• Keine Ergebnisse gefunden

Chapter 1 General Introduction

1.5 Aim of the study

Considering the importance of proper ER performance on the overall cellular fitness and function of the intestinal epithelium, it is crucial to understand the factors that trigger ER stress and the ensuing effects on the epithelial barrier. Furthermore, with the instances of IBD on the rise, it has become necessary to unravel the link between cytokine-induced inflammation, ER malfunction and intestinal disease. This study focuses on analyzing the effects of pro-inflammatory mediators on ER fitness and the subsequent influence of ER stress on intestinal epithelial cell polarity, protein folding and expression of intestinal proteins.

The purpose of this study is 1) to determine the ability of a cytokine cocktail made of TNF-α, IL-1, MCP-1 to induce ER stress 2) to investigate the effect of cytokine induced-ER stress on intestinal epithelial cell polarity, barrier integrity, protein folding and the expression of specific proteins from the apical membrane such as sucrase-isomaltase and ezrin, and from the basolateral membrane such as ZO-1, and Cx43 and 3) to explore the role of hypoxia-induced ER stress and its effect on barrier integrity.

31 Reference

Al-Sadi, R., Boivin, M., Ma, T., 2009. Mechanism of cytokine modulation of epithelial tight junction barrier. Front. Biosci. 14, 2765–2778. doi:10.2741/3413

Al-Sadi, R.M., Ma, T.Y., 2007. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J. Immunol. 178, 4641–9. doi:178/7/4641 [pii]

Andresen, L., Jørgensen, V.L., Perner, A., Hansen, A., Eugen-Olsen, J., Rask-Madsen, J., 2005. Activation of nuclear factor kappaB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut 54, 503–9. doi:10.1136/gut.2003.034165 Antoni, L., Nuding, S., Wehkamp, J., Stange, E.F., 2014. Intestinal barrier in

inflammatory bowel disease. World J. Gastroenterol. 20, 1165–1179.

doi:10.3748/wjg.v20.i5.1165

Apodaca, G., Gallo, L.I., Bryant, D.M., 2012. Role of membrane traffic in the generation of epithelial cell asymmetry. Nat. Cell Biol. 14, 1235–1243. doi:10.1038/ncb2635 Banks, C., Bateman, A., Payne, R., Johnson, P., Sheron, N., 2003. Chemokine expression

in IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn’s disease. J. Pathol. 199, 28–35. doi:10.1002/path.1245

Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., Clevers, H., 2007.

Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007. doi:10.1038/nature06196

Baumgart, D.C., Sandborn, W.J., 2012. Crohn’s disease, in: The Lancet. pp. 1590–1605.

doi:10.1016/S0140-6736(12)60026-9

Berg, J.M., Tymoczko, J.L., Stryer, L., 2006. Biochemistry. 5th edition., in: Biochemistry Textbook. p. 1120. doi:10.1007/s13398-014-0173-7.2

Berryman, M., Franck, Z., Bretscher, A., 1993. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J. Cell Sci. 105, 1025–1043.

Bonizzi, G., Karin, M., 2004. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–8.

doi:10.1016/j.it.2004.03.008

Brown, E.M., Sadarangani, M., Finlay, B.B., 2013. The role of the immune system in governing host-microbe interactions in the intestine. Nat. Immunol. 14, 660–7.

doi:10.1038/ni.2611

32 Bruewer, M., Samarin, S., Nusrat, A., 2006. Inflammatory bowel disease and the apical junctional complex, in: Annals of the New York Academy of Sciences. pp. 242–252.

doi:10.1196/annals.1326.017

Budarf, M.L., Labbé, C., David, G., Rioux, J.D., 2009. GWA studies: rewriting the story of IBD. Trends Genet. doi:10.1016/j.tig.2009.01.001

Cao, S.S., Kaufman, R.J., 2012. Unfolded protein response. Curr. Biol.

doi:10.1016/j.cub.2012.07.004

Casini-Raggi, V., Kam, L., Chong, Y.J., Fiocchi, C., Pizarro, T.T., Cominelli, F., 1995.

Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation. J. Immunol.

(Baltimore, Md. 1950) 154, 2434–2440.

Cereijido, M., Contreras, R.G., Flores-Benítez, D., Flores-Maldonado, C., Larre, I., Ruiz, A., Shoshani, L., 2007. New Diseases Derived or Associated with the Tight Junction. Arch. Med. Res. doi:10.1016/j.arcmed.2007.02.003

Cheng, H., Leblond, C.P., 1974. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine I. Columnar cell. Am. J. Anat. 141, 461–479. doi:10.1002/aja.1001410403

Cohen, S.A., 2016. The clinical consequences of sucrase-isomaltase deficiency. Mol Cell Pediatr 3, 5. doi:10.1186/s40348-015-0028-0

Cornick, S., Tawiah, A., Chadee, K., 2015. Roles and regulation of the mucus barrier in the gut. Tissue Barriers 3, e982426. doi:10.4161/21688370.2014.982426

Crawley, S.W., Mooseker, M.S., Tyska, M.J., 2014. Shaping the intestinal brush border.

J. Cell Biol. doi:10.1083/jcb.201407015

Crawley, S.W., Mooseker, M.S., Tyska, M.J., 2014. Shaping the intestinal brush border.

J. Cell Biol. 207, 441–451. doi:10.1083/jcb.201407015

Cullinan, S.B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R.J., Diehl, J.A., 2003.

Nrf2 Is a Direct PERK Substrate and Effector of PERK-Dependent Cell Survival.

Mol. Cell. Biol. 23, 7198–7209. doi:10.1128/MCB.23.20.7198-7209.2003

Cyster, J.G., 2005. Chemokines and cell migration in secondary lymphoid organs. Annu.

Rev. Immunol. 23, 127–159. doi:10.1126/science.286.5447.2098

Dallas, D.C., Underwood, M. a, Zivkovic, A.M., German, J.B., 2012. Digestion of Protein in Premature and Term Infants. J. Nutr. Disord. Ther. 2, 112.

doi:10.4172/2161-0509.1000112

33 Danese, S., Fiocchi, C., 2011. Ulcerative Colitis. N. Engl. J. Med. 365, 1713–1725.

doi:10.1056/NEJMra1102942

Danielsen, E.M., van Deurs, B., 1997. Galectin-4 and small intestinal brush border enzymes form clusters. Mol. Biol. Cell 8, 2241–51.

Deng, J., Lu, P.D., Zhang, Y., Scheuner, D., Kaufman, R.J., Sonenberg, N., Harding, H.P., Ron, D., 2004. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol. Cell. Biol. 24, 10161–8. doi:10.1128/MCB.24.23.10161-10168.2004

Dewald, J.H., Colomb, F., Bobowski-Gerard, M., Groux-Degroote, S., Delannoy, P., 2016. Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer. Cells 5, 43.

doi:10.3390/cells5040043

Di Paolo, M.C., Merrett, M.N., Crotty, B., Jewell, D.P., 1996. 5-Aminosalicylic acid inhibits the impaired epithelial barrier function induced by gamma interferon. Gut 38, 115–9. doi:10.1136/gut.38.1.115

Dinarello, C.A., 2009. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–50.

doi:10.1146/annurev.immunol.021908.132612

Dkhil, M. a, Delic, D., Al-Quraishy, S., 2013. Goblet cells and mucin related gene expression in mice infected with Eimeria papillata. ScientificWorldJournal. 2013, 439865. doi:10.1155/2013/439865

Duque, G.A., Descoteaux, A., 2014. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. doi:10.3389/fimmu.2014.00491

Ebnet, K., 2008. Organization of multiprotein complexes at cell-cell junctions.

Histochem. Cell Biol. doi:10.1007/s00418-008-0418-7

Ellgaard, L., Helenius, a., 2003. Quality control in the endoplasmic reticulum. Nat. Rev.

