• Keine Ergebnisse gefunden

5. From Uniform Stability to Instability 79

5.2. Uniform Stability

5.2.2. Bernstein-based Approach

Lemma 5.20. Assume that ν is small enough such that the inequality in (5.2.32) holds true. For (ζ(t))t∈[0,T0/ν], dened as in (5.2.34), we have that

1 2a+

(1−δ0ν)≤ζ(s)≤ 1 2a

1

1−γ(1 +δ0ν) for alls∈[0, T0/ν].

Proof. The lower bound is easily derived, and for the upper bound we nd that vad(s)≤ 1 +δ0ν

2(a(s)− |b(s)|) = 1 +δ0ν 2a(s)a(s)−|b(s)|

a(s)

≤ 1

2a

1−|b(s)|a(s)(1 +δ0ν).

Together with the basic assumption (5.2.6) that shows the claim.

Forν >0 small enough, some arbitrarily smallt>0andh >0we will see that

P (

sup

s∈[0,T0/ν]

|y(s)|

pζ(s) > h )

≤ T0

νt

exp

−(1−γ)h22

1 +O

ky0k ∨ν

h +N h+t

, which is only useful, if

max

σ,ky0k, ν < h < 1

N. (5.2.35)

We make this restriction an assumption in order to omit error terms that are not of leading order. From the preceding part, inequality (5.2.24) yields for starting pointt0= 0

|y(t)| ≤ ky0ke−α(t)+ Z t

0

e−α(t,u)|b(u)||y(u−r)|du +

Z s 0

e−α(t,u) Nfy2(u) +Ngy2(u−r) +νc0 du +σ

Z t 0

e−α(t,u)dW(u)

for alls∈[0, T0/ν∧τD(x)],

where τD(x) := inf{t ≥ 0 : (x(t), νt) ∈/ D} denote the rst time that x leaves D, and c0 is still the same we dened in (5.2.14). In order to emphasize the martingale part of the stochastic-integral term, let us introduce the notation

M(t) :=

Z t 0

eα(u)dW(u) for allt∈[0, T0/ν].

We dene the family of auxiliary events

Et:=

(

ω∈Ω : sup

s∈[0,t]

σe−α(s)M(s) pζ(s)

+ 1

pζ(s)ky0ke−α(s) (5.2.36) +

Rs

0 e−α(s,u)

νc0+|b(u)|hp

ζ(u) +N h2ζ(u) du

pζ(s) > h

)

for allt∈[0, T0/ν].

(5.2.37) And for given t ∈ [0, T0/ν], we denote the event that the deviationy has left the tube of

radiushat least once over[0, t]by

At:=

( sup

s∈[0,t]

|y(s)|

pζ(s) > h )

for allt∈[0, T0/ν] andτh= inf (

t≥0 : |y(t)|

pζ(t) > h )

, (5.2.38) where both denitions are reasonably dened after the following technical assumption con-cerning a suitable size of the domain:

Assumption 5.21. We lethbe small enough that n

(z, νt) :t∈[0, T0/ν]and|z−xadν(t)| ≤hp ζ(t)o

⊆D, which informally ensures that we always see y leaving thehp

ζ(·)-tube beforexleaves D.

Lemma 5.22. Under the Assumption 5.21 we nd the following properties of the involved families of sets dened in (5.2.37) and (5.2.38).

a) We have thatAt⊆Et for allt≥0, or in other wordsω /∈Et⇒ω /∈At.

b) For an arbitrary integer n∈N, we let0 =t0 < t1< . . . < tn =T0/ν be a partition of the time interval[0, T0/ν]. Then

P ET0

=

n−1

X

i=0

P Eti+1∩Etci .

Proof. a) Pathwise interpretation of the stochastic-integral term is justied through the integrand's nite variation and serves with estimate (5.2.24)

h=

y(τh) pζ(τh)

≤ 1 pζ(τh)

e−α(τh)ky0k +

Z τh 0

e−α(τh,u)

νc0+|b(u)||y(u−r)|+Nfy2(u) +Ngy2(u−r) du +σeα(τh)

M(τh)

≤ 1 pζ(τh)

e−α(τh)ky0k +

Z τh 0

e−α(τh,u)

νc0+|b(u)|hp

ζ(u) +Nfh2ζ(u) +Ngh2ζ(u) du +σe−α(τh)

M(τh)

for allω∈ {τh< T0/ν}.

