• Keine Ergebnisse gefunden

B. SDDEs - Case Studies 154

B.3. Instable Regime

From (B.2.10) Z s 0

(ˇx(t−u)−x(sˇ −u))2e2µudu≤ (a+beλr)2 2˜κ

1−|µ| ∧λ

|µ| ∨λ

(t−s)2.

That leads to

Q1

σ =

r(|µ| ∨λ)−(|µ| ∧λ)

˜ κ

√T

√plogp, Q2

σ = s

(a+beλr)2 2˜κ

1−|µ| ∧λ

|µ| ∨λ T

plog(p). And so,

pkΓk +Q(T)

σ ≤v0+

r(|µ| ∨λ)−(|µ| ∧λ)

˜ κ

√ T plogp +

s

(a+beλr)2 2˜κ

1−|µ| ∧λ

|µ| ∨λ T

plog(p).

where

I1:= 1

(1 + ˜ar)2e2λt 1 2|µ−λ|

1−e2(µ−λ)t

(B.3.3) I2:= 2

1 + ˜are(−κ+2λ)t Z t

0

e(κ−2λ+2µ)udu (B.3.4)

I3:=e(−2κ+2λ)t Z t

0

e2(κ−λ+µ)du (B.3.5)

Case #1: κ−λ+µ <0. For the termI2 from (B.3.4), we nd I2= 2

1 + ˜are(−κ+2λ)t 1

|κ−2λ+ 2µ|

1−e(κ−2λ+2µ)t

| {z }

≤1

≤ 2

1 + ˜are−κte2λt 1

|κ−2λ+ 2µ|. (B.3.6) For termI3 from (B.3.5)

I3=e(−2κ+2λ)t 1 2|κ−λ+µ|

1−e2(κ−λ+µ)t

| {z }

≤1

≤e2λt e−2κt

2|κ−λ+µ|. (B.3.7)

Case #2: κ−2λ+ 2µ <0, κ−λ+µ >0. Estimate (B.3.6) holds for termI2 from (B.3.4), and for termI3 from (B.3.5) we nd

I3=e(−2κ+2λ)t 1 2(κ−λ+µ)

e2(κ−λ+µ)t−1

=e2λt 1 2(κ−λ+µ)

e−2λt−e−2(κ−µ)t

| {z }

≤1

e2µt≤e2λte2µt 1

2(κ−λ+µ). (B.3.8)

Case #3: κ−2λ+ 2µ >0. For termI2from (B.3.4), we get

I2= 2e2λt

1 + ˜are−κt 1 κ−2λ+ 2µ

e(κ−2λ+2µ)t−1

= 2e2λt 1 + ˜ar

1 κ−2λ+ 2µ

e−2λt−e(−κ−2µ)t

| {z }

|·|≤1

e2µt

≤ 2e2λt 1 + ˜ar

e2µt

κ−2λ+ 2µ. (B.3.9)

And for the termI3from (B.3.5) we may take over the estimate (B.3.8).

Case #4: κ= 2λ−2µ. Meaning thatκ−2λ+ 2µ= 0andκ−λ+µ >0. Then we nd for I2 from (B.3.4)

I2= 2

1 + ˜are(−κ+2λ)t Z t

0

e(κ−2λ+2µ)u

| {z }

=1

du= 2

1 + ˜are2λte−κtt= 2

1 + ˜are2λte2µte(−κ−2µ)tt

| {z }

(−κ+2µ)e1

= 2

1 + ˜ar 1

(−κ+ 2µ)ee2λte2µt.

For termI3 from (B.3.5), we can use estimate (B.3.7), i.e.

I3=e(−2κ+2λ)t Z t

0

e2(κ−λ+µ)udu≤e2λt e−2κt 2|κ−λ+µ|.

Case #5: κ=λ−µ. Here,κ−λ+µ= 0andκ−2λ+µ <0. Then for termI2from(B.3.4), we use estimate (B.3.6), i.e.

I2≤ 2

1 + ˜are−κte2λt 1

|κ−2λ+ 2µ|.

And for term I3from (B.3.5), we have that for arbitrary ν∈(0, κ)that

I3=e(−2κ+2λ)t Z t

0

e2(κ−λ+µ)u

| {z }

=1

du=e2λte−2(κ−ν)te−2νtt≤e2λte−2(κ−ν)t 1 2νe.

Alltogether, we nd that for aritrarily xed ν∈(0, κ), kΓk

σ2 ≤ I1+I2+I3≤ e2λT (1 + ˜ar)2

1 +O

emin{κ−ν,2|µ|}t

ν

From (B.3.1), Z t

s

ˇ

x2(t−u)e2µudu≤e2λte2(µ−λ)se2(µ−λ)(t−s)

2(µ−λ) ≤e2λte(µ−λ)s(t−s) =e2λ(t−s)e2µs(t−s)

≤e2λT(t−s).