Mol. Cell Biol. 4, 181–191. doi:10.1038/nrm1052

Elson, C.O., Sartor, R.B., Tennyson, G.S., Riddell, R.H., 1995. Experimental models of inflammatory bowel disease. Gastroenterology 109, 1344–1367. doi:10.1016/0016-5085(95)90599-5

Endo, M., Mori, M., Akira, S., Gotoh, T., 2006. C/EBP Homologous Protein (CHOP) Is Crucial for the Induction of Caspase-11 and the Pathogenesis of Lipopolysaccharide-Induced Inflammatio. J. Immunol. 176, 6245–6253.

doi:10.4049/jimmunol.176.10.6245

34 Enss, M.L., Cornberg, M., Wagner, S., Gebert, A., Henrichs, M., Eisenblätter, R., Beil, W., Kownatzki, R., Hedrich, H.J., 2000. Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm.

Res. 49, 162–169. doi:10.1007/s000110050576

Faderl, M., Noti, M., Corazza, N., Mueller, C., 2015. Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis. IUBMB Life.

doi:10.1002/iub.1374

Fanning, A.S., Jameson, B.J., Jesaitis, L.A., Anderson, J.M., 1998. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem. 273, 29745–29753. doi:10.1074/jbc.273.45.29745 Francescone, R., Hou, V., Grivennikov, S.I., 2015. Cytokines, IBD, and Colitis-associated Cancer. Inflamm. Bowel Dis. 21, 409–418.

doi:10.1097/MIB.0000000000000236

Garg, A.D., Kaczmarek, A., Krysko, O., Vandenabeele, P., Krysko, D. V., Agostinis, P., 2012. ER stress-induced inflammation: Does it aid or impede disease progression?

Trends Mol. Med. doi:10.1016/j.molmed.2012.06.010

Garrett, W.S., Gordon, J.I., Glimcher, L.H., 2010. Homeostasis and Inflammation in the Intestine. Cell. doi:10.1016/j.cell.2010.01.023

Gary, R., Bretscher, A., 1995. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol. Biol. Cell 6, 1061–75. doi:10.1091/mbc.E12-02-0152

Gassler, N., Rohr, C., Schneider, a, Kartenbeck, J., Bach, a, Obermüller, N., Otto, H.F., Autschbach, F., 2001. Inflammatory bowel disease is associated with changes of enterocytic junctions. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G216–G228.

Giepmans, B.N.G., Moolenaar, W.H., 1998. The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr. Biol.

B. N. G., Moolenaar, W. H. (1998). gap junction protein connexin43 interacts with Second PDZ domain Zo. occludens-1 protein. Curr. Biol. 8(16), 931–934.

http//doi.org/10.1016/S0960-9822(07)00375-2 8, 931–934. doi:10.1016/S0960-9822(07)00375-2

Gorman, A.M., Healy, S.J.M., Jäger, R., Samali, A., 2012. Stress management at the ER:

Regulators of ER stress-induced apoptosis. Pharmacol. Ther.

doi:10.1016/j.pharmthera.2012.02.003

Green, D.R., 2005. Apoptotic pathways: Ten minutes to dead. Cell.

doi:10.1016/j.cell.2005.05.019

35 Grenz, A., Clambey, E., Eltzschig, H.K., 2012. Hypoxia signaling during intestinal ischemia and inflammation. Curr. Opin. Crit. Care 18, 178–185.

doi:10.1097/MCC.0b013e3283514bd0

Grimm, M.C., Elsbury, S.K., Pavli, P., Doe, W.F., 1996. Enhanced expression and production of monocyte chemoattractant protein-1 in inflammatory bowel disease mucosa. J Leukoc Biol 59, 804–812.

Groschwitz, K.R., Hogan, S.P., 2009. Intestinal barrier function: molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 124, 3–20; quiz 21–2.

doi:10.1016/j.jaci.2009.05.038

Günther, C., Martini, E., Wittkopf, N., Amann, K., Weigmann, B., Neumann, H., Waldner, M.J., Hedrick, S.M., Tenzer, S., Neurath, M.F., Becker, C., 2011. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339. doi:10.1038/nature10400

Guttman, J.A., Finlay, B.B., 2009. Tight junctions as targets of infectious agents.