That directly yields the rst claim.

b) As the family (Eti)i∈{0,1,...,n} is obviously increasing, the events Eti+1 ∩Etci, i ∈ {0,1, . . . , n−1}, are pairwise disjoint and together constituteET0. That shows the second part.

Then, for arbitraryi∈I:={0, . . . , N−1}, we nd that P

n

Etci∩Eti+1

o

≤P (

sup

s∈[ti,ti+1]

σe−α(s)|M(s)|+ky0ke−α(s)+Rs 0e−α(s,u)

νc0+|b(u)|h

ζ(u) +N h2ζ(u)

du

ζ(s) > h

) . (5.2.39) We use the following short-hand notations

F(s) :=νc0 Z s

0

e−α(s,u)du+e−α(s)ky0k, G(s) :=

Z s 0

e−α(s,u)|b(u)|p

ζ(u)du, H(s) :=N

Z s 0

e−α(s,u)ζ(u)du, V(s) :=

Z s 0

e−2α(s,u)du for alls∈[0, T0/ν].

It is easy to see that

(i) The mapping F: [0, T0/ν]→R is the unique solution of the ODE

F˙(t) =−a(t) +νc0 fort∈[0, T0/ν), F(0) =ky0k.

(ii) The mappingG: [0, T0/ν]→R is the unique solution of

G(t) =˙ −a(t)G(t) +|b(t)|p

ζ(t) fort∈[0, T0/ν), G(0) = 0.

(iii) The mappingH: [0, T0/ν]→R is the unique solution of

H(t) =˙ −a(t)H(t) +N ζ(t) fort∈[0, T0/ν), H(0) = 0.

(iv) The mapping V : [0, T0/ν]→R is the unique solution of

V˙(t) =−2a(t) + 1 fort∈[0, T0/ν), V(0) = 0.

Lemma 5.23. With the notations from above, we have that

a)

F(s)follows νc0

2a(s) and F(s)≤ ky0k ∨ νc0

2a for alls∈[0, T0/ν].

b) There isν1>0 such that there is a constantδ1>0 independent ofν that fullls all three

below estimates for allν ≤ν1: G(s)follows |b(s)|

a(s)

pζ(s) and G(s)≤ |b(s)|

a(s)

pζ(s) +δ1ν for alls∈[0, T0/ν], (5.2.40) H(s)follows Nζ(s)

a(s) and H(s)≤Nζ(s)

a(s)+δ1ν for alls∈[0, T0/ν], (5.2.41) V(s)follows 1

2a(s) and V(s)≤ 1 +δ1ν

2a(s) for alls∈[0, T0/ν]. (5.2.42) Proof. This is due to Fenichel's theory, which ensures the existence of ν-adiabatic solutions that follow the respective slow manifolds in a distance of order O(ν). The assertions of the lemma follow from the fact that solution paths can not intersect in case of ordinary dierential equations. In (5.2.42) we have additionally used thata(·)≤a+over[0, T0/ν]. Without loss of generality, from now on, we assume thatν01 and δ01, whereν0, δ0 are dened in (5.2.32).

Lemma 5.24. Let t = supi∈I|ti+1−ti| denote the maximum step width of the partition 0 =t0< . . . < tn=T0/ν. Let further

µ1:=

(df+dg)δ+N δ2ν sup

(z,u)∈D

|fxx(z, u)|+ sup

(z,u)∈D

|fxt(z, u)|, µ2:=µ1+

(df+dg)δ+N δ2ν sup

(z,u)∈D

|gxx(z, u)|+ sup

(z,u)∈D

|gxt(z, u)|.

