• Keine Ergebnisse gefunden

IN THE CORRESPONDING #OULOMB POTENTIAL

0QUJDBMQSPQFSUJFT

1 IN THE CORRESPONDING #OULOMB POTENTIAL

r V e

r

= πε ε

1 4

1

0

AND TAKING EFFECTIVEMASSESMINSTEADOFTHEFREESPACEELECTRONMASSM;=4HEEXTENTOFTHE BOUNDSTATEWAVEFUNCTIONINREALSPACECANTHENBEEXPRESSEDINTERMSOFA"OHRRADIUS

*

aB WHICH IS RELATED TO THE "OHR RADIUS IN THE HYDROGEN ATOM m

10 29177 .

5 11

2 0

2 = ⋅

= m e

aB ! BY r B

B a

m a m ⋅

 ⋅

= 0 *

* ε )N THE FOLLOWING THE EFFECTIVE MASSESANDTHESTATICRELATIVEDIELECTRICCONSTANTIN'A3BAREACCEPTEDFROM3TOLLWERKET AL ;= AS ME MO MH MO ANDεr =15.69 /NE CAN NOW ESTIMATE THE

"OHRRADIIOFTHESHALLOW DONORS AND ACCEPTORS IN 'A3B AS A"E^ z AND A"H ^ z RESPECTIVELY

4HESE "OHR RADII MUST NOW BE COMPARED TO THE SCREENING RADIUS IN SAMPLE ÌCCEPTINGTHEFREEHOLECONCENTRATIONASMEASUREDBY(ALLATROOMTEMPERATUREASTHE CONCENTRATION OF UNCOMPENSATED MAJORITY CARRIERS p#550 =NAND =5 E.3 17cm-3 ONE OBTAINSASCREENINGRADIUSOFRz

ÌS MENTIONED ABOVE BOUND STATES IN A SCREENED POTENTIAL EXIST ONLY IF THE SCREENING RADIUSSISMUCHGREATERTHANTHERELATED"OHRRADIUSB#4HECOMPARISONBETWEENTHE CALCULATEDSANDTHEABOVE"OHRRADIISHOWSTHATBOUNDDONORSTATESCANBEEXCLUDED FORSAMPLEANDBOUNDACCEPTORSTATESAREHIGHLYUNLIKELYÌSARESULTTHEBROAD0, OFSAMPLEISTHEREFORECONSIDEREDASDUETOBANDBANDLUMINESCENCEINAHIGHLY DOPEDANDPARTIALLYCOMPENSATEDSEMICONDUCTOR;=

)NPTYPEDEGENERATEDIRECTGAP)))6SEMICONDUCTORSTHEOPTICALBANDGAPSHRINKSWITH THECONCENTRATIONINCREASESINCETHE"URSTEIN-OSSEFFECTFORHOLESISLESSEFFECTIVETHAN THE BANDGAP NARROWING &OR NTYPE 'A3B THE OPPOSITE IS TRUE AND A CORRESPONDING BLUESHIFTOFTHE0,WITHINCREASING4EDOPINGHASBEENOBSERVED;=)NREF;*AIN=

OF;=THEBANDGAPNARROWINGOFPTYPE'A3BATROOMTEMPERATUREASAFUNCTIONOF THEDOPINGLEVELISAPPROXIMATEDAS∆%GAP =Ì.+". +#.WITHTHEFOLLOWING PARAMETERS FOR P'A3B ÌX E6 CM "X E6 CM #X

E6 CM 4HIS FUNCTION IS PLOTTED IN THE FOLLOWING FIGURE TAKEN FROM ;=

TOGETHERWITHEXPERIMENTALDATAOBTAINEDAT+ REF;4ITKOV=IN;=

1017 1018 1019 1020

0 20 40 60 80 100

17 meV

[Titkov]

[Jain]

B a n d -g ap na rrow ing [ m e V ]

Hole concentration [cm

-3

]

'JHVSF #BOE HBQ OBSSPXJOH PG QUZQF (B4C BT B GVODUJPO PG UIF IPMF DPODFOUSBUJPO 4BNQMF JT DPNQBSFE UP UIF MJUFSBUVSF EBUB HJWFO JO UIFUFYU

Ì FURTHER CONFIRMATION OF *AIN¾S MODEL IS FOUND IN ;= FOR :NDOPED 'A3B ÌT THE DOPINGLEVELOFSAMPLETHESEDATAINDICATEABANDGAPNARROWINGOFME6ÌSA BAND GAP OF EG

( )