Biochim. Biophys. Acta - Biomembr. doi:10.1016/j.bbamem.2008.10.028

Hanby, a M., Chinery, R., Poulsom, R., Playford, R.J., Pignatelli, M., 1996.

Downregulation of E-cadherin in the reparative epithelium of the human gastrointestinal tract. Am. J. Pathol. 148, 723–729.

Harding, H., Zhang, Y., Zeng, H., Novoa, I., Lu, P., M, 2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol.

Cell 11, 619–633. doi:10.1016/S1097-2765(03)00105-9

Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., Ron, D., 2000.

Regulated Translation Initiation Controls Stress-Induced Gene Expression in Mammalian Cells. Mol. Cell 6, 1099–1108. doi:10.1016/S1097-2765(00)00108-8 Hartsock, A., Nelson, W.J., 2008. Adherens and tight junctions: Structure, function and

connections to the actin cytoskeleton. Biochim. Biophys. Acta - Biomembr.

doi:10.1016/j.bbamem.2007.07.012

Heazlewood, C.K., Cook, M.C., Eri, R., Price, G.R., Tauro, S.B., Taupin, D., Thornton, D.J., Chin, W.P., Crockford, T.L., Cornall, R.J., Adams, R., Kato, M., Nelms, K.A., Hong, N.A., Florin, T.H.J., Goodnow, C.C., McGuckin, M.A., 2008. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5, 0440–0460.

doi:10.1371/journal.pmed.0050054

36 Hermiston, M.L., Gordon, J.I., 1995. In vivo analysis of cadherin function in the mouse intestinal epithelium: Essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death. J. Cell Biol. 129, 489–506.

doi:10.1083/jcb.129.2.489

Hetz, C., Chevet, E., Harding, H.P., 2013. Targeting the unfolded protein response in disease. Nat. Rev. Drug Discov. 12, 703–719. doi:10.1038/nrd3976

Hiscox, S., Jiang, W.G., 1999. Ezrin regulates cell-cell and cell-matrix adhesion, a possible role with E-cadherin/beta-catenin. J. Cell Sci. 112 Pt 18, 3081–3090.

Hu, P., Han, Z., Couvillon, A.D., Kaufman, R.J., Exton, J.H., 2006. Autocrine Tumor Necrosis Factor Alpha Links Endoplasmic Reticulum Stress to the Membrane Death Receptor Pathway through IRE1 ␣ -Mediated NF-B Activation and Down-Regulation of TRAF2 Expression. Society 26, 3071–3084.

doi:10.1128/MCB.26.8.3071

Hunter, A.W., Jourdan, J., Gourdie, R.G., 2003. Fusion of GFP to the carboxyl terminus of connexin43 increases gap junction size in HeLa cells. Cell Commun. Adhes. 10, 211–4. doi:10.1080/15419060390262912

Hunziker, W., Spiess, M., Semenza, G., Lodish, H.F., 1986. The sucrase-isomaltase complex: Primary structure, membrane-orientation, and evolution of a stalked, intrinsic brush border protein. Cell 46, 227–234. doi:10.1016/0092-8674(86)90739-7

Jacob, R., Zimmer, K.P., Schmitz, J., Naim, H.Y., 2000. Congenital sucrase-isomaltase deficiency arising from cleavage and secretion of a mutant form of the enzyme. J.

Clin. Invest. 106, 281–287. doi:10.1172/JCI9677

Jayasundar, J.J., Ju, J.H., He, L., Liu, D., Meilleur, F., Zhao, J., Callaway, D.J.E., Bu, Z., 2012. Open conformation of ezrin bound to phosphatidylinositol 4,5-bisphosphate and to F-actin revealed by neutron scattering. J. Biol. Chem. 287, 37119–37133.

doi:10.1074/jbc.M112.380972

Karayiannakis, A.J., Syrigos, K.N., Efstathiou, J., Valizadeh, A., Noda, M., Playford, R.J., Kmiot, W., Pignatelli, M., 1998. Expression of catenins and E-cadherin during epithelial restitution in inflammatory bowel disease. J. Pathol. 185, 413–418.

