Lu, P., M, 2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol.

Cell 11, 619–633. doi:10.1016/S1097-2765(03)00105-9

Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., Ron, D., 2000.

Regulated Translation Initiation Controls Stress-Induced Gene Expression in Mammalian Cells. Mol. Cell 6, 1099–1108. doi:10.1016/S1097-2765(00)00108-8 Hartsock, A., Nelson, W.J., 2008. Adherens and tight junctions: Structure, function and

connections to the actin cytoskeleton. Biochim. Biophys. Acta - Biomembr.

doi:10.1016/j.bbamem.2007.07.012

Heazlewood, C.K., Cook, M.C., Eri, R., Price, G.R., Tauro, S.B., Taupin, D., Thornton, D.J., Chin, W.P., Crockford, T.L., Cornall, R.J., Adams, R., Kato, M., Nelms, K.A., Hong, N.A., Florin, T.H.J., Goodnow, C.C., McGuckin, M.A., 2008. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5, 0440–0460.

doi:10.1371/journal.pmed.0050054

36 Hermiston, M.L., Gordon, J.I., 1995. In vivo analysis of cadherin function in the mouse intestinal epithelium: Essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death. J. Cell Biol. 129, 489–506.

doi:10.1083/jcb.129.2.489

Hetz, C., Chevet, E., Harding, H.P., 2013. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 12, 703–719. doi:10.1038/nrd3976

Hiscox, S., Jiang, W.G., 1999. Ezrin regulates cell-cell and cell-matrix adhesion, a possible role with E-cadherin/beta-catenin. J. Cell Sci. 112 Pt 18, 3081–3090.

Hu, P., Han, Z., Couvillon, A.D., Kaufman, R.J., Exton, J.H., 2006. Autocrine Tumor Necrosis Factor Alpha Links Endoplasmic Reticulum Stress to the Membrane Death Receptor Pathway through IRE1 ␣ -Mediated NF-B Activation and Down-Regulation of TRAF2 Expression. Society 26, 3071–3084.

doi:10.1128/MCB.26.8.3071

Hunter, A.W., Jourdan, J., Gourdie, R.G., 2003. Fusion of GFP to the carboxyl terminus of connexin43 increases gap junction size in HeLa cells. Cell Commun. Adhes. 10, 211–4. doi:10.1080/15419060390262912

Hunziker, W., Spiess, M., Semenza, G., Lodish, H.F., 1986. The sucrase-isomaltase complex: Primary structure, membrane-orientation, and evolution of a stalked, intrinsic brush border protein. Cell 46, 227–234. doi:10.1016/0092-8674(86)90739-7

Jacob, R., Zimmer, K.P., Schmitz, J., Naim, H.Y., 2000. Congenital sucrase-isomaltase deficiency arising from cleavage and secretion of a mutant form of the enzyme. J.

Clin. Invest. 106, 281–287. doi:10.1172/JCI9677

Jayasundar, J.J., Ju, J.H., He, L., Liu, D., Meilleur, F., Zhao, J., Callaway, D.J.E., Bu, Z., 2012. Open conformation of ezrin bound to phosphatidylinositol 4,5-bisphosphate and to F-actin revealed by neutron scattering. J. Biol. Chem. 287, 37119–37133.

doi:10.1074/jbc.M112.380972

Karayiannakis, A.J., Syrigos, K.N., Efstathiou, J., Valizadeh, A., Noda, M., Playford, R.J., Kmiot, W., Pignatelli, M., 1998. Expression of catenins and E-cadherin during epithelial restitution in inflammatory bowel disease. J. Pathol. 185, 413–418.

doi:10.1002/(SICI)1096-9896(199808)185:4<413::AID-PATH125>3.0.CO;2-K Kaser, A., Adolph, T.E., Blumberg, R.S., 2013. The unfolded protein response and

gastrointestinal disease. Semin. Immunopathol. doi:10.1007/s00281-013-0377-5

37 Kaser, A., Lee, A.-H., Franke, A., Glickman, J.N., Zeissig, S., Tilg, H., Nieuwenhuis, E.E.S., Higgins, D.E., Schreiber, S., Glimcher, L.H., Blumberg, R.S., 2008. XBP1 Links ER Stress to Intestinal Inflammation and Confers Genetic Risk for Human Inflammatory Bowel Disease. Cell 134, 743–756. doi:10.1016/j.cell.2008.07.021 Kaser, A., Martínez-Naves, E., Blumberg, R.S., 2010. Endoplasmic reticulum stress:

implications for inflammatory bowel disease pathogenesis. Curr. Opin.