And with (B.3.2) Z s

0

(ˇx(t−u)−x(sˇ −u))2e2µudu≤ (a+be−λr)2 2(µ−λ)

e2(µ−λ)s−1

e2λs(t−s)2

≤ (a+be−λr)2

2(µ−λ) e2λT(t−s)2,

Q1

σ ≤eλT

√ T

p logp and Q2

σ ≤eλT a+be−λr p2(µ−λ) · T

2plogp. Collecting the results,

pkΓk +Q(T)

σ ≤ eλT

√2λ(1 + ˜ar) 1 +O

emin{κ−ν,2|µ|}T

ν

+

2λ(1 + ˜ar)

√ T

p logp+ a+beλr p2(µ−λ)

T 2plogp

! ! .

Instable regime, increasing noise (0< a < b,µ >0).

Z t 0

ˇ

x2(t−u)edu= Z t

0

1

1 + ˜ar +e−κ(t−u) 2

e2λ(t−u)e2µudu≤ I1+I2+I3

where

I1:= e2λt (1 + ˜ar)2

Z t 0

e2(µ−λ)udu, (B.3.10)

I2:=2e2(λ−κ)t 1 + ˜ar

Z t 0

e(−2λ−κ+2µ)udu (B.3.11)

I3:=e(2λ−2κ)t Z t

0

e(−2λ+2κ+2µ)du. (B.3.12)

Instable regime, weakly increasing noise (0 < a < b, µ > 0, λ > µ). Case #1: λ > µ, κ−2λ+ 2µ6= 0,κ−λ+µ6= 0.

I1= 1 (1 + ˜ar)2

e2λt−e2µt

2(µ−λ) ≤ e2λt 2(λ−µ)(1 + ˜ar)2.

I2=2e(2λ−κ)t 1 + ˜ar

e(κ−2λ+2µ)t−1

κ−2λ+ 2µ = 2e2λt 1 + ˜ar

e−2(λ−µ)t−e−κt

κ−2λ+ 2µ ≤ 2e2λt 1 + ˜ar

emin{2(λ−µ),κ}t

|2λ−2µ−κ| .

I3=e2(λ−κ)te2(κ−λ+µ)t−1

2(κ−λ+µ) =e2λte−2(λ−µ)t−e−2κt

2(κ−λ+µ) ≤e2λte−2 min{λ−µ,κ}

2|λ−µ−κ| .

Case #2: λ > µ, κ−2λ+ 2µ= 0⇔µ=λ−κ2, and implying thatκ−λ+µ >0. We may keep termsI1 andI3, i.e.

I1≤ e2λt

2(λ−µ)(1 + ˜ar)2 and I3≤e2λte−2 min{λ−µ,κ}

2|λ−µ−κ| . And for the remainingI2, we nd that for arbitraryν ∈(0, κ)

I2= 2e(2λ−κ)t 1 + ˜ar

Z t 0

e(−2λ+κ−2µ)u

| {z }

=1

du= 2e2λt

1 + ˜are−2(κ−ν)t 1 2νe. Therefore,

kΓk σ2 ≤e2λt

1 (1 + ˜ar)2

1

2(λ−µ)+e−2 min{λ−µ,κ}t

2(κ−λ+µ) + 2 1 + ˜ar

e−2(κ−ν)t 2νe

.

Case #3 : κ−λ+µ= 0⇔µ=λ−κ. Also implying κ−2λ+ 2µ <0. We may keep the terms

I1≤ e2λt

2(λ−µ)(1 + ˜ar)2 and I2≤ 2e2λt 1 + ˜ar

emin{2(λ−µ),κ}t

κ−2λ+ 2µ . And for the remainingI3we nd for every ν∈(0, κ)that

I3=e(2λ−2κ)t Z t

0

e2(−λ+κ+µ)u

| {z }

=1

du=e2λte−2(κ−ν)te−2νtt≤e2λte−2(κ−ν)t 2νe . And hence for arbitraryν ∈(0, κ),

kΓk

σ2 ≤ e2λt 2(λ−µ)(1 + ˜ar)2

1 + 2(1 + ˜ar)2(λ−µ)emin{2(λ−µ),κ}t

|2λ−2µ−κ|

+2(λ−µ)(1 + ˜ar)2

2νe e−2(κ−ν)t

= e2λt

2(λ−µ)(1 + ˜ar)2

1 +O

emin{2(λ−µ),κ−ν}t

ν

.