2K =812meV ;= IS ACCEPTED FOR 'A3B THROUGHOUT THIS WORK THE +0, PEAK POSITION OF ME6 OF SAMPLE CORRESPONDS TO A BAND GAP NARROWING OF AROUND ME6 WHICH IS IN REASONABLE AGREEMENT WITH THE ABOVE APPROXIMATIONBY*AIN

ÌSANOVERALLRESULTTHEBROADLINEINTHE0,SPECTRUMOFSAMPLECANBECONSIDERED AS DUE TO BANDBAND LUMINESCENCE IN HIGHLY DOPED AND PARTIALLY COMPENSATED 'A3B WITHABANDGAPREDUCEDBYABOUTME6

%JTDVTTJPOPG1-SFTVMUT-JHIUMZEPQFE(B4C

*OUSPEVDUJPO

)NORDERTODEVELOPADETAILEDUNDERSTANDINGOFTHE0,OFNOTINTENTIONALLYDOPEDAND LIGHTLYSILICONDOPED'A3BATHOROUGHANALYSISOFTHEPECULIARITIESOFTHISMATERIALMUST BECARRIEDOUT)NCONTRASTTOOTHER)))6SEMICONDUCTORSWHICHCANBEDEPOSITEDINVERY PUREQUALITIESNOWADAYS'A3BISALWAYSSIGNIFICANTLYPTYPEDUETOTHENATIVEACCEPTOR AND NOTABLY COMPENSATED 'ENERALLY IN A LIGHTLY DOPED PARTLY COMPENSATED SEMICONDUCTORATVERYLOWTEMPERATURESALLMINORITYIMPURITIESANDANEQUALNUMBEROF MAJORITY IMPURITIES WILL BE CHARGED ;= P )N SPITE OF THE PRESENCE OF IONIZED IMPURITIESNOFREECARRIERSAREPRESENTINTHEBANDS4RANSPORTCANONLYOCCURBYCARRIERS JUMPINGFROMNEUTRALMAJORITYIMPURITIESTOCHARGEDONESWITHOUTANYEXCURSIONTOTHE BANDS 4HIS MECHANISM IS CALLED ÀHOPPINGÁ /BVIOUSLY THE PRESENCE OF CHARGED POSITIONSONMAJORITYIMPURITIESISANECESSARYCONDITIONFORHOPPINGTRANSPORTÌTLOW TEMPERATURES IN LIGHTLY DOPED SEMICONDUCTORS THIS CONDITION CAN ONLY BE FULFILLED BY COMPENSATION

4HISSITUATIONRESULTSINCHARGESWHICHARERANDOMLYLOCATEDINTHESEMICONDUCTOR4HE PRESENCE OF THESE CHARGES MEANS AN ADDITIONAL POTENTIAL ENERGY FOR MOBILE CHARGE CARRIERS IN THE CRYSTAL Ì MOBILE CHARGE CARRIER AT THE BAND EDGE WILL HAVE A POTENTIAL ENERGYDEPENDINGONTHEDISTRIBUTIONOFLOCATEDCHARGECLUSTERSNEARBY)NOTHERWORDS THEBANDEDGEENERGYCOINCIDESWITHTHECARRIER¾SPOTENTIALENERGYANDCONSEQUENTLYTHE BANDEDGEITSELFWILLBESUBJECTTOAMODULATIONINREALSPACE ;=CHAPTER4HIS MODULATIONISCHARACTERISEDBYTHERELATEDMEANSQUAREPOTENTIALENERGY EQUIN

;=3)SYSTEMEQUIN;=

(

03

)

2 0 2

4 2

4

1 N r

r

e ⋅ ⋅

⋅ ⋅

= π ε

γ OR

0 2

2

1 e N r

= π ε

γ

)NTHISEXPRESSIONSSTANDSFORTHESCREENINGRADIUSWHICHWASALREADYINTRODUCEDFOR THE#OULOMBPOTENTIALOFASINGLECHARGEDIMPURITYINSECTION)NTHERELATEDLINEAR APPROXIMATION THE SCREENING RADIUSS DOES NOT DEPEND ON THE MAGNITUDE OF THE POTENTIALTOBESCREENED ;=CHAPTER#ONSEQUENTLYTHEEXPRESSIONFROMSECTION CANASWELLBEUSEDINTHEABOVEEXPRESSIONFORANDMARKSTHECHARACTERISTICSIZE OF A CORRESPONDING ÀPOTENTIAL WELLÁ ;= / STANDS FOR THE TOTAL CONCENTRATION OF CHARGEDCENTRESINTHEPARTIALLYCOMPENSATEDSEMICONDUCTORÌSALLMINORITYIMPURITIES AND AN EQUAL NUMBER OF MAJORITY IMPURITIES WILL BE IONIZED AT LOW TEMPERATURES THE TOTALCONCENTRATIONOFCHARGEDCENTRESINAPTYPESAMPLEISN =NA +ND+ =2⋅ND&ORA GIVEN MAJORITY IMPURITY CONCENTRATION IT IS EVIDENT THAT WILL INCREASE WITH THE COMPENSATIONRATIO