doi:10.1002/(SICI)1096-9896(199808)185:4<413::AID-PATH125>3.0.CO;2-K Kaser, A., Adolph, T.E., Blumberg, R.S., 2013. The unfolded protein response and

gastrointestinal disease. Semin. Immunopathol. doi:10.1007/s00281-013-0377-5

37 Kaser, A., Lee, A.-H., Franke, A., Glickman, J.N., Zeissig, S., Tilg, H., Nieuwenhuis, E.E.S., Higgins, D.E., Schreiber, S., Glimcher, L.H., Blumberg, R.S., 2008. XBP1 Links ER Stress to Intestinal Inflammation and Confers Genetic Risk for Human Inflammatory Bowel Disease. Cell 134, 743–756. doi:10.1016/j.cell.2008.07.021 Kaser, A., Martínez-Naves, E., Blumberg, R.S., 2010. Endoplasmic reticulum stress:

implications for inflammatory bowel disease pathogenesis. Curr. Opin.

Gastroenterol. 26, 318–26. doi:10.1097/MOG.0b013e32833a9ff1

Kaufman, R.J., 2004. Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends Biochem Sci 29, 152–158.

doi:10.1016/j.tibs.2004.01.004

Kim, I., Xu, W., Reed, J.C., 2008. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7, 1013–1030.

doi:10.1038/nrd2755

Kim, J.J., Khan, W.I., 2013. Goblet cells and mucins: role in innate defense in enteric infections. Pathog. (Basel, Switzerland) 2, 55–70. doi:10.3390/pathogens2010055 Kim, Y.S., Ho, S.B., 2010. Intestinal goblet cells and mucins in health and disease:

Recent insights and progress. Curr. Gastroenterol. Rep. doi:10.1007/s11894-010-0131-2

Kirii, H., Niwa, T., Yamada, Y., Wada, H., Saito, K., Iwakura, Y., Asano, M., Moriwaki, H., Seishima, M., 2003. Lack of interleukin-1ß decreases the severity of atherosclerosis in apoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 23, 656–

660. doi:10.1161/01.ATV.0000064374.15232.C3

Ko, J.K., Auyeung, K.K., 2014. Inflammatory bowel disease: etiology, pathogenesis and current therapy. Curr. Pharm. Des. 20, 1082–1096.

doi:10.2174/13816128113199990416

Kraehenbuhl, J.P., Pringault, E., Neutra, M.R., 1997. Review article: Intestinal epithelia and barrier functions. Aliment. Pharmacol. Ther. 11 Suppl 3, 3–8; discussion 8–9. connexins. Arch. Biochem. Biophys. 384, 205–15. doi:10.1006/abbi.2000.2131

38 Lampe, P.D., Lau, A.F., 2004. The effects of connexin phosphorylation on gap junctional

communication. Int. J. Biochem. Cell Biol. doi:10.1016/S1357-2725(03)00264-4 Lee, J.L., Streuli, C.H., 2014. Integrins and epithelial cell polarity. J. Cell Sci. 127, 3217–

3225. doi:10.1242/jcs.146142

Li, Y., Guo, Y., Tang, J., Jiang, J., Chen, Z., 2014. New insights into the roles of CHOP-induced apoptosis in ER stress Structure and Properties of C / EBP Homologous interleukin-6: Model of NF-κB- and map kinase-dependent inflammation in advanced atherosclerosis. J. Biol. Chem. 280, 21763–21772.

doi:10.1074/jbc.M501759200

Li, Z., Arijs, I., De Hertogh, G., Vermeire, S., Noman, M., Bullens, D., Coorevits, L., Sagaert, X., Schuit, F., Rutgeerts, P., Ceuppens, J.L., Van Assche, G., 2010.