Gastroenterol. 26, 318–26. doi:10.1097/MOG.0b013e32833a9ff1

Kaufman, R.J., 2004. Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends Biochem Sci 29, 152–158.

doi:10.1016/j.tibs.2004.01.004

Kim, I., Xu, W., Reed, J.C., 2008. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7, 1013–1030.

doi:10.1038/nrd2755

Kim, J.J., Khan, W.I., 2013. Goblet cells and mucins: role in innate defense in enteric infections. Pathog. (Basel, Switzerland) 2, 55–70. doi:10.3390/pathogens2010055 Kim, Y.S., Ho, S.B., 2010. Intestinal goblet cells and mucins in health and disease:

Recent insights and progress. Curr. Gastroenterol. Rep. doi:10.1007/s11894-010-0131-2

Kirii, H., Niwa, T., Yamada, Y., Wada, H., Saito, K., Iwakura, Y., Asano, M., Moriwaki, H., Seishima, M., 2003. Lack of interleukin-1ß decreases the severity of atherosclerosis in apoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 23, 656–

660. doi:10.1161/01.ATV.0000064374.15232.C3

Ko, J.K., Auyeung, K.K., 2014. Inflammatory bowel disease: etiology, pathogenesis and current therapy. Curr. Pharm. Des. 20, 1082–1096.

doi:10.2174/13816128113199990416

Kraehenbuhl, J.P., Pringault, E., Neutra, M.R., 1997. Review article: Intestinal epithelia and barrier functions. Aliment. Pharmacol. Ther. 11 Suppl 3, 3–8; discussion 8–9. connexins. Arch. Biochem. Biophys. 384, 205–15. doi:10.1006/abbi.2000.2131

38 Lampe, P.D., Lau, A.F., 2004. The effects of connexin phosphorylation on gap junctional

communication. Int. J. Biochem. Cell Biol. doi:10.1016/S1357-2725(03)00264-4 Lee, J.L., Streuli, C.H., 2014. Integrins and epithelial cell polarity. J. Cell Sci. 127, 3217–

3225. doi:10.1242/jcs.146142

Li, Y., Guo, Y., Tang, J., Jiang, J., Chen, Z., 2014. New insights into the roles of CHOP-induced apoptosis in ER stress Structure and Properties of C / EBP Homologous interleukin-6: Model of NF-κB- and map kinase-dependent inflammation in advanced atherosclerosis. J. Biol. Chem. 280, 21763–21772.

doi:10.1074/jbc.M501759200

Li, Z., Arijs, I., De Hertogh, G., Vermeire, S., Noman, M., Bullens, D., Coorevits, L., Sagaert, X., Schuit, F., Rutgeerts, P., Ceuppens, J.L., Van Assche, G., 2010.

Reciprocal changes of Foxp3 expression in blood and intestinal mucosa in IBD patients responding to infliximab. Inflamm. Bowel Dis. 16, 1299–1310.

doi:10.1002/ibd.21229

Ligumsky, M., Simon, P.L., Karmeli, F., Rachmilewitz, D., 1990. Role of interleukin 1 in inflammatory bowel disease -- enhanced production during active disease. Gut 31(6), 686–689. doi:10.1136/gut.31.6.686

Luo, K., Cao, S.S., 2015. Endoplasmic reticulum stress in intestinal epithelial cell function and inflammatory bowel disease. Gastroenterol. Res. Pract.

doi:10.1155/2015/328791

Luther, S. a, Cyster, J.G., 2001. Chemokines as regulators of T cell differentiation. Nat.

Immunol. 2, 102–107. doi:10.1038/84205

Ma, T.Y., 2004. TNF- -induced increase in intestinal epithelial tight junction permeability requires NF- B activation. AJP Gastrointest. Liver Physiol. 286, 367G–376.

doi:10.1152/ajpgi.00173.2003

Ma, T.Y., Boivin, M. a, Ye, D., Pedram, A., Said, H.M., 2005. Mechanism of

Ma, T.Y., Boivin, M. a, Ye, D., Pedram, A., Said, H.M., 2005. Mechanism of