• Keine Ergebnisse gefunden

Again, the above sum converges absolutely and locally uniformly for π‘˜ β‰₯2, and thus defines a meromorphic function on H, which is holomorphic if Ξ” β‰₯ 0, and which is holomorphic up to poles at all Heegner points of class 𝛽 and discriminant Ξ” if Ξ” < 0.

Clearly, we can write

π‘“π‘˜,𝛽,Ξ”(𝜏) = βˆ‘οΈ

π‘„βˆˆπ’¬π›½,Ξ”/Ξ“0(𝑁) 𝑄̸≑0

π‘“π‘˜,𝑄(𝜏), (2.4.6)

where the sum on the right-hand side is finite if Ξ”ΜΈ= 0. Thus, Proposition 2.4.4 implies:

Corollary 2.4.7. Letπ‘˜ β‰₯2,𝛽 ∈Z/2𝑁ZandΞ”βˆˆZwithΔ≑𝛽2 mod 4𝑁. The function π‘“π‘˜,𝛽,Ξ”(𝜏) is a cusp form, modular form or meromorphic cusp form of weight 2π‘˜ and level 𝑁 if Ξ”>0, Ξ” = 0 or Ξ”<0, respectively.

We further note that, ifπ‘˜β‰₯2 is odd and 𝛽 ≑ βˆ’π›½ inZ/2𝑁Zthen 𝒬𝛽,Ξ”=βˆ’π’¬π›½,Ξ”, and thus the modular formπ‘“π‘˜,𝛽,Ξ”vanishes completely in this case. In contrast to the functions π‘“π‘˜,𝑄 defined before, whose defining sum could only cancel if Ξ”(𝑄) >0, the vanishing of the functions π‘“π‘˜,𝛽,Ξ” does not depend on sign of the discriminant Ξ”.

Moreover, ifΞ” = 0we can rewrite the sum in (2.4.6) as an (infinite) sum of holomorphic Eisenstein series using Proposition 2.4.5. Further assuming that 𝑁 is squarefree, there is only one modular form π‘“π‘˜,𝛽,0 of weight 2π‘˜ and discriminant 0, namely π‘“π‘˜,0,0, and this function takes the following nice form:

Corollary 2.4.8. Let 𝑁 be squarefree and let π‘˜β‰₯2. If π‘˜ is even then π‘“π‘˜,0,0(𝜏) = 2𝜁(π‘˜) βˆ‘οΈ

π‘βˆˆπΆ(Ξ“0(𝑁))

𝐸2π‘˜,𝑝(𝜏)

for 𝜏 ∈H, and if π‘˜ is odd the function π‘“π‘˜,0,0 vanishes identically, i.e, π‘“π‘˜,0,0 ≑0.

Proof. By Proposition 2.4.5 we have

π‘“π‘˜,0,0(𝜏) = βˆ‘οΈ

π‘„βˆˆπ’¬0,0/Ξ“0(𝑁) 𝑄̸≑0

πœ†βˆ’π‘˜π‘„ 𝐸2π‘˜,𝑝𝑄(𝜏).

Further, Lemma 2.3.4 states that the map [𝑄]↦→([𝑝𝑄], πœ†π‘„) is a bijection between classes of quadratic forms in(𝒬0,0βˆ– {0})/Ξ“0(𝑁) and tuples in𝐢(Ξ“0(𝑁))Γ—(Zβˆ– {0}), giving

π‘“π‘˜,0,0(𝜏) = (οΈƒ

βˆ‘οΈ

π‘›βˆˆZβˆ–{0}

π‘›βˆ’π‘˜ )οΈƒ(οΈƒ

βˆ‘οΈ

π‘βˆˆπΆ(Ξ“0(𝑁))

𝐸2π‘˜,𝑝(𝜏) )οΈƒ

.

Now if π‘˜ is even the first sum is simply twice the Riemann zeta function, and if π‘˜ is odd the sum cancels completely. This proves the claimed statement.

2.5.1 Non-holomorphic Eisenstein series of weight π‘˜

Since there are no holomorphic modular forms of weight π‘˜ < 4 and level 𝑁 (up to the constant functions which are modular forms of weight0) it is natural to loosen some of the corresponding conditions in order to find interesting modular objects of smaller weight.