Then

inf

i∈{0,...,n−1} inf

s∈[ti,ti+1)

a(ti+1)

a(s) ≥1−νµ1

a t, (5.2.43)

i∈{0,...,n−1}inf inf

s∈[ti,ti+1)

a(s)− |b(s)|

a(ti)− |b(ti)| ≥1− νµ2

a(1−γ)t, (5.2.44) inf

i∈{1,...,n}exp −2α(ti, ti+1)

≥1−2a+t. (5.2.45) Proof. Theν-adiabatic solutionxadν is a solution of the replacement system and therefore, for each t∈(0, T0/ν)we nd that

d

dtxadν(t) =f(xadν(t), νt) +g(xadν(t), νt)

=f(x?(t) +xadν(t)−x?(t), νt) +g(x?(t) +xadν(t)−x?(t), νt)

=fx(x?(t), νt)(xadν(t)−x?(t)) +gx(x?(t), νt)(xadν(t)−x?(t)) +Rf(xadν(t)−x?(t), νt) +Rg(xadν(t)−x?(t), νt).

Due to assumption (5.2.2), we obtain that

d dtxadν(t)

≤dfδν+dgδν+N δ2ν2 for allt∈(0, T0/ν). (5.2.46) For the dierential of a(·)we observe that for all u∈(0, T0/ν),

d

dua(u) = d

dufx(xadν(u), νu) =fxx(xadν(u), νu)dxadν(u)

du +νfxt(xadν(u), νu). (5.2.47)

Altogether, we have that a(ti+1)

a(s) ≥1− 1 a

Z ti+1 s

d

dua(u)du≥1−νµ1

a t for alls∈[ti, ti+1], i∈I.

The second inequality can be seen as follows. First, observe that a(ti)− |b(ti)|=a(ti)

1−|b(ti)|

a(ti)

≥a(1−γ) for alli∈I.

And, as(−1)(|b(ti)| − |b(s)|)≤ |b(ti)−b(s)|, we have that a(s)− |b(s)|

a(ti)− |b(ti)| = 1−a(ti)− |b(ti)| −a(s) +|b(s)|

a(ti)− |b(ti)|

≥1−a(ti)−a(s) +|b(ti)−b(s)|

a(1−γ) for alls∈[ti, ti+1], i∈I. (5.2.48) Then, for alls∈[ti, ti+1], i∈I we have that

b(ti)−b(s) = Z ti

s

db(u) du du

= Z ti

s

gxx(xadν(u), νu)dxadν(u) du du+

Z ti s

gxt(xadν(u), νu)νdu.

Then, an application of (5.2.46) provides for alls∈[ti, ti+1], i∈I that

|b(ti)−b(s)| ≤tν sup

(z,u)∈D|gxx(z, u)| (df+dg)δ+N δ2ν

+ sup

(z,u)∈D|gxt(z, u)|

! . (5.2.49) And analogously with the help of (5.2.47), we nd for alls∈[ti, ti+1], i∈I that

a(ti)−a(s) = Z ti

s

da(u) du du

= Z ti

s

fxx(xadν(u), νu)dxadν(u) du du+

Z ti s

fxt(xadν(u), νu)νdu.

And therefore, using (5.2.46) we nd that

|a(ti)−a(s)| ≤tν sup

(z,u)∈D

|fxx(z, u)| (df+dg)δ+N δ2ν

+ sup

(z,u)∈D

|fxt(z, u)|

!

for alls∈[ti, ti+1], i∈I.

(5.2.50) From estimates (5.2.49) and (5.2.50) we reveive for alls∈[ti, ti+1], i∈I that

a(ti)−a(s) +|b(ti)−b(s)|

≤tν sup

(z,u)∈D|fxx(z, u)| (df+dg)δ+N δ2ν

+ sup

(z,u)∈D|fxt(z, u)|

!

+tν sup

(z,u)∈D|gxx(z, u)| (df+dg)δ+N δ2ν

+ sup

(z,u)∈D|gxt(z, u)|

! ,

which is the claim when plugged into (5.2.48).

For the third inequality, we use that e−z≥1−zfor arbitraryz∈R and that

α(ti+1, ti) = Z ti+1

ti

a(u)du≤a+t for alli∈I.