This case,µ < λ, we still may take over (B.3.2) to receive Z s

0

(ˇx(t−u)−x(sˇ −u))2e2µudu≤ (a+be−λr)2 2(λ−µ)

1−e2(µ−λ)s

| {z }

≤1

e2λs(t−s)2

≤ (a+b−λr)2

2(µ−λ) eλs(t−s)2

≤ (a+be−λr)2

2(µ−λ) e2λT(t−s)2. (B.3.13) And with the estimate (B.3.1), we get that

Z t s

ˇ

x2(t−u)e2µudu≤e2λte(µ−λ)se2(µ−λ)(t−s)−1

2(µ−λ) ≤e2λ(t−s)e2µs(t−s)

≤e2λt(t−s). (B.3.14)

Therefore,

Q1 σ ≤eλT

√T log(p)√

p and Q2

σ ≤ a+be−λr

p2(µ−λ)eλT T 2plogp. Collecting the results, we receive that

pkΓk +Q(T)

σ ≤ eλt

p2(λ−µ) (1 + ˜ar) 1 +O 1

νemin{2(λ−µ),κ−ν}t 2

+

√ T log(p)√

p + a+be−λr

p2(µ−λ)eλT T 2plogp

!

Instable regime, strong increasing noise (0< a < b, µ > λ >0). Case #4: λ < µ.

I1= 1 (1 + ˜ar)2

e2λt−e2µt

2(µ−λ) ≤ e2µt (1 + ˜ar)2

1 2(µ−λ),

I2= 2e(2λ−κ)t 1 + ˜ar

e(2µ−2λ+κ)t−1

κ−2λ+ 2µ = 2e2µt

1 + ˜are2λte−κteκte−2λt−e−2µt 2µ−2λ+κ

≤ 2e2µt 1 + ˜ar

1−e2(µ−λ)t−κt 2µ−2λ+κ

≤ 2e2µt 1 + ˜ar

1 2µ−2λ+κ.

I3=e2(λ−κ)te2(κ−λ+µ)t−1

2(κ−λ+µ) =e2µt1−e−2(µ−λ+κ)

2(µ−λ+κ) ≤ e2µt 2(µ−λ+κ). So, we receive

kΓk

σ2 ≤e2µTv02, where v02:= 1

2(µ−λ)(1 + ˜ar)2 + 2

(2µ−2λ+κ)(1 + ˜ar)+ 1 2(µ−λ+κ). In this case, we may take over the estimates (B.3.13) and (B.3.14),

Z t s

ˇ

x2(t−u)e2µudu≤e2λt(t−s).

Z s 0

(ˇx(t−u)−ˇx(s−u))2e2µudu≤(a+be−λr)2

2(µ−λ) e2λT(t−s)2. Therefore,

Q1

σ ≤eλT

√ T

plogp and Q2

σ ≤ a+be−λr

p2(µ−λ)eλT T 2plogp. Collecting the results yields

pkΓk +Q(T)

σ ≤eλTv0 1 +

√T v0

plogp+ a+be−λr v0

p2(µ−λ) T 2plogp

! .

Instable regime, critical noise (0< a < b,µ=λ). Case #5: λ=µ.

I1= e2λt (1 + ˜ar)2

Z t 0

e2(µ−λ)u

| {z }

=1

du= e2λt (1 + ˜ar)2t.

I2= 2e2(λ−κ)t 1 + ˜ar

Z t 0

e(−2λ+κ+2µ)udu=2e2(λ−κ)t 1 + ˜ar

Z t 0

eκudu

= 2e2(λ−κ)t

(1 + ˜ar) eκt−1

≤ 2e2λt (1 + ˜ar)κ.

I3=e(2λ−2κ)t Z t

0

e2(−λ+µ+κ)udu=e2(λ−κ)t

2κ e2κt−1

≤ e2λt 2κ . Hence,

kΓk σ2 ≤e2λT

T

(1 + ˜ar)2 + 1

(1 + ˜ar)κ+ 1 2κ

= e2λTT (1 + ˜ar)2

1 +1 + ˜ar

T κ +(1 + ˜ar)2 2κt

.

From (B.3.1), we compute that Z s

0

(ˇx(t−u)−x(sˇ −u))2e2µudu≤ Z s

0

(a+be−λr) Z t

s

eλvdv

e2(µ−λ)udu

=s(a+be−λr)2e2λT(t−s)2

=T e2λT(a+be−λr)2(t−s)2. And, from (B.3.2), we get

Z t s

ˇ

x2(t−u)e2µudu≤ Z t

s

e2λ(t−u)e2µudu= Z t

s

e2λtdu≤e2λT(t−s).

Therefore,

Q1

σ ≤eλT

√ T

plogp and Q2

σ ≤eλT(a+be−λr) T32 2plogp. Collecting the results,

pkΓk +Q(T) σ

√T eλT 1 + ˜ar 1 +

r1 + ˜ar

T κ + 1 + ˜ar

2κT + 1 + ˜ar

√plogp+ (1 + ˜ar)(a+be−λr) T 2plogp

! .

Instable regime, white noise (0< a < b,µ= 0). Case #1: κ /∈ {λ,2λ}. Z t

0

ˇ

x2(t−u)du≤ Z t

0

1

1 + ˜ar+e−κ(t−u) 2

e2λ(t−u)

= Z t

0

e2λ(t−u) (1 + ˜ar)2du+ 2

Z t 0

e−κ(t−u)

1 + ˜ar e2λ(t−u)du+ Z t

0

e2(λ−κ)(t−u)du

= e2λt−1

2λ(1 + ˜ar)2 + 2 1 + ˜ar

Z t 0

e(2λ−κ)(t−u)du+e2(λ−κ)t−1 2(λ−κ)

= e2λt−1

2λ(1 + ˜ar)2 + 2 e(2λ−κ)t−1

(1 + ˜ar)(2λ−κ)+e2(λ−κ)t−1

2(λ−κ) (B.3.15)

Case #2: κ∈(0, λ). Starting from (B.3.15) Z t

0

ˇ

x2(t−u)du≤ e2λt

2λ(1 + ˜ar)2 + 2e(2λ−κ)t

(1 + ˜ar)(2λ−κ)+ e2(λ−κ)t 2(λ−κ)

= e2λt 2λ(1 + ˜ar)2

1 + 4λ(1 + ˜ar)

2λ−κ e−κt+λ(1 + ˜ar)2 λ−κ e−2κt

.

Case #3: κ∈(λ,2λ). Beginning from (B.3.15) Z t

0

ˇ

x2(t−u)du≤ e2λt

2λ(1 + ˜ar)2 + 2e(2λ−κ)t

(1 + ˜ar)(2λ−κ)+e2λte−2κt−e−2λt 2(λ−κ)

≤ e2λt

2λ(1 + ˜ar)2 + 2e(2λ−κ)t

(1 + ˜ar)(2λ−κ)+e2λte−2λt1−e−2(κ−λ)t 2(κ−λ)

≤ e2λt 2λ(1 + ˜ar)2

1 + 2λ(1 + ˜ar)

2λ−κ e−κt+2λ(1 + ˜ar)2 2(κ−λ) e−2λt

.

Case #4: κ∈(2λ,∞). As before, from (B.3.15) we obtain Z t

0

ˇ

x2(t−u)du≤ e2λt

2λ(1 + ˜ar)2+ 2 1−e(κ−2λ)t

(1 + ˜ar)(κ−2λ)+1−e−2(κ−λ)t 2(κ−λ)

≤ e2λt 2λ(1 + ˜ar)2

1 +4λ(1 + ˜ar)

(κ−2λ) e−2λt+λ(1 + ˜ar)2 κ−λ e−2λt

. In all four of the cases, we found out that

kΓk

σ2 ≤ e2λT 2λ(1 + ˜ar)2

1 +O

e−(κ∧(2λ))t . From (B.3.2), we deduce

Z s 0

(ˇx(t−u)−x(sˇ −u))2du=(a+be−λr)2 2(−λ)

e2(µ−λ)s−1

e2λt(t−s)2

≤(a+beλr)2

2λ e2λT(t−s)2. Starting with (B.3.1), we get

Z t s

ˇ

x2(t−u)du≤e2λte2(−λ)se2(−λ)(t−s)−1

2(−λ) ≤e2λ(t−s)(t−s)≤e2λT(t−s).

And therefore, Q1

σ =eλT

√T

√plogp and Q2

σ =eλTa+beλr

√2λ T 2plogp. Collecting the results, we nd that

pkΓk +Q(T) σ

= eλT

2λ(1 + ˜ar) q

1 +O e−(κ∧(2λ))t +eλT

√T

√plogp+eλTa+beλr

√ 2λ

T 2plogp

≤ eλT

2λ(1 + ˜ar) 1 +O

e(κ∧(2λ))t2 +

2λ(1 + ˜ar)

√ T

plogp+a+beλr

√ 2λ

T 2plogp

!!

.

C. REFERENCES References

[AB10] John A. D. Appleby and Evelyn Buckwar. A constructive comparison tech-nique for determining the asymptotic behaviour of linear functional dieren-tial equations with unbounded delay. Dier. Equ. Dyn. Syst., 18(3):271301, 2010.

[AGR06] John A. D. Appleby, István Gy®ri, and David W. Reynolds. On exact con-vergence rates for solutions of linear systems of Volterra dierence equations.

J. Dierence Equ. Appl., 12(12):12571275, 2006.

[AGR11] John A. D. Appleby, István Gy®ri, and David W. Reynolds. History-dependent decay rates for a logistic equation with innite delay. Proc. Roy.

Soc. Edinburgh Sect. A, 141(1):2344, 2011.

[AHMP07] Mercedes Arriojas, Yaozhong Hu, Salah-Eldin Mohammed, and Gyula Pap.

A delayed Black and Scholes formula. Stoch. Anal. Appl., 25(2):471492, 2007.

[AI05] V. Anh and A. Inoue. Financial markets with memory. I. Dynamic models.

Stoch. Anal. Appl., 23(2):275300, 2005.

[AIK05] V. Anh, A. Inoue, and Y. Kasahara. Financial markets with memory. II.

Innovation processes and expected utility maximization. Stoch. Anal. Appl., 23(2):301328, 2005.

[AKM05] A. Ashoorioon, A. Kempf, and R. B. Mann. Minimum length cuto in ina-tion and uniqueness of the acina-tion (11 pages). PHYSICAL REVIEW -SERIES D-, 2005, 71, 2, 023503, 2005.

[AMW10] John A. D. Appleby, Xuerong Mao, and Huizhong Wu. On the almost sure running maxima of solutions of ane stochastic functional dierential equa-tions. SIAM J. Math. Anal., 42(2):646678, 2010.

[AP15] John A. D. Appleby and Denis D. Patterson. Subexponential growth rates in functional dierential equations. Discrete Contin. Dyn. Syst., (Dynami-cal systems, dierential equations and applications. 10th AIMS Conference.

Suppl.):5665, 2015.

[AP17] John A. D. Appleby and Denis D. Patterson. Hartman-Wintner growth re-sults for sublinear functional dierential equations. Electron. J. Dierential Equations, pages Paper No. 21, 45, 2017.

[ARS13] John A. D. Appleby, Markus Riedle, and Catherine Swords. Bubbles and crashes in a Black-Scholes model with delay. Finance Stoch., 17(1):130, 2013.

[AT07] Robert J. Adler and Jonathan E. Taylor. Random elds and geometry.

Springer monographs in mathematics. Springer, New York, NY, 2007.

[Bau96] Heinz Bauer. Probability theory, volume 23 of De Gruyter Studies in Mathe-matics. Walter de Gruyter & Co., Berlin, 1996. Translated from the fourth (1991) German edition by Robert B. Burckel and revised by the author.

[BB00] Christopher T. H. Baker and Evelyn Buckwar. Numerical analysis of explicit one-step methods for stochastic delay dierential equations. LMS J. Comput.

Math., 3:315335, 2000.

[BC94] Jacques Bélair and Sue Ann Campbell. Stability and bifurcations of equilibria in a multiple-delayed dierential equation. SIAM J. Appl. Math., 54(5):1402 1424, 1994.

[BDS01] Rodrigo Banuelos, R. Dante DeBlassie, and Robert Smits. The rst exit time of planar brownian motion from the interior of a parabola. The Annals of Probability, 2001, 29, 2, 882, 2001.

[Ber64] Simeon M. Berman. Limit theorems for the maximum term in stationary sequences. Annals of Mathematical Statistics, 1964, 35, 502, 1964.

[Ber71a] Simeon M. Berman. Excursions above high levels for stationary gaussian processes. Pacic Journal of Mathematics, 1971, 36, 63, 1971.

[Ber71b] Simeon M. Berman. Maxima and high level excursions of stationary gaussian processes. Transactions of the American Mathematical Society, 1971, 160, 65, 1971.

[Ber72a] Simeon M. Berman. A class of limiting distributions of high level excur-sions of Gaussian processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 21:121134, 1972.

[Ber72b] Simeon M. Berman. Maximum and high level excursion of a gaussian process with stationary increments. Annals of Mathematical Statistics, 1972, 43, 1247, 1972.

[BG06] Nils Berglund and Barbara Gentz. Noise-induced phenomena in slow-fast dynamical systems. Probability and its applications. Springer, New York [u.a.], 2006.

[BKMS08] Evelyn Buckwar, Rachel Kuske, Salah-Eldin Mohammed, and Tony Shard-low. Weak convergence of the Euler scheme for stochastic dierential delay equations. LMS J. Comput. Math., 11:6099, 2008.

[BM16] Mouak Benchohra and Kadda Mazouz. Existence and uniqueness results for nonlinear implicit fractional dierential equations with delay in Fréchet spaces. Comm. Appl. Nonlinear Anal., 23(4):4859, 2016.

[BMS01] Steve Blythe, Xuerong Mao, and Anita Shah. Razumikhin-type theorems on stability of stochastic neural networks with delays. Stochastic Anal. Appl., 19(1):85101, 2001.

[Buc04] Evelyn Buckwar. The Θ-Maruyama scheme for stochastic functional dier-ential equations with distributed memory term. Monte Carlo Methods Appl., 10(3-4):235244, 2004.

[Buc06] Evelyn Buckwar. One-step approximations for stochastic functional dieren-tial equations. Appl. Numer. Math., 56(5):667681, 2006.

[BY15] Jianhai Bao and Chenggui Yuan. Large deviations for neutral functional SDEs with jumps. Stochastics, 87(1):4870, 2015.

[Cai03] Jean-Michel Caillol. Some applications of the LambertW function to classical statistical mechanics. J. Phys. A, 36(42):1043110442, 2003.

[CGHJ93] Robert M. Corless, Gaston H. Gonnet, D. E. G. Hare, and David J. Jef-frey. Lambert's w function in maple. http://www.apmaths.uwo.ca/ rcor-less/papers/LambertW/mtnw.ps.Z, 1993.

[Cra07] Steven R. Cranmer. New views of the solar wind with the lambert w function.

2004-06-07.

[CT62] Z. Ciesielski and S. J. Taylor. First passage times and sojourn times for Brownian motion in space and the exact Hausdor measure of the sample path. Trans. Amer. Math. Soc., 103:434450, 1962.

[CYB05] Sue Ann Campbell, Yuan Yuan, and Sharene D. Bungay. Equivariant Hopf bifurcation in a ring of identical cells with delayed coupling. Nonlinearity, 18(6):28272846, 2005.

[Del65] Jean Delporte. Fonctions aléatoires presque sûrement continues sur un inter-valle fermé. Ann. Inst. H. Poincaré Sect. B, 1:111215, 1964/1965.

[DK92] A. D. Drozdov and V. B. Kolmanovski. Stochastic stability of viscoelastic bars. Stochastic Anal. Appl., 10(3):265276, 1992.

[DKW56] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator.

Ann. Math. Statist., 27:642669, 1956.

[DPZ14] Giuseppe Da Prato and Jerzy Zabczyk. Stochastic equations in innite di-mensions, volume 152 of Encyclopedia of mathematics and its applications ; 152. Cambridge Univ. Press, Cambridge, 2. ed. edition, 2014.

[DvGVLW95] Odo Diekmann, Stephan A. van Gils, Sjoerd M. Verduyn Lunel, and Hans-Otto Walther. Delay equations, volume 110 of Applied Mathematical Sciences.

Springer-Verlag, New York, 1995. Functional, complex, and nonlinear analy-sis.

[DZ92] Amir Dembo and Ofer Zeitouni. Large deviations techniques. Jones and Bartlett books in mathematics. Jones and Bartlett, Boston [u.a.], 1. [dr.]

edition, 1992.

[Els99] S. A. Elsanousi. Lyapunov exponents of linear stochastic functional-dierential equations with innite memory. Stochastics Stochastics Rep., 65(3-4):153176, 1999.

[Ern09] Thomas Erneux. Applied delay dierential equations, volume 3 of Surveys and tutorials in the applied mathematical sciences ; 3. Springer, New York, NY, 2009.

[Fen79] Neil Fenichel. Geometric singular perturbation theory for ordinary dierential equations. J. Dierential Equations, 31(1):5398, 1979.

[Fer64] Xavier Fernique. Continuité des processus gaussiens. CR Acad. Sci. Paris, 258:60586060, 1964.

[Fer75] X. Fernique. Des résultats nouveaux sur les processus gaussiens. pages 318 335. Lecture Notes in Math., Vol. 465, 1975.

[Fer90] X. Fernique. Régularité de fonctions aléatoires gaussiennes a valeurs vecto-rielles. The Annals of Probability, 1990, 18, 4, 1739, 1990.

[FI05] Markus Fischer and Peter Imkeller. A two-state model for noise-induced resonance in bistable systems with delay. Stoch. Dyn., 5(2):247270, 2005.

[FN09] Neville J. Ford and Stewart J. Norton. Noise-induced changes to the be-haviour of semi-implicit Euler methods for stochastic delay dierential equa-tions undergoing bifurcation. J. Comput. Appl. Math., 229(2):462470, 2009.

[Fre12] Mark I. Freidlin. Random Perturbations of Dynamical Systems. Die Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics ; 260. Springer Berlin Heidelberg, Berlin, Heidelberg, 3rd ed. 2012 edition, 2012.

[Gau15] Carl Friedrich (1777-1855) Gauss. Methodus nova integralium valores per approximationem inveniendi auctore carolo friderico gauss. Bibliothèque na-tionale de France, 1815.

[GFF17] Valery Y. Glizer, Emilia Fridman, and Yuri Feigin. A novel approach to exact slow-fast decomposition of linear singularly perturbed systems with small delays. SIAM J. Control Optim., 55(1):236274, 2017.

[Gir29] Albert (1595-1632) Girard. Invention nouvelle en l'algèbre , par albert gi-rard,... 1629.

[Gra53] I. S. Grad²ten. Application of A. M. Lyapunov's theory of stability to the theory of dierential equations with small coecients in the derivatives. Mat.

Sbornik N. S., 32(74):263286, 1953.

[Gum67] Emil Julius Gumbel. Statistics of extremes. Columbia Univ. Press, New York [u.a.], 4. print. edition, 1967.

[Hel01] D Helbing. Trac and related self-driven many-particle systems. REVIEWS OF MODERN PHYSICS, 2001, 73, 4, 1067, 2001.

[HKGS82] F. A. Hopf, D. L. Kaplan, H. M. Gibbs, and R. L. Shoemaker. Bifurcations to chaos in optical bistability. Phys. Rev. A, 25:21722182, Apr 1982.

[HMY04] Yaozhong Hu, Salah-Eldin A. Mohammed, and Feng Yan. Discrete-time approximations of stochastic delay equations: the Milstein scheme. Ann.

Probab., 32(1A):265314, 2004.

[HP14] Ferenc Hartung and Mihály Pituk, editors. Recent advances in delay dier-ential and dierence equations, volume 94 of Springer Proceedings in Mathe-matics & Statistics. Springer, Cham, 2014.

[HVL93] Jack K. Hale and Sjoerd M. Verduyn Lunel. Introduction to functional dier-ential equations, volume 99 of Applied mathematical sciences ; 99. Springer, New York [u.a.], 1993.

[IKS03] A. F. Ivanov, Y. I. Kazmerchuk, and A. V. Swishchuk. Theory, stochastic stability and applications of stochastic delay dierential equations: a survey of results. Dierential Equations Dynam. Systems, 11(1-2):55115, 2003.

[Jac79] Jean Jacod. Calcul stochastique et problèmes de martingales, volume 714 : Series: Institut de Mathématiques, Université de Strasbourg of Lecture notes in mathematics ; 714 : Series: Institut de Mathématiques, Université de Strasbourg. Springer, Berlin [u.a.], 1979.

[K04] Konrad Königsberger. Analysis. 1. Springer-Lehrbuch. [Springer Textbook].

Springer-Verlag, Berlin, sixth edition, 2004.

[Kim16] Young-Ho Kim. Euler-Maruyama's approximate solutions to stochastic dif-ferential delay equation. J. Nonlinear Convex Anal., 17(1):185195, 2016.

[Kle14] Achim Klenke. Probability theory. Universitext. Springer, London, second edition, 2014. A comprehensive course.

[KM92] Uwe Küchler and Beatrice Mensch. Langevin's stochastic dierential equation extended by a time-delayed term. Stochastics Stochastics Rep., 40(1-2):2342, 1992.

[KP07] Uwe KÃ14chler and Eckhard Platen. Time delay and noise explaining cyclical uctuations in prices of commodities. Research paper, 2007, 2007.

[KS91] Ioannis Karatzas and Steven E. Shreve. Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.

[KS12] P. E. Kloeden and T. Shardlow. The Milstein scheme for stochastic delay dierential equations without using anticipative calculus. Stoch. Anal. Appl., 30(2):181202, 2012.

[Kue15] Christian Kuehn. Multiple Time Scale Dynamics. Applied Mathematical Sciences ; 191. Springer International Publishing, Cham, 2015.

[Lak11] Muthusamy Lakshmanan. Dynamics of Nonlinear Time-Delay Systems.

Springer Series in Synergetics. Springer-Verlag Berlin Heidelberg, Berlin, Hei-delberg, 2011.

[Li99] W. V. Li. Small deviations for gaussian markov processes under the sup-norm.

Journal of Theoretical Probability, 12(4):971984, 1999.

[Li03] Wenbo V. Li. The rst exit time of a brownian motion from an unbounded convex domain. The Annals of Probability, 2003, 31, 2, 1078, 2003.

[LODO91] R. Langevin, W. M. Oliva, and J. C. F. De Oliveira. Retarded functional-dierential equations with white noise perturbations. Annales de l'Institut Henri Poincaré. Physique Théorique, 1991, 55, 2, 671, 1991.

[Lon10] André Longtin. Stochastic delay-dierential equations. In Complex time-delay systems, Underst. Complex Syst., pages 177195. Springer, Berlin, 2010.

[LS01] W.V. Li and Q.-M. Shao. Gaussian processes: Inequalities, small ball prob-abilities and applications. Handbook of Statistics, 2001, 19, 533, 2001.

[LS02] Mikhail Lifshits and Zhan Shi. The rst exit time of brownian motion from a parabolic domain. Bernoulli, 2002, 8, 6, 745, 2002.

[LZ14] Kai Liu and Tusheng Zhang. A large deviation principle of retarded Ornstein-Uhlenbeck processes driven by Lévy noise. Stoch. Anal. Appl., 32(5):889910, 2014.

[Man06] Kenneth Manders. Algebra in roth, faulhaber, and descartes. Historia Math-ematica, 2006, 33, 2, 184, 2006.

[Mao03] Xuerong Mao. Numerical solutions of stochastic functional dierential equa-tions. LMS J. Comput. Math., 6:141161, 2003.

[Mao07] Xuerong Mao. Exponential stability of equidistant Euler-Maruyama approx-imations of stochastic dierential delay equations. J. Comput. Appl. Math., 200(1):297316, 2007.

[Mao08] Xuerong Mao. Stochastic dierential equations and their applications. Hor-wood, Chichester, 2. ed. edition, 2008.

[Mar70] Michael Marcus. A bound for the distribution of the maximum of continuous gaussian processes. Annals of Mathematical Statistics, 1970, 41, 305, 1970.

[Mar72] M. B. Marcus. Upper bounds for the asymptotic maxima of continuous Gaus-sian processes. Ann. Math. Statist., 43:522533, 1972.

[Moh84] Salah-Eldin A. Mohammed. Stochastic functional dierential equations, vol-ume 99 of Research notes in mathematics ; 99. Pitman, Boston [u.a.], 1984.

[MS72] M. B. Marcus and L. A. Shepp. Sample behavior of gaussian processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory, pages 423441, Berkeley, Calif., 1972. University of California Press.

[MS90] Salah Eldin A. Mohammed and Michael K. R. Scheutzow. Lyapunov expo-nents and stationary solutions for ane stochastic delay equations. Stochas-tics StochasStochas-tics Rep., 29(2):259283, 1990.

[MS96] Salah-Eldin A. Mohammed and Michael K. R. Scheutzow. Lyapunov ex-ponents of linear stochastic functional dierential equations driven by semi-martingales. I. The multiplicative ergodic theory. Ann. Inst. H. Poincaré Probab. Statist., 32(1):69105, 1996.

[MS97] Salah-Eldin A. Mohammed and Michael K. R. Scheutzow. Lyapunov expo-nents of linear stochastic functional-dierential equations. II. Examples and case studies. Ann. Probab., 25(3):12101240, 1997.

[MZ06] Salah-Eldin A. Mohammed and Tusheng Zhang. Large deviations for stochas-tic systems with memory. Discrete Contin. Dyn. Syst. Ser. B, 6(4):881893, 2006.

[Nis67] Makiko Nisio. On the extreme values of gaussian processes. Osaka Journal of Mathematics, 1967, 4, 313, 1967.

[NV13] Hoi H. Nguyen and Van H. Vu. Small ball probability, inverse theorems, and applications. Erdös centennial, 2013, 2013.

[Pic67] James Pickands, III. Maxima of stationary Gaussian processes. Z.

Wahrscheinlichkeitstheorie und Verw. Gebiete, 7:190223, 1967.

[Pic69] James Pickands, III. Asymptotic properties of the maximum in a stationary Gaussian process. Trans. Amer. Math. Soc., 145:7586, 1969.

[Rol90] Michel Rolle. Traité d'algèbre ou principes généraux pour résoudre les ques-tions de mathématique. 1690.

[Rou96] Marc R. Roussel. The use of delay dierential equations in chemical kinetics.

The journal of physical chemistry, 1996, 100, 20, 8323, 1996.

[RY05] Daniel Revuz and Marc Yor. Continuous martingales and Brownian mo-tion, volume 293 of Grundlehren der mathematischen Wissenschaften ; 293.

Springer, Berlin [u.a.], corr. 3. print. of the 3. ed. edition, 2005.

[SBDM93] T. C. Scott, J. F. Babb, A. Dalgarno, and John D. Morgan. The calculation of exchange forces: General results and specic models. Journal of Chemical Physics, 1993, 99, 4, 2841, 1993.

[Sch84] M. Scheutzow. Qualitative behaviour of stochastic delay equations with a bounded memory. Stochastics and Stochastics Reports, 12:4180, 1984.

[Sch05] Michael Scheutzow. Exponential growth rates for stochastic delay dierential equations. Stoch. Dyn., 5(2):163174, 2005.

[Sch13] Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay dierential equation. Discrete Contin. Dyn. Syst. Ser. B, 18(6):1683 1696, 2013.

[SMM06] Tony C. Scott, Robert Mann, and Roberto E. Martinez, II. General rela-tivity and quantum mechanics: towards a generalization of the LambertW function: a generalization of the LambertW function. Appl. Algebra Engrg.

Comm. Comput., 17(1):4147, 2006.

[SN10] Rifat Sipahi and Silviu-Iulian Niculescu. Deterministic time-delayed trac ow models: a survey. Complex time-delay systems, 2010, 2010.