ÌCCORDINGTOTHECOMPENSATIONRATIOSDETERMINEDINSECTIONTHERELATEDDATAFORTHE UNDOPEDSAMPLEANDTHELIGHTLYSILICONDOPEDSAMPLEAREPRESENTEDINTHE FOLLOWING TABLE 4HE INFLUENCE OF A THIN ÌL'A3BBUFFER LAYER IN SAMPLE WAS NEGLECTED(OWEVERNOMINALLYUNDOPEDSAMPLESXJUIPVUABUFFERLAYERCONFIRMEDTHE SOMEWHAT LOWER MOBILITY OF HOLES IN UNDOPED 'A3B COMPARED TO THE LIGHTLY SILICON DOPEDMATERIAL

<DNQ>

,BU

<DNQ>

,BU

µ<DN 7TFD>

,BU

$PNQFO TBUJPO

SBUJP

/"

<DN> /%

<DN>

[meV]

S

<Å>

F F & &

F F & &

ÌSACONSEQUENCEOFTHEFLUCTUATIONSDESCRIBEDBYAPERCOLATIONLEVEL&DFORELECTRONS IS FORMED BELOW THE NONPERTURBED CONDUCTION BAND EDGE EC0 ÌBOVE THIS LEVEL ELECTRONSHAVEANONVANISHINGMOBILITYANDMAYBEREGARDEDASFREE;=4HEENERGETIC DISTANCEγeBETWEENTHENONPERTURBEDBAND GAPENERGY AND THEPERCOLATION LEVEL IS

γ

γe =EC0EC < 3IMILARLY A PERCOLATION LEVEL &7 FOR HOLES IS FORMED WITH γ

γ γh =EV0EV < e <

ÌNOTHER VERY IMPORTANT CONCLUSION CAN BE DRAWN FROM THE DATA IN THE ABOVE TABLE

#ONSIDERINGTHATBOUNDSTATESINASCREENEDPOTENTIALEXISTONLYIFTHESCREENINGRADIUSS IS MUCH GREATER THAN THE RELATED "OHR RADIUSB# A"E^ z A"H ^ z SEE SECTION THEABOVESCREENINGRADIIINSAMPLESANDIMPLYTHAT

NOBOUNDSTATESASSOCIATEDWITHISOLATEDDONORSCANBEEXPECTEDINTHEMATERIALWHILE WELLDEFINEDBOUNDSTATESASSOCIATEDWITHISOLATEDACCEPTORSSHOULDBEPRESENT

ÌS A CONSEQUENCE TWO MAIN KINDS OF OPTICAL TRANSITIONS INVOLVING SHALLOW IMPURITIES HAVE TO BE DISCUSSED NAMELY TAILIMPURITY 4) TRANSITIONS I E A RECOMBINATION OF AN ELECTRONCAPTUREDINALOCALIZEDSTATEINTHECONDUCTIONBANDTAILWITHAHOLEATONEOF THENEIGHBOURINGACCEPTORSANDBANDIMPURITY ")TRANSITIONS IEARECOMBINATIONOFA FREE ELECTRON WITH A HOLE CAPTURED BY AN ACCEPTOR 4HE SITUATION IS ILLUSTRATED IN THE FOLLOWINGFIGURE

%LECTRONS ARE NOT LOCALISED IN A TYPICAL POTENTIAL WELL OF DEPTH AND SIZESP IN THE CONDUCTIONBANDBECAUSETHEIREFFECTIVEMASSESARESMALLANDTHETYPICALWELLISRATHER SHALLOW;=#ONSEQUENTLYMOSTELECTRONSWILLBEFREEONTHEIRPERCOLATIONLEVEL/NLY POINTCLUSTERSOFLARGENUMBERSOFDONORSWILLLEADTOLOCALISEDSTATESINTHECONDUCTION BAND TAIL /N THE OTHER HAND HOLES WILL USUALLY BE LOCALISED IN THE VALENCE BAND TAILS BECAUSEOFTHEIRHIGHERMASSES3IMILARLYITISMUCHEASIERFORELECTRONSTHANFORHOLESTO TUNNEL INTO THE BARRIERS 4HIS WILL BE CONSIDERED IN THE DISCUSSION OF THE POSSIBLE TRANSITIONS BELOW Ì THEORETICAL TREATMENT AND NUMERICAL SIMULATION OF THE 0, OF THIS KINDOFMATERIALISGIVENIN;=4WOIMPORTANTPOINTSSHALLBEEMPHASIZED