Theorem 5.25. Lett be given as in Lemma 5.24 and assume thatν is small enough such that the estimate onvadin (5.2.32) and the inequalities of part b) of Lemma 5.23 hold true.

Then, for h >0, we have that

P (

sup

s∈[0,T0/ν]

|y(s)|

pζ(s) > h )

≤ T0 νt

exp

−(1−γ) h22

1 +R(ν,ky0k, h, t)

,

where R(ν,ky0k, h, t) =Oky

0k∨ν

h +N h+t . Proof. Rearranging terms in (5.2.39) yields

P n

Eti∩Eti+1o

≤P (

sup

s∈[ti,ti+1)

σ|M(s)|> h− sup

s∈[ti,ti+1)

1 pζ(s)

F(s) +G(s)h+H(s)h2 !

· inf

u∈[ti,ti+1)eα(u)p ζ(u)

) . So, we can apply the concentration result for stochastic integrals with deterministic inte-grands from [BG06, Lemma B.1.3 (Bernstein-type inequality)]. That leads to

P

Eti∩Etci+1

≤exp

h− sup

s∈[ti,ti+1)

√1 ζs

F(s) +G(s)h+H(s)h2

!

u∈[tinfi,ti+1)eα(u)p ζ(u)

!2

2 Z ti+1

0

e2α(u)du

≤exp

h− sup

s∈[ti,ti+1)

1 pζ(s)

F(s) +G(s)h+H(s)h2

! inf

u∈[ti,ti+1)

pζ(u)

!2

2 Z ti+1

0

e−2α(ti+1,u)du sup

u∈[ti,ti+1]

e2α(ti+1,u)

≤exp

h− sup

s∈[ti,ti+1)

1 pζ(s)

F(s) +G(s)h+H(s)h2

! pζ(ti)

!2

2 Z ti+1

0

e−2α(ti+1,u)du e2α(ti+1,ti)

= exp

− 1

2V(ti+1) h− sup

s∈[ti,ti+1]

ζ(s)12 F(s) +G(s)h+H(s)h2

!2 ζ(ti) e2α(ti+1,ti)

.

We introduce the auxiliary notation

qi:= 1

2V(ti+1) h− sup

s∈[ti,ti+1]

ζ(s)12 F(s) +G(s)h+H(s)h2

!2

ζ(ti) e2α(ti+1,ti) for alli∈I.

And rst, for all i∈I, we obtain for the terms that are not contained in the outer squared parantheses

qi(1):= 1 2σ2V(ti+1)

ζ(ti)

e2α(ti+1,ti) ≥ 1 2σ2

a(ti+1) a(ti)− |b(ti)|

1−δ1ν

1 +δ1ν(1−2a+t)

= 1 2σ2

a(ti+1) a(ti)− |b(ti)|

1 +O(ν+t)

, (5.2.51) where we use rst that ζ(ti)≥ 2(a(t 1

i)−|b(ti)|)(1−δ1ν) from (5.2.32), (5.2.34), second that V(s)≤ 1+δ2a(s)1ν from (5.2.42), and third the estimate (5.2.45). And for the terms that appear inside the squared parantheses of qi applying the estimates of Lemma 5.23, we achieve for alli∈I that

q(2)i := h− sup

s∈[ti,ti+1]

F(s) +G(s)h+H(s)h2 pζ(s)

!2

(5.2.52)

≥ h− sup

s∈[ti,ti+1)

(|b(s)|

a(s)h+ 1 pζ(s)

ky0k ∨ νc0 2a

+N

pζ(s)

a(s) h2+νδ1

h+h2 pζ(s)

)!2

=h2 1− sup

s∈[ti,ti+1)

(|b(s)|

a(s) +1 h

1 pζ(s)

ky0k ∨ νc0 2a

+N

pζ(s)

a(s) h2+νδ1h+h2 pζ(s)

!)!2

=h2 inf

s∈[ti,ti+1)

1−|b(s)|

a(s) 2

 1−

1 ζ(s)

ky0k ∨2aνc0

+N

ζ(s)

a(s) h2+νδ1h+h2

ζ(s)

h

1−|b(s)|a(s)

2

.