Classically, an Eisenstein series of weight π‘˜ < 4 was defined by replacing the constant one-function with some other simple(Ξ“0(𝑁))∞-invariant function to average over, namely the function 𝜏 ↦→Im(𝜏)𝑠, where 𝑠 is some complex parameter guaranteeing convergence.

However, because of the term Im(𝜏) this new Eisenstein series is not holomorphic in𝜏. Definition 2.5.1. Letπ‘˜ ∈Zbe even and let𝑝be a cusp ofΞ“0(𝑁). Thenon-holomorphic Eisenstein series of weightπ‘˜ and level 𝑁 associated to the cusp 𝑝 is defined by

πΈπ‘˜,𝑝(𝜏, 𝑠) = βˆ‘οΈ

π‘€βˆˆ(Ξ“0(𝑁))π‘βˆ–Ξ“0(𝑁)

Im(𝜏)𝑠

βƒ’

βƒ’

βƒ’π‘˜πœŽπ‘βˆ’1𝑀

for 𝜏 ∈ H and 𝑠 ∈ C with Re(𝑠) > 1βˆ’π‘˜/2. Here πœŽπ‘ ∈ SL2(R) is a parabolic scaling matrix for the cusp 𝑝.

For fixed 𝑠 ∈ C with Re(𝑠) > 1βˆ’π‘˜/2 the sum defining πΈπ‘˜,𝑝(𝜏, 𝑠) is absolutely and locally uniformly convergent in 𝜏. Thus, in the variable 𝜏 the function πΈπ‘˜,𝑝(𝜏, 𝑠) is real analytic and modular of weight π‘˜ and level 𝑁. Moreover, one can check that it satisfies the differential equation

Ξ”π‘˜πΈπ‘˜,𝑝(𝜏, 𝑠) = 𝑠(1βˆ’π‘˜βˆ’π‘ )πΈπ‘˜,𝑝(𝜏, 𝑠), (2.5.1)

where Ξ”π‘˜ is the hyperbolic Laplace operator of weightπ‘˜ defined by Ξ”π‘˜ :=βˆ’π‘£2

(οΈ‚ πœ•2

πœ•π‘’2 + πœ•2

πœ•π‘£2 )οΈ‚

+π‘–π‘˜π‘£ (οΈ‚ πœ•

πœ•π‘’ +𝑖 πœ•

πœ•π‘£ )οΈ‚

(2.5.2)

for 𝜏 =𝑒+𝑖𝑣. It is invariant under the weightπ‘˜ action of SL2(R), i.e., we have Ξ”π‘˜(οΈ€

𝑓⃒

βƒ’π‘˜π›Ό)οΈ€

= (Ξ”π‘˜π‘“)βƒ’

βƒ’π‘˜π›Ό (2.5.3)

for any 𝑓:Hβ†’C two times continuously differentiable in 𝑒 and 𝑣 and any π›ΌβˆˆSL2(R).

For π‘˜ β‰₯ 4 even we may evaluate the non-holomorphic Eisenstein series πΈπ‘˜,𝑝(𝜏, 𝑠) at 𝑠 = 0, which clearly yields the holomorphic Eisenstein series πΈπ‘˜,𝑝(𝜏). Thus the above definition indeed generalises Definition 2.4.1.

Fixing𝜏 ∈H the Eisenstein seriesπΈπ‘˜,𝑝(𝜏, 𝑠)defines a holomorphic function in𝑠 on the half-planeRe(𝑠)>1βˆ’π‘˜/2, which has a meromorphic continuation to the whole complex plane. It is an interesting problem to evaluate this continuation at the points 𝑠= 0 and 𝑠 = 1βˆ’ π‘˜ since the continued Eisenstein series needs to be harmonic at these points according to equation (2.5.1). In particular, for 𝑁 = 1, π‘˜ = 0 and 𝑝 = ∞ the classical Kronecker limit formula states that