ÌSA4)TRANSITIONINVOLVESALOCALISEDELECTRONITCANONLYOCCURINTHEVICINITYOFADEEP POTENTIALWELLÌTLOWTEMPERATURESHOLESCANNOTAPPROACHSUCHADEEPDONORWELLAND CAN THEREFORE NOT BE CAPTURED BY AN ACCEPTOR CLOSE TO THE WELL ÌS A RESULT A 4) TRANSITIONATLOWTEMPERATURESCANNOTBEVERTICALINREALSPACEANDINVOLVESTUNNELINGOF THEELECTRONINTOTHEBARRIER$UETOTHERESULTINGSMALLOVERLAPOFTHEWAVEFUNCTIONSTHE PROBABILITYOFA4)TRANSITIONATLOWTEMPERATURESISLOW;=ÌTELEVATEDTEMPERATURES 4)TRANSITIONSAREQUENCHEDASWELLDUETOTHETHERMALRELEASEOFHOLESFROMTHEACCEPTOR LEVELSÌSARESULTTHECALCULATEDINTENSITYOFTHE4)LUMINESCENCEINFIGUREOFREFERENCE

;=SHOWSAMAXIMUMATATEMPERATUREOFAPPROXIMATELY+ANDTHELINEISQUENCHED RAPIDLYATHIGHERORLOWERTEMPERATURES

Tunneling

h

E

A

h

e

E

vo

BI

2

E

v

E

c

E

co

TI

BI

1

γ

h

γ

e

e

'JHVSF #BOETUSVDUVSFJOSFBMTQBDF

MPDBMGMVDUVBUJPOTPGUIFCBOEFEHFT

GPSNBUJPOPGQFSDPMBUJPOMFWFMT&DBOE&7UIBUMPXFSUIFCBOEHBQFOFSHZ OPCPVOETUBUFTBTTPDJBUFEXJUIJTPMBUFEEPOPST

XFMMEFGJOFECPVOETUBUFTBTTPDJBUFEXJUIJTPMBUFEBDDFQUPSTBU&"

ÌPARTFROMTHE4)TRANSITIONSTWODIFFERENTKINDSOF")TRANSITIONSHAVETOBECONSIDERED SEEFIGURE)NADDITIONTOTHEUSUAL")CHANNELITISASWELLPOSSIBLETHATELECTRONS TUNNELNOTABLYINTOTHECONDUCTIONBANDHUMPSLEADINGTOTHE")TRANSITIONSINTHE ABOVEFIGUREÌSHIGHERTEMPERATURESARENEEDEDTOPOPULATEVALENCEBANDSTATES WITH HOLES THAT CAN NEUTRALISE ")ACCEPTORS A SHIFT OF TUNNELINGINDUCED ") TO ") TRANSITIONSOCCURSWHENTHETEMPERATUREISINCREASED;=ÌS")TRANSITIONSHAVEHIGHER ENERGIESTHAN")TRANSITIONSATEMPERATUREINCREASECANCAUSEASTRONGSHIFTOFTHE") RELATED0,PEAKPOSITIONTOHIGHERENERGIESBYSEVERALME6 FIGUREOF;=

%MJOF

ÌSSTATEDINTHEINTRODUCTIONINTHEREGIONOFTHEOBSERVED$LINEENERGIESAFREE EXCITON &% TRANSITION IN 'A3B IS REPORTED AT ME6 ÌT FIRST SIGHT ONE MIGHT THEREFORE EXPECT THE $LINE TO REPRESENT FREE EXCITON RECOMBINATION (OWEVER THE OVERALLEXPERIENCEWITH-/60%GROWN'A3BMAKESTHEAPPEARANCEOFAWELLRESOLVED&%

UNLIKELY"ESIDESTHE$LINEBECOMESDOMINANTINTHE0,SPECTRUMOFNOTINTENTIONALLY DOPED 'A3B FOR TEMPERATURES ABOVE + IT MOVES TO LOWER ENERGIES WITH THE TEMPERATURERISEANDTOHIGHERENERGIESWITHINCREASINGEXCITATIONDENSITY