Using that 1−sups∈[t

i,ti+1)|b(s)|/a(s)≥1−γon the one hand, and that 1− sup

s∈[ti,ti+1)

|b(s)|

a(s) = inf

s∈[ti,ti+1)

a(s)− |b(s)|

a(s) on the other hand, yields

1− sup

s∈[ti,ti+1)

|b(s)|

a(s)

!2

≥(1−γ) inf

s∈[ti,ti+1)

a(s)− |b(s)|

a(s) for alli∈I.

And also we apply1−sups∈[ti,ti+1)|b(s)|/a(s)≥1−γin the denominator in the parantheses on the right-hand side to nd that

qi(2)≥h2(1−γ) inf

s∈[ti,ti+1)

a(s)− |b(s)|

a(s) 1−

ky0k∨2a−νc0

ζ(s) +N

ζ(s)

a(s) h2+νδ1h+h2 ζ(s)

h(1−γ)

!2

for alli∈I.

Recombining qi(1) andq(2)i allows for everyi∈Ito write

qi≥h2(1−γ) 2σ2 inf

s∈[ti,ti+1)

a(ti+1) a(s)

a(s)− |b(s)|

a(ti)− |b(ti)|

1 +O(ν+t)

· 1−

ky0k∨2aνc0

ζ(s) +N

ζ(s)

a(s) h2+νδ1h+h2

ζ(s)

h(1−γ)

!2

.

Then, the auxiliaries from Lemma 5.24 are applicable and both additional factors, that can be derived from the inmum, each of them1 +O(νt), get absorbed in the Laudau symbol.

The former inmum may then be taken to act on the minuend in the parantheses, on which it becomes a supremum. We obtain that

qi≥h2(1−γ) 2σ2

1 +O(ν+t)

1− sup

s∈[ti,ti+1)

ky0k∨2aνc0

ζ(s) +N

ζ(s)

a(s) h2+νδ1h+h2

ζ(s)

h(1−γ)

!2

for alli∈I.

Then, due to Lemma 5.2.6, ζ(·) and ζ−1 are bounded above by something of order 1. Therefore, we have that

qi ≥h2(1−γ) 2σ2

1 +O(ν+t) 1 +O

ky0k ∨ν

h +N h+ν h

2

=h2(1−γ) 2σ2

1 +O

ky0k ∨ν

h +N h+t

for alli∈I.

Applying Lemma 5.24 yields

P Eti∩Etci+1,

≤exp

−(1−γ)h22

1 +O

ky0k ∨ν

h +N h+t

for alli∈ {1, . . . , n}.

And so, consequently, we have shown that

P ET0

≤ T0

νtexp

−(1−γ) h22

1 +O

ky0k ∨ν

h +N h+t

.

So far, the result features several degrees of freedom. And of course, there is no ultimately convenient way to deminish generality in order to enhance clearity. The below remark suggest a relatively concrete instance of relations between parameters.

Remark 5.26. a) Remember that assumption (5.2.35) demands max

σ,ky0k, ν < h <1. Further, the usefulness of the result of the theorem depends on small terms in the Landau symbol. One way to achieve that is the following: For arbitrary α, β ∈ (0,1), we let ν =tα implying that ky0k =O(σα). Further, we let h= ˜hσαβ, where ˜hdenotes some neither small nor big constant. Then, the result of Theorem 5.25 reads

P(ET0)≤exp −(1−γ)

˜h22(1−αβ)

1 +O

σα(1−β)+N σαβ

+ 2α|logσ|+ logT0

! .

b) Reaching for the smallest possible hfor which Theorem 5.25 provides useful results, we observe the most unpleasant term ky0hk∨ν allows for a careful choice ofhof orderν such that the term R(ν,ky0k, h, t) = O ky0hk∨ν +N h+t

remains strictly smaller than 1/2 for instance. Then, σ of order |logνν| is sucient to have the overall early-escape probability small.