𝐸0,∞(𝜏, 𝑠) = 3/πœ‹ π‘ βˆ’1 βˆ’ 1

2πœ‹ log(|Ξ”(𝜏)|Im(𝜏)6) +𝐢+𝑂(π‘ βˆ’1) (2.5.4)

as 𝑠 β†’ 1, where Ξ”(𝜏) is the unique normalized cusp form of weight 12 and level 1, and 𝐢 = (6βˆ’72πœβ€²(βˆ’1)βˆ’6 log(4πœ‹))/πœ‹. Using the functional equation of 𝐸0,∞(𝜏, 𝑠)relating 𝑠 and 1βˆ’π‘  we obtain the cleaner Laurent expansion

𝐸0,∞(𝜏, 𝑠) = 1 + log(|Ξ”(𝜏)|1/6Im(𝜏))·𝑠+𝑂(𝑠2) (2.5.5)

at𝑠 = 0.

2.5.2 Non-holomorphic analogs of Zagier’s cusp forms

To motivate the definition of non-holomorphic modular forms generalizing the meromor-phic modular forms introduced in Definition 2.4.3 and Definition 2.4.6, we note that as in the holomorphic case (compare equation (2.4.4)) we can write

𝐸2π‘˜,∞(𝜏, 𝑠) = 1 2𝜁(2π‘˜+ 2𝑠)

βˆ‘οΈ

(𝑐,𝑑)∈Z2βˆ–{0}

𝑣𝑠

(𝑁 π‘πœ +𝑑)2π‘˜|𝑁 π‘πœ +𝑑|2𝑠

for 𝜏 ∈H and 𝑠 ∈C with Re(𝑠)>1βˆ’π‘˜. This motivates the following definition:

Definition 2.5.2. Letπ‘˜ ∈Z.

(a) Given π‘„βˆˆ 𝒬 with 𝑄 ̸≑0 we define the associated non-holomorphic modular forms as

π‘“π‘˜,𝑄(𝜏, 𝑠) = βˆ‘οΈ

π‘„β€²βˆˆ[𝑄]

𝑣𝑠

𝑄′(𝜏,1)π‘˜|𝑄′(𝜏,1)|𝑠 for 𝜏 ∈Hβˆ–π»π‘„ and π‘ βˆˆC with Re(𝑠)>1βˆ’π‘˜.

(b) Given 𝛽 ∈ Z/2𝑁Z and Ξ” ∈ Z with Ξ” ≑ 𝛽2 mod 4𝑁 we define the associated non-holomorphic modular form as

π‘“π‘˜,𝛽,Ξ”(𝜏, 𝑠) = βˆ‘οΈ

π‘„β€²βˆˆπ’¬π›½,Ξ” 𝑄′̸≑0

𝑣𝑠

𝑄′(𝜏,1)π‘˜|𝑄′(𝜏,1)|𝑠 for 𝜏 ∈Hβˆ–π»π›½,Ξ” and π‘ βˆˆC with Re(𝑠)>1βˆ’π‘˜.

As for the Eisenstein series πΈπ‘˜,𝑝(𝜏, 𝑠) the complex parameter 𝑠 guarantees that for Re(𝑠) > 1βˆ’ π‘˜ the above series both converge absolutely and locally uniformly in 𝜏. Hence they define real analytic functions which are clearly modular of weight 2π‘˜ and level 𝑁. For π‘˜ β‰₯ 2 we can simply evaluate these non-holomorphic modular forms at 𝑠 = 0, and this evaluation yields the corresponding meromorphic modular forms from Section 2.4.2, i.e., we have

π‘“π‘˜,𝑄(𝜏,0) =π‘“π‘˜,𝑄(𝜏) and π‘“π‘˜,𝛽,Ξ”(𝜏,0) =π‘“π‘˜,𝛽,Ξ”(𝜏) (2.5.6)

for π‘˜ β‰₯2. Moreover, we note that as in (2.4.6) we clearly have π‘“π‘˜,𝛽,Ξ”(𝜏, 𝑠) = βˆ‘οΈ

π‘„βˆˆπ’¬π›½,Ξ”/Ξ“0(𝑁) 𝑄̸≑0

π‘“π‘˜,𝑄(𝜏, 𝑠), (2.5.7)

for 𝜏 ∈ Hβˆ–π»π›½,Ξ” and 𝑠 ∈ C with Re(𝑠) > 1βˆ’π‘˜. As before, the sum on the right-hand side of (2.5.7) is finite if Ξ”ΜΈ= 0.