4HEREFOREAMUCHMORELIKELYINTERPRETATIONOFTHE$LINEISARECOMBINATIONOFAFREE ELECTRON FROM THE ELECTRONIC PERCOLATION LEVEL WITH A FREE HOLE FROM THE VALENCE BAND PERCOLATIONLEVEL#ONSEQUENTLYTHE$LINEPEAKPOSITIONWILLREFLECTTHEBANDGAPENERGY IN THE PERTURBED SYSTEM 7ITH INCREASING TEMPERATURE THE BAND GAP DECREASES AND A REDSHIFT OF THE 0, IS OBSERVED WHILE AT INCREASING EXCITATION DENSITY THE QUASI&ERMI LEVELS MOVE TO HIGHER ENERGIES AND CAUSE A BLUESHIFT OF THE 0, LINE ÌS A RESULT THE OBSERVEDEXPERIMENTALBEHAVIOURCANBEWELLUNDERSTOOD"ESIDESTAKINGTHEPOSITIONOF THE$LINEAT+TOBE808.5±0.4ME6 SEEFIGUREANDACCEPTINGABANDGAPOF ME6FORNONPERTURBED'A3BATTHISTEMPERATURETHEDIFFERENCEOF3.5±0.4ME6 CAN SERVE AS A GOOD ESTIMATE OF THE OVERALL BAND GAP REDUCTIONγE γH DUE TO THE PERTURBATIONS

#&MJOF

ÌSEXPECTEDFROMTHELITERATUREDATAONTHISLINE SEESECTIONTHE"%LINECANBE CONSIDEREDAS0,RECOMBINATIONOFANEXCITONBOUNDTOANUNIDENTIFIEDNEUTRALACCEPTOR 4HELINEISTHERMALLYQUENCHEDABOVE+ANDKEEPSCONSTANTPOSITIONWITHINCREASING TEMPERATURE

&BOE"MJOFT

ÌSREPORTEDINSECTIONTHE %LINE APPEARS AT APPROXIMATELY ME6 AND IS THE DOMINANT LINE IN THE INTENTIONALLY SILICON DOPED SAMPLE ÌS DESCRIBED IN THE INTRODUCTIONALINEATME6WASPREVIOUSLYIDENTIFIEDASRECOMBINATIONOFEXCITONS BOUNDTOANUNSPECIFIEDACCEPTORIN,0%GROWNCRYSTALSANDCONSEQUENTLYDENOTED"%

;=)NCONTRASTTOTHISRESULTOTHERAUTHORSASWELLOBSERVEDALINEATAPPROXIMATELY

ME6IN-/60%AND-"%GROWNMATERIAL;=4HESEAUTHORSIDENTIFIEDTHELINEAS EÌTRANSITIONIN-/60%MATERIAL;=ANDAS$Ì0TRANSITIONORDEEPDONORTOBAND TRANSITION IN -"% MATERIAL ;= DISTINCT FROM THE "%LINE REPORTED PREVIOUSLY AT THE SAMEENERGY

4HE%LINEINSAMPLEREMAINSOBSERVABLETOTEMPERATURESABOVE+ANDSHIFTSTO HIGHERENERGIESWITHTEMPERATURERISE APPROXME6BETWEEN+#OMPARING THE THERMAL QUENCHING OF THE %LINE TO THE CORRESPONDING BEHAVIOUR OF THE EXCITONIC

"%TRANSITIONANEXCITONICCHARACTEROFTHE%LINESEEMSHIGHLYUNLIKELY#ONSEQUENTLY THECOINCIDENCEBETWEENTHE%LINEPOSITIONINSAMPLEANDTHE"%LINEPOSITION REPORTEDIN;=MUSTBECONSIDEREDACCIDENTAL 3IMILARLY A $Ì0 DONOR ACCEPTOR PAIR TRANSITIONCANBERULEDOUTFORTHE%LINEBECAUSEBOUNDSTATESASSOCIATEDWITHISOLATED DONORSCANNOTEXISTINTHEMATERIALOFSAMPLE SEE

ÌSANEXCITONICANDA$Ì0CHARACTERCANNOWBOTHBERULEDOUT4)AND")TRANSITIONSARE LIKELY CANDIDATES FOR THE %LINE NATURE 4HE RELATED IMPURITY IS ALMOST CERTAINLY SILICON BECAUSEOFTHEEVIDENTINCREASEOFTHE%LINEINTENSITYINTHEINTENTIONALLYSILICONDOPED SAMPLE )N THE NOT INTENTIONALLY DOPED SAMPLE A CERTAIN BACKGROUND OF SILICONISBELIEVEDTOBEPRESENTDUETOIMPURITIESINTHEEMPLOYEDMETALORGANICSÌSNO INDICATIONFORSILICONWASFOUNDIN'AÌSLAYERSGROWNWITHTHESAMEBATCHOF4%'ATHE 4-3BISCONSIDEREDTOBETHESOURCEOFBACKGROUNDSILICONINSAMPLE