Reciprocal changes of Foxp3 expression in blood and intestinal mucosa in IBD patients responding to infliximab. Inflamm. Bowel Dis. 16, 1299–1310.

doi:10.1002/ibd.21229

Ligumsky, M., Simon, P.L., Karmeli, F., Rachmilewitz, D., 1990. Role of interleukin 1 in inflammatory bowel disease -- enhanced production during active disease. Gut 31(6), 686–689. doi:10.1136/gut.31.6.686

Luo, K., Cao, S.S., 2015. Endoplasmic reticulum stress in intestinal epithelial cell function and inflammatory bowel disease. Gastroenterol. Res. Pract.

doi:10.1155/2015/328791

Luther, S. a, Cyster, J.G., 2001. Chemokines as regulators of T cell differentiation. Nat.

Immunol. 2, 102–107. doi:10.1038/84205

Ma, T.Y., 2004. TNF- -induced increase in intestinal epithelial tight junction permeability requires NF- B activation. AJP Gastrointest. Liver Physiol. 286, 367G–376.

doi:10.1152/ajpgi.00173.2003

Ma, T.Y., Boivin, M. a, Ye, D., Pedram, A., Said, H.M., 2005. Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G422–30. doi:10.1152/ajpgi.00412.2004

39 Mabbott, N.A., Donaldson, D.S., Ohno, H., Williams, I.R., Mahajan, A., 2013. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 6, 666–77. doi:10.1038/mi.2013.30

MacDermott, R.P., Sanderson, I.R., Reinecker, H.C., 1998. The central role of chemokines (chemotactic cytokines) in the immunopathogenesis of ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis 4, 54–67. doi:10.1002/ibd.3780040110 Maes, M., Crespo Yanguas, S., Willebrords, J., Cogliati, B., Vinken, M., 2015. Connexin

and pannexin signaling in gastrointestinal and liver disease. Transl. Res.

doi:10.1016/j.trsl.2015.05.005

Mahida, Y.R., Wu, K., Jewell, D.P., 1989. Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn’s disease. Gut 30, 835–8. doi:10.1136/gut.30.6.835

Maloy, K.J., Powrie, F., 2011. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298–306. doi:10.1038/nature10208

Matsumoto, M., Minami, M., Takeda, K., Sakao, Y., Akira, S., 1996. Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett. 395, 143–147. doi:10.1016/0014-5793(96)01016-2

Maytin, E. V., Ubeda, M., Lin, J.C., Habener, J.F., 2001. Stress-Inducible Transcription Factor CHOP/gadd153 Induces Apoptosis in Mammalian Cells via p38 Kinase-Dependent and -Independent Mechanisms. Exp. Cell Res. 267, 193–204.

doi:10.1006/excr.2001.5248

McGuckin, M. a, Eri, R.D., Das, I., Lourie, R., Florin, T.H., 2010. ER stress and the unfolded protein response in intestinal inflammation. Am. J. Physiol. Gastrointest.

Liver Physiol. 298, G820–G832. doi:10.1152/ajpgi.00063.2010

Meng, W., Takeichi, M., 2009. Adherens junction: molecular architecture and regulation.

Cold Spring Harb. Perspect. Biol. doi:10.1101/cshperspect.a002899

Merga, Y., Campbell, B.J., Rhodes, J.M., 2014. Mucosal barrier, bacteria and inflammatory bowel disease: Possibilities for therapy. Dig. Dis. 32, 475–483.

doi:10.1159/000358156

Moore, K.A., Lemischka, I.R., Intestinal, T., 2006. REVIEW Stem Cells and Their Niches. Science (80-. ). 1880, 1880–1885. doi:10.1126/science.1110542

Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T., Yasuhiko, Y., 2002. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277, 34287–

34294. doi:10.1074/jbc.M204973200

40 Naim, H.Y., Sterchi, E.E., Lentze, M.J., 1988. Biosynthesis of the human

sucrase-isomaltase complex. Differential O-glycosylation of the sucrase subunit correlates with its position within the enzyme complex. J. Biol. Chem. 263, 7242–7253.

doi:10.1203/00006450-198809000-00070

Nakamura, M., Saito, H., Kasanuki, J., Tamura, Y., Yoshida, S., 1992. Cytokine production in patients with inflammatory bowel disease. Gut 33, 933–937.