In order to prove a differential equation for the functions π‘“π‘˜,𝑄(𝜏, 𝑠) and π‘“π‘˜,𝛽,Ξ”(𝜏, 𝑠) generalising the one given in (2.5.1), we firstly recall the differential operatorπœ‰π‘˜, which is defined by

πœ‰π‘˜π‘“(𝜏) := 2π‘–π‘£π‘˜ πœ•

πœ•πœπ‘“(𝜏) = 2π‘–π‘£π‘˜ πœ•

πœ•πœΒ―π‘“(𝜏) (2.5.8)

32

for π‘˜ ∈ Z, some function 𝑓: Hβ†’C and 𝜏 =𝑒+𝑖𝑣. Here the derivatives πœ•πœπœ• and πœ•Β―πœ•πœ are given by

πœ•

πœ•πœ := 1 2

(οΈ‚ πœ•

πœ•π‘’ βˆ’π‘– πœ•

πœ•π‘£ )οΈ‚

and πœ•

πœ•πœΒ― := 1 2

(οΈ‚ πœ•

πœ•π‘’ +𝑖 πœ•

πœ•π‘£ )οΈ‚

.

If𝑓: Hβ†’Cis holomorphic then πœ•πœπœ•π‘“ =𝑓′ and πœ•Β―πœ•πœπ‘“ = 0. There is an interesting, though elementary relation between the hyperbolic Laplacian of weight π‘˜ and the differential operators πœ‰π‘˜ and πœ‰2βˆ’π‘˜ which is given by

Ξ”π‘˜ =βˆ’πœ‰2βˆ’π‘˜πœ‰π‘˜. (2.5.9)

We now use this relation to compute the action of Ξ”2π‘˜ on the non-holomorphic modular forms given in Definition 2.5.2.

Lemma 2.5.3. Let π‘˜ ∈Z and π‘„βˆˆ 𝒬 with 𝑄̸≑0. Then

Ξ”2π‘˜π‘“π‘˜,𝑄(𝜏, 𝑠) =𝑠(1βˆ’2π‘˜βˆ’π‘ )π‘“π‘˜,𝑄(𝜏, 𝑠) +𝑠(𝑠+ 2π‘˜)Ξ”(𝑄)π‘“π‘˜,𝑄(𝜏, 𝑠+ 2)

for𝑠 ∈C withRe(𝑠)>1βˆ’π‘˜, and the same differential equation also holds forπ‘“π‘˜,𝛽,Ξ”(𝜏, 𝑠) where π›½βˆˆZ/2𝑁Z and Ξ”βˆˆZ with Δ≑𝛽2 mod 4𝑁.

Proof. SinceΞ”2π‘˜is invariant under the weight2π‘˜action ofSL2(R)it suffices to show that the above differential equation holds for 𝑔(𝜏, 𝑠) := 𝑣𝑠𝑄′(𝜏,1)βˆ’π‘˜|𝑄′(𝜏,1)|βˆ’π‘  where 𝑄′ ̸≑ 0 is an arbitrary fixed quadratic form withΞ”(𝑄′) = Ξ”(𝑄). To simplify notation we further set𝑔(𝜏) :=|𝑄′(𝜏,1)|2/𝑣2, such that 𝑔(𝜏, 𝑠) = 𝑄′(𝜏,1)βˆ’π‘˜π‘”(𝜏)βˆ’π‘ /2. Firstly, we compute

πœ•

πœ•πœπ‘π‘„β€²(𝜏) = 𝑖𝑄′(¯𝜏 ,1)

2𝑣2 and πœ•

πœ•πœπ‘”(𝜏) =𝑖 𝑝𝑄′(𝜏)𝑄′(¯𝜏 ,1) 𝑣2 ,

where 𝑝𝑄′(𝜏) denotes the real valued function given in (2.3.8), and the second equality follows from the first one and the identity in (2.3.9). Recall that Ξ”2π‘˜ =βˆ’πœ‰2βˆ’2π‘˜πœ‰2π‘˜ as in equation (2.5.9). We compute

πœ‰2π‘˜π‘”(𝜏, 𝑠) = 2𝑖𝑣2π‘˜ 𝑄′(¯𝜏 ,1)βˆ’π‘˜ (︁

βˆ’π‘ Β― 2 )︁

𝑔(𝜏)βˆ’Β―π‘ /2βˆ’1 πœ•

πœ•πœΒ―π‘”(𝜏) = ¯𝑠 𝑄′(𝜏,1)π‘˜βˆ’1𝑔(𝜏)βˆ’Β―π‘ /2βˆ’π‘˜π‘π‘„β€²(𝜏), and thus

Ξ”2π‘˜π‘”(𝜏, 𝑠) = βˆ’2𝑠𝑖𝑣2βˆ’2π‘˜π‘„β€²(¯𝜏 ,1)π‘˜βˆ’1 πœ•

πœ•πœΒ― (︁

𝑔(𝜏)βˆ’Β―π‘ /2βˆ’π‘˜π‘π‘„β€²(𝜏) )︁

. (2.5.10)

Here

πœ•

πœ•πœΒ― (︁

𝑔(𝜏)βˆ’Β―π‘ /2βˆ’π‘˜π‘π‘„β€²(𝜏) )︁

=𝑔(𝜏)βˆ’π‘ /2βˆ’π‘˜βˆ’1 (οΈ‚(︁

βˆ’π‘  2βˆ’π‘˜

)︁

𝑝𝑄′(𝜏) πœ•

πœ•πœΒ―π‘”(𝜏) +𝑔(𝜏) πœ•

πœ•πœΒ―π‘π‘„β€²(𝜏) )οΈ‚

. Hence equation (2.5.10) becomes

Ξ”2π‘˜π‘”(𝜏, 𝑠) =𝑠·𝑔(𝜏, 𝑠) (οΈ‚

(βˆ’π‘ βˆ’2π‘˜)𝑝𝑄′(𝜏)2

𝑔(𝜏) βˆ’ 2𝑖 𝑣2 𝑄′(¯𝜏 ,1)

πœ•

πœ•πœΒ―π‘π‘„β€²(𝜏) )οΈ‚

=𝑠·𝑔(𝜏, 𝑠) (οΈ‚

(βˆ’π‘ βˆ’2π‘˜) (οΈ‚

1βˆ’ Ξ”(𝑄′) 𝑔(𝜏)

)οΈ‚

+ 1 )οΈ‚

=𝑠(1βˆ’2π‘˜βˆ’π‘ )𝑔(𝜏, 𝑠) +𝑠(𝑠+ 2π‘˜)Ξ”(𝑄′)𝑔(𝜏, 𝑠+ 2).

This proves the claimed statement.

In the following we establish a different representation of the non-holomorphic functions π‘“π‘˜,𝑄(𝜏, 𝑠), which turns out to be of particular interest in the caseπ‘˜ = 0. Recall that given 𝑄 ∈ 𝒬 with Ξ”(𝑄)ΜΈ= 0 there is an associated geodesic 𝑐𝑄 or CM point πœπ‘„ depending on the sign of Ξ”(𝑄). The following lemma realizes the quantity π‘£βˆ’1|𝑄(𝜏,1)| in a somewhat geometric way. Even though this identity is well-known we also give a proof as the proof is often omitted in the literature.

Lemma 2.5.4. Let π‘„βˆˆ 𝒬 with Ξ”(𝑄)ΜΈ= 0. Then

|𝑄(𝜏,1)|

𝑣 =

{οΈƒΞ”(𝑄)1/2 cosh(𝑑hyp(𝜏, 𝑐𝑄)), if Ξ”(𝑄)>0,

|Ξ”(𝑄)|1/2 sinh(𝑑hyp(𝜏, πœπ‘„)), if Ξ”(𝑄)<0,

for 𝜏 = 𝑒+𝑖𝑣 ∈ H. Here 𝑐𝑄 is the Heegner geodesic associated to 𝑄, and πœπ‘„ is the Heegner point associated to 𝑄.

Proof. LetΞ”(𝑄)>0. Further, let𝜎∈SL2(R)be such that𝜎maps the standard geodesic 𝑐0 from 0 to ∞ to the geodesic 𝑐𝑄 preserving orientations. Then 𝑄.𝜎 = (οΈ€ 0 πœ‡/2

πœ‡/2 0

)οΈ€ with πœ‡=|Ξ”(𝑄)|1/2 by Lemma 2.3.3, and thus

cosh(𝑑hyp(𝜏, 𝑐𝑄)) = cosh(𝑑hyp(πœŽβˆ’1𝜏, 𝑐0)) = |πœŽβˆ’1𝜏|

Im(πœŽβˆ’1𝜏) = |(𝑄.𝜎)(πœŽβˆ’1𝜏,1)|

πœ‡Im(πœŽβˆ’1𝜏) = |𝑄(𝜏,1)|

πœ‡Im(𝜏). Here we used the identity (2.1.2) for the second equality. On the other hand, ifΞ”(𝑄)<0 a direct computation shows that

sinh2(𝑑hyp(𝜏, πœπ‘„)) = cosh2(𝑑hyp(𝜏, πœπ‘„))βˆ’1 = 𝑝𝑄(𝜏)2

|Ξ”(𝑄)|βˆ’1 = |𝑄(𝜏,1)|2 𝑣2|Ξ”(𝑄)|

as claimed. Here 𝑝𝑄(𝜏) is the rational function defined in (2.3.8).

In the following lemma we treat the caseΞ”(𝑄) = 0, which is of slightly different nature.

Lemma 2.5.5. Let π‘„βˆˆ 𝒬 with Ξ”(𝑄) = 0 and 𝑄̸≑0. Then 𝑄(𝜏,1) = πœ†π‘„π‘—(πœŽβˆ’1𝑝𝑄, 𝜏)2 and |𝑄(𝜏,1)|

𝑣 =|πœ†π‘„|Im(πœŽβˆ’1π‘π‘„πœ)βˆ’1

for 𝜏 = 𝑒+𝑖𝑣 ∈ H. Here πœ†π‘„ is the factor given in part (b) of Lemma 2.3.3, and πœŽπ‘π‘„ is a parabolic scaling matrix for the cusp 𝑝𝑄.

Proof. We have

𝑄(𝜏,1) = ((𝑄.πœŽπ‘π‘„).πœŽβˆ’1𝑝𝑄)(𝜏,1) =𝑗(πœŽπ‘βˆ’1𝑄, 𝜏)2(𝑄.πœŽπ‘π‘„)(πœŽβˆ’1π‘π‘„πœ,1) =πœ†π‘„π‘—(πœŽπ‘βˆ’1𝑄, 𝜏)2 as 𝑄.πœŽπ‘π‘„ =(οΈ€0 0

0πœ†π‘„

)οΈ€ by Lemma 2.3.3.

We now use the previous two lemmas to write the non-holomorphic function π‘“π‘˜,𝑄(𝜏, 𝑠) in a different, more geometric way:

Proposition 2.5.6. Let π‘˜βˆˆZ and π‘„βˆˆ 𝒬with 𝑄̸≑0.

34

(a) If Ξ”(𝑄)>0 then

π‘“π‘˜,𝑄(𝜏, 𝑠) = Ξ”(𝑄)βˆ’π‘ /2 βˆ‘οΈ

π‘€βˆˆ(Ξ“0(𝑁))π‘π‘„βˆ–Ξ“0(𝑁)

𝑄(𝜏,1)βˆ’π‘˜cosh(𝑑hyp(𝜏, 𝑐𝑄))βˆ’π‘ 

βƒ’

βƒ’

βƒ’2π‘˜π‘€ for 𝜏 ∈H and π‘ βˆˆC with Re(𝑠)>1βˆ’π‘˜. Here 𝑐𝑄 is the Heegner geodesic associated to 𝑄.

(b) If Ξ”(𝑄) = 0 then

π‘“π‘˜,𝑄(𝜏, 𝑠) = πœ†βˆ’π‘˜π‘„ |πœ†π‘„|βˆ’π‘ πΈ2π‘˜,𝑝𝑄(𝜏, 𝑠).

for 𝜏 ∈ H and 𝑠 ∈ C with Re(𝑠)> 1βˆ’π‘˜. Here 𝑝𝑄 is the cusp associated to 𝑄, and πœ†π‘„ is the factor defined in part (b) of Lemma 2.3.3.

(c) If Ξ”(𝑄)<0 then

π‘“π‘˜,𝑄(𝜏, 𝑠) = |Ξ”(𝑄)|βˆ’π‘ /2 βˆ‘οΈ

π‘€βˆˆ(Ξ“0(𝑁))πœπ‘„βˆ–Ξ“0(𝑁)

𝑄(𝜏,1)βˆ’π‘˜sinh(𝑑hyp(𝜏, πœπ‘„))βˆ’π‘ 

βƒ’

βƒ’

βƒ’2π‘˜

𝑀

for 𝜏 ∈Hβˆ–π»π‘„ and π‘ βˆˆC with Re(𝑠)>1βˆ’π‘˜. Here πœπ‘„ the Heegner point associated to 𝑄.

Proof. Recalling that (𝑄′.𝑀)(𝜏,1) = 𝑗(𝑀, 𝜏)2𝑄′(𝑀 𝜏,1) for 𝑄′ ∈ 𝒬 and 𝑀 ∈ Ξ“0(𝑁) as in equation (2.4.5) we find

π‘“π‘˜,𝑄(𝜏, 𝑠) = βˆ‘οΈ

π‘€βˆˆ(Ξ“0(𝑁))π‘„βˆ–Ξ“0(𝑁)

𝑄(𝜏,1)βˆ’π‘˜

(οΈ‚|𝑄(𝜏,1)|

𝑣

)οΈ‚βˆ’π‘ 

βƒ’

βƒ’

βƒ’2π‘˜π‘€ (2.5.11)

for𝜏 =𝑒+𝑖𝑣 ∈Hβˆ–π»π‘„and𝑠 ∈CwithRe(𝑠)>1βˆ’π‘˜. Depending on whetherΞ”(𝑄)ΜΈ= 0or Ξ”(𝑄) = 0 we can now use Lemma 2.5.4 or Lemma 2.5.5 to obtain the new representation of π‘“π‘˜,𝑄(𝜏, 𝑠) given in the proposition.

So part (b) of the previous proposition tells us that ifΞ”(𝑄) = 0the functionπ‘“π‘˜,𝑄(𝜏, 𝑠)is indeed simply a multiple of the non-holomorphic Eisenstein series of weight2π‘˜associated to the cusp𝑝𝑄. Moreover, if we further assume that𝑁 is squarefree Lemma 2.3.4 implies the following analog of Corollary 2.4.8. We omit the corresponding proof since using the identity (2.5.7) the proof is completely analogously to the one of Corollary 2.4.8.

Corollary 2.5.7. Let 𝑁 be squarefree and let π‘˜βˆˆZ. If π‘˜ is even then π‘“π‘˜,0,0(𝜏, 𝑠) = 2𝜁(𝑠+π‘˜) βˆ‘οΈ

π‘βˆˆπΆ(Ξ“0(𝑁))

𝐸2π‘˜,𝑝(𝜏, 𝑠)

for 𝜏 ∈H and 𝑠 ∈C with Re(𝑠)>1βˆ’π‘˜, and if π‘˜ is odd the function π‘“π‘˜,0,0(𝜏, 𝑠) vanishes identically, i.e, π‘“π‘˜,0,0 ≑0.

Also, forπ‘˜ = 0and Ξ”(𝑄)ΜΈ= 0we can identify the new representations for the functions 𝑓0,𝑄(𝜏, 𝑠)established in Proposition 2.5.6 as generalized non-holomorphic Eisenstein series of weight 0, which are called hyperbolic and elliptic Eisenstein series if Ξ”(𝑄) > 0 or Ξ”(𝑄) < 0, respectively. In the following final section of this chapter we give a brief introduction to these two types of Eisenstein series.