)NORDERTOESTIMATETHEBINDINGENERGYOFTHESILICONACCEPTORIN'A3BTHEEXACTNATURE OF THE SILICONRELATED %LINE MUST BE IDENTIFIED 4HE RELATIVE %LINE INTENSITY SHOWS A MONOTONOUSDECREASEWITHINCREASINGTEMPERATUREINTHEWHOLERANGEBETWEENAND +.OTHERMALQUENCHINGATLOWTEMPERATURESCOULDBEOBSERVEDÌSALREADYSTATED ATTHEENDOFSECTIONTHISBEHAVIOURRULESOUTA4)TRANSITION/NTHEOTHERHAND BOTH THE %LINE¾S STRONG BLUE SHIFT WITH INCREASING TEMPERATURE AND ITS THERMAL QUENCHINGATELEVATEDTEMPERATURESAREWELLINLINEWITHTHEPROPERTIESOF")TRANSITIONS 7HILETHESHIFTFROMLOWENERGY")TOHIGHENERGY")TRANSITIONSEXPLAINSTHEOBSERVED BLUESHIFT OF THE %LINE PEAK THE THERMAL RELEASE OF HOLES FROM THE ACCEPTOR LEVELS EXPLAINSTHETHERMALQUENCHINGATELEVATEDTEMPERATURES)NSUMMARYA")CHARACTEROF THE%LINECANBEASSUMED

)TISIMPORTANTTOEMPHASIZETHEFOLLOWINGPOINT4HESTANDARDWAYTODESCRIBE EÌ OR À")Á TRANSITIONS IN NONPERTURBED BAND STRUCTURES IS THE %AGLES MODEL ;= 4HIS MODELPREDICTSTHETHERMALDEPENDENCEOFTHEPEAKPOSITIONAS

( )

2 T E k

T

EgA + B ω =

!

(ERE&" IS THE ACCEPTOR BINDING ENERGY AND

( ) ( )

T b

T K a

E T

Eg g

+

− ⋅

= 0 2 WITH THE 6ARSHNI COEFFICIENTSA%E6+ANDB+FOR'A3B;=4HISMODELPREDICTSAMAXIMUM BLUESHIFTOFME6AT+WHEREASSAMPLESHOWSAMUCHMORESIGNIFICANTSHIFT OF APPROX ME6 BETWEEN + SEE FIGURE #ONSEQUENTLY THE %AGLES MODELISNOTSATISFACTORYWITHRESPECTTOSAMPLEANDITISESSENTIALTOCONSIDERTHE INFLUENCEOFTHEFLUCTUATINGPOTENTIAL

ÌFTERHAVINGIDENTIFIEDTHENATUREOFTHE%LINEAS")TRANSITIONTHISRESULTCANNOWBE USEDTOEVALUATETHEACTIVATIONENERGYOFTHEINVOLVEDACCEPTORÌSDERIVEDIN;=AN EXTRAPOLATIONTO+GIVES!ω E-line,0K =Eg

( )

0KEA

(

γeh

)

&ROMTHE$LINEPOSITION AT+ SEESECTIONFIGUREAVALUEOF3.5±0.4WASDERIVEDFORγEγH ÌCCEPTING&H , E6 AND !ω %LINE+ ≈ME6FROM THE MEASUREMENT AT +ONEGETSANACTIVATIONENERGYOF&"8.8±0.4ME6&ORCOMPARISONTHELITERATURE DATAONTHEACTIVATIONENERGYOFTHESILICONACCEPTORAREBETWEENANDME6 SEE SECTION WHILE THE EFFECTIVE MASS ACCEPTOR IN 'A3B HAS BEEN SUGGESTED TO HAVE ACTIVATIONENERGIESBETWEENME6 ;=CHPANDME6;=

ÌFTERHAVINGSHOWNTHATTHE%LINEMUSTBEINTERPRETEDASBANDIMPURITYTRANSITIONTHE NATURE OF THE ÌLINE NEEDS SOME FURTHER COMMENTS TOO ÌS SAID IN THE INTRODUCTION SECTIONTHELINEHASBEENSUGGESTEDTOBEADONORACCEPTORPAIRTRANSITION $Ì0 FOR EXAMPLE IN ;= BECAUSE OF A SIGNIFICANT SHIFT TO HIGHER ENERGIES WITH INCREASING EXCITATIONDENSITY/THERAUTHORSHAVESUGGESTEDTHEÌLINETOBEACONDUCTION BAND NEUTRAL NATIVE ACCEPTOR TRANSITION E .Ì ; = 4HIS OBVIOUS CONTRADICTION CAN BE SOLVEDBYACCEPTINGTHATTHE%LINEANDÌLINEAREOFTHESAMENATUREIEBOTHAREDUE TO EÌ ORÀ")ÁTRANSITIONSWITHTHEPARTICIPATIONOFTWODIFFERENTTYPESOFACCEPTORS NAMELYSILICONANDTHE.ÌFOR%ANDÌLINERESPECTIVELY

7HILETHEÌLINEANDTHE%LINEINSAMPLEBOTHSHOWABLUESHIFTOFAPPROXIMATELY ME6BETWEENAND+THEABOVEBLUESHIFTINSAMPLEISSMALLER4HISCAN BEUNDERSTOODBYCONSIDERINGTHATTHERMSFLUCTUATIONSOFTHEPOTENTIALINSAMPLE ARE SMALLER COMPARED TO SAMPLE DUE TO THE REDUCED DEGREE OF COMPENSATION

0 10 20 30 40

0.7988 0.7992 0.7996 0.8000 0.8004 0.8008 0.8012

E-l ine peak posi ti on (eV)

Temperature (K)

'JHVSF &MJOFQFBLQPTJUJPOWFSTVTUFNQFSBUVSF

5IFPCTFSWFETIJGUUPIJHIFSFOFSHJFTDBOOPUCFFYQMBJOFECZUIF&BHMFT NPEFM

#ONSEQUENTLYTHEVALUEOFγhCANBEEXPECTEDTOBEHIGHERINSAMPLELEADINGTO AMOREPRONOUNCEDBLUESHIFTOF")TRANSITIONSWITHTEMPERATURE

"ASEDONTHECOMPARABLEACCEPTORCONCENTRATIONSOFTHENOTINTENTIONALLYDOPEDSAMPLE ANDTHESILICONDOPEDSAMPLETHEDOMINANCEOFTHE%LINEINSAMPLE SUGGESTSTHATTHEFORMATIONOFNATIVEACCEPTORSISSUPPRESSEDBYTHESILICONDOPINGÌS THE SILICON ACCEPTOR IS INCORPORATED ON GROUP 6SITES IN THE CRYSTAL STRUCTURE A PREFERENTIALINCORPORATIONOFSILICONON3BVACANCIESCANBEEXPECTED#ONSIDERINGTHAT THE NATIVE ACCEPTOR .Ì ALWAYS INVOLVES AN 3BVACANCY THE .Ì CONCENTRATION WILL BE REDUCEDBYSILICONDOPING4AKINGINTOACCOUNTTHENEARLYEQUALACCEPTORCONCENTRATIONS OFSAMPLEANDTHEDRAMATICINCREASEINTHEINTEGRAL0,OFSAMPLEALSO INDICATESASUBSTANTIALREDUCTIONOFTHENONRADIATIVERECOMBINATIONRATEINLIGHTLYSILICON DOPEDSAMPLES

/MJOF

4HELINEDENOTEDWITH.ISWELLPRONOUNCEDINTHEINTENTIONALLY3IDOPEDSAMPLE /NTHEOTHERHANDITISNOTOBSERVEDINTHE0,SPECTRAOF'A3BBACKGROUNDDOPEDWITH 3INEITHERINTHISWORKNORINTHELITERATURE;=4HEFOLLOWINGSPECIFICFEATURESOFTHE.

LINE SUGGEST THAT THE ORIGIN OF THIS LINE IS MOST PROBABLY A RADIATIVE RECOMBINATION OF EXCITONSBOUNDTO3I3B

THELINEKEEPSCONSTANTPOSITIONWITHTHETEMPERATURERISEASINDICATEDINFIG THELINEISTHERMALLYQUENCHEDSIMILARTOTHEEXCITONIC"%LINEAND

THELINEAPPEARSINTHE0,SPECTRUMONLYWHENTHEDOMINANTACCEPTORIS3I3B

$PNNFOUTPOUIFMJNJUBUJPOTPGUIFNPEFM

Ì CRUCIAL FEATURE OF THE ABOVE MODEL IS THE ESTIMATE FOR THE SCREENING RADIUS IN THE MATERIAL"ASEDONTHELINEARAPPROXIMATIONGIVENIN3HKLOVSKIIETAL;=AND,EVANYUK ETAL;=THEFOLLOWINGEXPRESSIONWASUSED

16 3 16

0

1 3

2 



⋅ ⋅



 

⋅

=

B B

a p

r a π

&OR PARTIALLY COMPENSATED SAMPLES AT LOW TEMPERATURES TRANSPORT CAN ONLY OCCUR BY CARRIERSJUMPINGFROMNEUTRALMAJORITYIMPURITIESTOCHARGEDONESWITHOUTANYEXCURSION TOTHEBANDS ÀHOPPINGÁ)NTHISCASEQSTANDSFORQ/"/% ;=P)NTHECASE OF THE ABOVE SAMPLE THE RESULTING SCREENING RADIUS WAS Å. ÌS HOPPING TRANSPORTNATURALLYDEPENDSONTHEPRESENCEOFIMPURITYSTATESASPHEREWITHARADIUSOF ÅMIGHTWELLBETOSMALLTOCONTAINANADEQUATENUMBEROFACCEPTOR MAJORITYSTATES WHICHCANHOSTSCREENINGCHARGESÌSARESULTTHETRUESCREENINGRADIUSINTHEMATERIAL MIGHT WELL BE LARGER THAN IN THE ABOVE CALCULATIONS ANDBOUND STATES ASSOCIATED WITH ISOLATEDDONORSMIGHTBECOMEPOSSIBLEFROMTHISPOINTOFVIEW

(OWEVERTHEREISANOTHERSTRONGARGUMENTAGAINSTBOUNDDONORSTATES7HILEONTHE ONEHANDITISVERYDIFFICULTTOPREDICTMATHEMATICALLYWHENANELECTRONWAVEFUNCTIONIN THE DONOR IMPURITY BAND GETS DELOCALISED IE EXTENDED OVER THE ENTIRE SYSTEM ÀÌNDERSON TRANSITIONÁ IT IS EXPERIMENTALLY CONFIRMED THAT THE TRANSITION BETWEEN METALLIC AND ACTIVATED CONDUCTION USUALLY OCCURS AT CARRIER CONCENTRATIONS/ SATISFYING

02 .

3 ≈0

aB

N ;=PÌSTHISCONDITIONCANBESHOWNTOBECLEARLYFULFILLEDFORTHE SYSTEM OF DONORS IN THE ABOVE SAMPLES DELOCALISED ELECTRON WAVE FUNCTIONS IN THE CENTREOFTHEDONORIMPURITYBANDCANBEEXPECTED

)NSUMMARYBOUNDSTATESASSOCIATEDWITHISOLATEDDONORS ORCLUSTERSOFDONORSINTHE ABOVESAMPLESAPPEARVERYUNLIKELY#ONSEQUENTLYTHEINTERPRETATIONOFTHE%ANDÌ LINESAS EÌTRANSITIONSANDOFTHE$LINEAS EHTRANSITIONISCONFIRMED

4VNNBSZ

4HE0,PROPERTIESOFNONINTENTIONALLYDOPEDANDLIGHTLYSILICONDOPED'A3BHAVEBEEN STUDIEDÌFORMERLYCONTROVERSIAL0,LINEATAPPROXIMATELYME6COULDBEASCRIBEDTO SILICONACCEPTORSINTHEMATERIAL"YCONSIDERINGTHEPOTENTIALFLUCTUATIONSINDOPEDAND PARTIALLYCOMPENSATEDSEMICONDUCTORSTHELINECOULDBEIDENTIFIEDASDUETOATRANSITION OFAFREEELECTRONTONEUTRALACCEPTOR

(

e SiSb0

)

4HECOINCIDENCEOFTHISSOCALLED%LINE WITH THE "% LINE WHICH WAS PREVIOUSLY REPORTED AT THE SAME ENERGY MUST BE CONSIDERED ACCIDENTAL 3IMILARLY THE NATURE OF THE ÌLINE WAS SHOWN TO BE DUE TO A TRANSITIONOFAFREEELECTRONTONEUTRALOBUJWFACCEPTOR E.ÌÌLLOTHER0,PEAKSINTHE HIGHENERGY PART OF THE SPECTRUM COULD BE EXPLAINED WITHIN THE CONCEPT OF POTENTIAL FLUCTUATIONSDUETOTHECHARGEDIMPURITYDISTRIBUTION

4HEACTIVATIONENERGYOFTHESILICONACCEPTORCOULDBEESTIMATEDASME6'ENERALLY LIGHTDOPINGWITHSILICONRESULTEDINAHIGHERMOBILITYAREDUCEDCOMPENSATIONRATIOAND ANIMPROVED0,INTENSITYCOMPAREDTONOTINTENTIONALLYDOPEDSAMPLES3ILICONDOPING SEEMSTORESULTINASUPPRESSIONOFTHENATIVEDEFECTIN'A3BANDLEADTOAREDUCTIONOF THE NONRADIATIVE RECOMBINATION RATE IN THE MATERIAL 4HESE FEATURES MAKE THE SILICON ACCEPTORANINTERESTINGNOVELCANDIDATEFORVARIOUS'A3BBASEDDEVICE APPLICATIONS )N THIS CONTEXT THE FIRST EVER REPORTED 3IDOPED 'A3BBASED DEVICES WILL BE PRESENTED IN THEFOLLOWINGSECTION

3FTVMUT4PMBSDFMMT