doi:10.1136/gut.33.7.933

Nava, P., Koch, S., Laukoetter, M.G., Lee, W.Y., Kolegraff, K., Capaldo, C.T., Beeman, N., Addis, C., Gerner-Smidt, K., Neumaier, I., Skerra, A., Li, L., Parkos, C.A., Nusrat, A., 2010. Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity 32, 392–402.

doi:10.1016/j.immuni.2010.03.001

Neu, J., Sharma, R., Young, C., 2010. Molecular modulation of intestinal epithelial barrier: Contribution of microbiota. J. Biomed. Biotechnol.

doi:10.1155/2010/305879

Neurath, M.F., 2014. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342. doi:10.1038/nri3661

Nusrat, a, Turner, J.R., Madara, J.L., 2000. Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G851–G857. doi:10.1002/bdd.2510160502

Oslowski, C.M., Urano, F., 2011. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 490, 71–92.

doi:10.1016/B978-0-12-385114-7.00004-0

Oyadomari, S., Mori, M., 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11, 381–389. doi:10.1038/sj.cdd.4401373

Pluquet, O., Pourtier, A., Abbadie, C., 2015. The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am. J. Physiol. Cell Physiol. 308, C415–25.

doi:10.1152/ajpcell.00334.2014

Porter, E.M., Bevins, C.L., Ghosh, D., Ganz, T., 2002. The multifaceted Paneth cell. Cell.

Mol. Life Sci. doi:10.1007/s00018-002-8412-z

Rao N. Jaladanki and Jian-Ying Wang., 2011.Regulation of Gastrointestinal Mucosal Growth. Colloquium Series on Integrated Systems Physiology: From Molecule to Function, https://doi.org/10.4199/C00028ED1V01Y201103ISP015

41 Reinecker, H.-C., Loh, E.Y., Ringler, D.J., Mehta, A., Rombeau, J.L., MacDermott, R.P., 1995. Monocyte-chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa. Gastroenterology 108, 40–50.

doi:10.1016/0016-5085(95)90006-3

Rimary, P., Ffector, E., Emory, M., Sallusto, F., Mackay, C.R., Lanzavecchia, A., 2010.

The Role of Chemokine Receptors in Immune Responses. Victoria 18, 593–620.

Rogler, G., Andus, T., 1998. Cytokines in inflammatory bowel disease, in: World Journal of Surgery. pp. 382–389. doi:10.1007/s002689900401

Ron, D., Walter, P., 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8, 519–529. doi:nrm2199 [pii]\n10.1038/nrm2199

Rovin, B.H., Lu, L., Saxena, R., 1999. A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem. Biophys. Res.

Commun. 259, 344–8. doi:10.1006/bbrc.1999.0796

Sancho, E., Batlle, E., Clevers, H., 2003. Live and let die in the intestinal epithelium.

Curr. Opin. Cell Biol. doi:10.1016/j.ceb.2003.10.012

Sano, R., Reed, J.C., 2013. ER stress-induced cell death mechanisms. Biochim. Biophys.

Acta - Mol. Cell Res. doi:10.1016/j.bbamcr.2013.06.028

Saotome, I., Curto, M., McClatchey, A.I., 2004. Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev. Cell 6, 855–

864. doi:10.1016/j.devcel.2004.05.007

Schindler, A.J., Schekman, R., 2009. In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proc. Natl. Acad. Sci. U. S. A. 106, 17775–17780.

doi:10.1073/pnas.0910342106

Schroder, K., Hertzog, P.J., Ravasi, T., Hume, D.A., 2004. Interferon- y : an overview of signals , mechanisms and functions. J. Leukoc. Biol. 75, 163–189.

doi:10.1189/jlb.0603252.Journal

Shi, J., 2007. Defensins and Paneth cells in inflammatory bowel disease. Inflamm. Bowel Dis. doi:10.1002/ibd.20197

Siccardi, D., Turner, J.R., Mrsny, R.J., 2005. Regulation of intestinal epithelial function:

A link between opportunities for macromolecular drug delivery and inflammatory bowel disease. Adv. Drug Deliv. Rev. doi:10.1016/j.addr.2004.08.005

Smith, J.A., 2014. A new paradigm: Innate immune sensing of viruses via the unfolded protein response. Front. Microbiol. doi:10.3389/fmicb.2014.00222

42 Su, L., Nalle, S.C., Shen, L., Turner, E.S., Singh, G., Breskin, L.A., Khramtsova, E.A., Khramtsova, G., Tsai, P.Y., Fu, Y.X., Abraham, C., Turner, J.R., 2013. TNFR2 activates mlck-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology 145, 407–415.

doi:10.1053/j.gastro.2013.04.011

Takeuchi, K., Sato, N., Kasahara, H., Funayama, N., Nagafuchi, A., Yonemura, S., Tsukita, S., Tsukita, S., 1994. Perturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members. J. Cell Biol. 125, 1371– calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J. Biol. Chem. 281, 16016–16024.

doi:10.1074/jbc.M601299200

Tesch, G.H., Schwarting, A., Kinoshita, K., Lan, H.Y., Rollins, B.J., Kelley, V.R., 1999.

Monocyte chemoattractant protein-1 promotes macrophage-mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis. J. Clin. Invest. 103, 73–

80. doi:10.1172/JCI4876

Tracey, D., Klareskog, L., Sasso, E.H., Salfeld, J.G., Tak, P.P., 2008. Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol. Ther.

117, 244–279. doi:10.1016/j.pharmthera.2007.10.001

Treem, W.R., 1996. Clinical heterogeneity in congenital sucrase-isomaltase deficiency. J.

Pediatr. doi:10.1016/S0022-3476(96)70320-7

Trosko, J.E., Chang, C.-C., Wilson, M.R., Upham, B., Hayashi, T., Wade, M., 2000. Gap Junctions and the Regulation of Cellular Functions of Stem Cells during Development and Differentiation. Methods 20, 245–264.

doi:http://dx.doi.org/10.1006/meth.1999.0941

Tsukita, S., Furuse, M., Itoh, M., 2001. Multifunctional strands in tight junctions. Nat.

Rev. Mol. Cell Biol. 2, 285–293. doi:10.1038/35067088

Turner, J.R., 2006. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am. J. Pathol. 169, 1901–9.

doi:10.2353/ajpath.2006.060681

43 Turner, M.D., Nedjai, B., Hurst, T., Pennington, D.J., 2014. Cytokines and chemokines:

At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys.

Acta - Mol. Cell Res. doi:10.1016/j.bbamcr.2014.05.014

Uguccioni, M., Gionchetti, P., Robbiani, D.F., Rizzello, F., Peruzzo, S., Campieri, M., Baggiolini, M., 1999. Increased expression of IP-10, IL-8, MCP-1, and MCP-3 in ulcerative colitis. Am. J. Pathol. 155, 331–336. doi:10.1016/S0002-9440(10)65128-0

Van Roy, F., Berx, G., 2008. The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci. doi:10.1007/s00018-008-8281-1

Walter, P., Ron, D., 2011. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science (80-. ). 334, 1081–1086.

doi:10.1126/science.1209038

Wang, S., Kaufman, R.J., 2012. The impact of the unfolded protein response on human disease. J. Cell Biol. 197, 857–867. doi:10.1083/jcb.201110131

Wang, X., 2001. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–

2933.

Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. J. Immunol. 183, 1480–1487.

doi:10.4049/jimmunol.0900017

Ye, D., Ma, I., Ma, T.Y., 2006. Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am. J. Physiol.

Gastrointest. Liver Physiol. 290, G496–504. doi:10.1152/ajpgi.00318.2005

Yoshida, H., 2007. ER stress and diseases. FEBS J. doi:10.1111/j.1742-4658.2007.05639.x

Yoshida, H., Haze, K., Yanagi, H., Yura, T., Mori, K., 1998. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose- regulated proteins: Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741–33749.

doi:10.1074/jbc.273.50.33741

44 Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., Mori, K., 2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly

44 Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., Mori, K., 2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly