• Keine Ergebnisse gefunden

Averaged non-holomorphic Eisenstein series as theta lifts of signature (2, 1) 94

Remark 5.1.4.

(1) If𝛽 =βˆ’π›½in𝐿′/𝐿and2βˆ’π‘›βˆ’2πœ…β‰‘2mod4then the PoincarΓ© seriesπ‘ˆπœ…,𝛽,π‘šπΏ andπ‘„πΏπœ…,𝛽,π‘š vanish identically. This matches the two formulas given in the previous theorem since if 𝛽 = βˆ’π›½ then 𝐿𝛽,π‘š = βˆ’πΏπ›½,π‘š and thus the sums in (a) and (b) of Theorem 5.1.3 cancel completely if π‘˜ is odd as

π‘ž((βˆ’πœ†)𝑍) =π‘ž(πœ†π‘), π‘žπ‘(βˆ’πœ†) =π‘žπ‘(πœ†), (βˆ’πœ†, 𝑍𝐿) = βˆ’(πœ†, 𝑍𝐿)

for πœ†βˆˆπ‘‰ and 𝑍 ∈H𝑛. On the other hand, the congruence 2βˆ’π‘›βˆ’2πœ…β‰‘2 mod4 is satisfied if and only if the corresponding non-negative integerπ‘˜(withπœ…= 1+π‘˜βˆ’π‘›/2) is odd.

(2) Ifπ‘š = 0 thenπ‘ˆπœ…,𝛽,0𝐿 (𝜏, 𝑠) = π‘„πΏπœ…,𝛽,0(𝜏, 𝑠), and thus also the corresponding lifts need to agree, i.e., we have

Ξ¦Sel,πΏπ‘˜,𝛽,0(𝑍, 𝑠) = Ξ¦Q,πΏπ‘˜,𝛽,0(𝑍, 𝑠)

for 𝑍 ∈ H𝑛 and 𝑠 ∈ C with Re(𝑠) >1 +𝑛/2βˆ’π‘˜/2. This agrees with the formulas given in Theorem 5.1.3 since

π‘ž(πœ†π‘) = π‘žπ‘(πœ†)

2 and (πœ†, 𝑍𝐿) = 2π‘žπ‘(πœ†)π‘ž(Im(𝑍)) (πœ†, 𝑍𝐿)

for πœ†βˆˆπΏπ›½,0 with πœ†ΜΈ= 0 and 𝑍 ∈H𝑛. Here the first equality is clear asπ‘ž(πœ†) = 0, and the second equality follows from the identity in (4.1.2).

In the following two sections we now evaluate the above theta lifts for the special lattices of signature (2,1) and (2,2) from Section 4.3 and Section 4.4, respectively. Though we are mainly interested in the lift of Selberg’s PoincarΓ© series in the case of signature(2,1), and in the lift of the PoincarΓ© series π‘„πΏπœ…,𝛽,π‘š(𝜏, 𝑠) in the case of signature (2,2), we also present the opposite cases for the sake of completeness.

5.2 Averaged non-holomorphic Eisenstein series as

as in (4.3.5) forπœ† βˆˆπΏπ›½,π‘š and 𝑍 ∈H1 corresponding to 𝑧 ∈H. Thus, the subset 𝐻𝛽,π‘šπΏ of H1 from (5.1.1) corresponds to the set of Heegner points associated to quadratic forms π‘„πœ† with πœ†βˆˆπΏπ›½,π‘š, i.e.,

𝐻𝛽,π‘šπΏ =𝐻𝛽,4𝑁 π‘š (5.2.1)

with 𝐻𝛽,4𝑁 π‘š being defined as in (2.3.2). Furthermore, we recall that π‘ž(Im(𝑍)) =𝑁Im(𝑧)2 and π‘ž(πœ†π‘) = |π‘„πœ†(𝑧,1)|2

4𝑁Im(𝑧)2

for πœ† ∈ 𝐿𝛽,π‘š and 𝑍 ∈ H1 corresponding to 𝑧 ∈ H, by Lemma 4.3.1. Here the second identity also implies

π‘žπ‘(πœ†) = 2π‘ž(πœ†π‘)βˆ’π‘ž(πœ†) = |π‘„πœ†(𝑧,1)|2 2𝑁Im(𝑧)2 βˆ’π‘š.

(5.2.2)

We now restate part (a) of Theorem 5.1.3 in the present setting. Even though this is essentially a corollary we state it as a theorem to highlight its importance for the present work.

Theorem 5.2.1. Let π‘˜ ∈ Z with π‘˜ β‰₯ 0, 𝛽 ∈ 𝐿′/𝐿 and π‘š ∈ Z+π‘ž(𝛽). The regularized theta lift of Selberg’s PoincarΓ© series π‘ˆπ‘˜+1/2,𝛽,π‘šπΏ (𝜏, 𝑠) for the present lattice 𝐿of signature (2,1) is given by

Ξ¦Sel,πΏπ‘˜,𝛽,π‘š(𝑧, 𝑠) = 2𝑁𝑠Γ(𝑠+π‘˜)

πœ‹π‘ +π‘˜ π‘“π‘˜,𝛽,4𝑁 π‘š(𝑧,2𝑠)

for 𝑧 ∈Hβˆ–π»π›½,4𝑁 π‘š and π‘ βˆˆC with Re(𝑠)>3/2βˆ’π‘˜/2. Here the right-hand side yields a holomorphic continuation of Ξ¦Sel,πΏπ‘˜,𝛽,π‘š(𝑧, 𝑠) in 𝑠 to the half-planeRe(𝑠)>1/2βˆ’π‘˜/2.

Proof. Using the expressions for π‘ž(πœ†π‘) and (πœ†, 𝑍𝐿) for 𝑍 ∈ H1 corresponding to 𝑧 ∈ H recalled above, the given identity is a direct consequence of part (a) of Theorem 5.1.3. Fur-ther, the holomorphic continuation of Ξ¦Sel,πΏπ‘˜,𝛽,π‘š(𝑧, 𝑠) follows as the functionsπ‘“π‘˜,𝛽,4𝑁 π‘š(𝑧,2𝑠) are defined for Re(2𝑠)>1βˆ’π‘˜.

Forπ‘˜ = 0 we may rewrite Theorem 5.2.1 in terms of Corollary 2.6.4, showing that the regularized theta lift of Selberg’s PoincarΓ© series of the first kind of weight πœ… = 1/2 is indeed an averaged version of hyperbolic, parabolic or elliptic Eisenstein series of weight 0, where the type of Eisenstein series depends on the sign of the parameter π‘š of the corresponding PoincarΓ© series. In fact, the following special case of Theorem 5.2.1 was the reason to consider the theta lift of Selberg’s PoincarΓ© series in the first place.

Corollary 5.2.2. Let 𝛽 βˆˆπΏβ€²/𝐿 and π‘šβˆˆZ+π‘ž(𝛽).

(a) Then

Ξ¦Sel,𝐿0,𝛽,π‘š(𝑧, 𝑠) =

⎧

βŽͺβŽͺ

βŽͺβŽͺ

βŽͺβŽͺ

βŽͺβŽͺ

βŽͺβŽͺ

⎨

βŽͺβŽͺ

βŽͺβŽͺ

βŽͺβŽͺ

βŽͺβŽͺ

βŽͺβŽͺ

⎩

2 Ξ“(𝑠) (4πœ‹π‘š)𝑠

βˆ‘οΈ

π‘„βˆˆπ’¬π›½,4𝑁 π‘š/Ξ“0(𝑁)

𝐸𝑐hyp

𝑄 (𝑧,2𝑠), if π‘š >0, 2𝑁𝑠Γ(𝑠)

πœ‹π‘ 

βˆ‘οΈ

π‘βˆˆπΆ(Ξ“0(𝑁))

πœ†π›½,𝑝(2𝑠)𝐸𝑝par(𝑧,2𝑠), if π‘š = 0, 2 Ξ“(𝑠)

(4πœ‹|π‘š|)𝑠

βˆ‘οΈ

π‘„βˆˆπ’¬π›½,4𝑁 π‘š/Ξ“0(𝑁)

𝐸𝜏ell

𝑄(𝑧,2𝑠), if π‘š <0,

for 𝑧 ∈ Hβˆ–π»π›½,4𝑁 π‘š and 𝑠 ∈ C with Re(𝑠) > 1/2. Here the coefficients πœ†π›½,𝑝(2𝑠) are defined as in Corollary 2.6.4.

(b) Assume that 𝑁 is squarefree and let π‘š= 0. Then 𝛽 = 0 and Ξ¦Sel,𝐿0,0,0(𝑧, 𝑠) = 4π‘π‘ πœ*(2𝑠) βˆ‘οΈ

π‘βˆˆπΆ(Ξ“0(𝑁))

𝐸𝑝par(𝑧,2𝑠)

for𝑧 ∈Handπ‘ βˆˆCwithRe(𝑠)>1/2. Here𝜁*(𝑠) =πœ‹βˆ’π‘ /2Ξ“(𝑠/2)𝜁(𝑠)is the completed Riemann zeta function.

Proof. Part (a) is a simple application of Corollary 2.6.4 to Theorem 5.2.1. Analogously, if 𝑁 is squarefree part (b) follows from the identity given in (2.6.9).

Another special case of Theorem 5.2.1 is given if π‘˜ β‰₯ 2. In this case the non-holomorphic function π‘“π‘˜,𝛽,4𝑁 π‘š(𝑧,2𝑠) can simply be evaluated at 𝑠 = 0, and by (2.5.6) we have

π‘“π‘˜,𝛽,4𝑁 π‘š(𝑧,0) = π‘“π‘˜,𝛽,4𝑁 π‘š(𝑧)

for 𝑧 ∈ H βˆ–π»π›½,4𝑁 π‘š. Here the function on the right-hand side is the holomorphic (or meromorphic if π‘š < 0) modular form associated to the class 𝛽 and the discriminant 4𝑁 π‘š given in Definition 2.4.6.

Corollary 5.2.3. Let π‘˜βˆˆZ with π‘˜β‰₯2, 𝛽 βˆˆπΏβ€²/𝐿 and π‘šβˆˆZ+π‘ž(𝛽). Then Ξ¦Sel,πΏπ‘˜,𝛽,π‘š(𝑧,0) = 2 Ξ“(π‘˜)

πœ‹π‘˜ π‘“π‘˜,𝛽,4𝑁 π‘š(𝑧).

for 𝑧 ∈Hβˆ–π»π›½,4𝑁 π‘š.

This is essentially the Shimura theta lift of the vector valued (holomorphic) PoincarΓ© series π‘ƒπœ…,𝛽,π‘šπΏ (𝜏) of weight πœ…=π‘˜+ 1/2 (compare Proposition 3.4.4 and equation (4.3.7)).

More precisely, we can understand the above Corollary in the following way: Let π‘˜ ∈ Z with π‘˜ β‰₯2, 𝛽 βˆˆπΏβ€²/𝐿 and π‘šβˆˆZ+π‘ž(𝛽). Then

Ξ¦πΏπ‘˜(𝑧;π‘ˆπ‘˜+1/2,𝛽,π‘šπΏ (Β·, 𝑠))

βƒ’

βƒ’

βƒ’

⃒𝑠=0

= Ξ¦πΏπ‘˜(𝑧;π‘ˆπ‘˜+1/2,𝛽,π‘šπΏ (Β·,0)).

In other words, the process of lifting and evaluating at 𝑠 = 0 can be reversed if π‘˜ β‰₯ 2.

We will later see that this is in general not true if π‘˜ = 0 (compare Proposition 7.1.1).

For the sake of completeness, we also present the theta lift of the non-standard PoincarΓ© seriesπ‘„πΏπœ…,𝛽,π‘š(𝜏, 𝑠)given in part (b) of Theorem 5.1.3 in the situation of the current lattice.

Proposition 5.2.4. Let π‘˜ ∈Z with π‘˜β‰₯0, 𝛽 βˆˆπΏβ€²/𝐿and π‘š ∈Z+π‘ž(𝛽). The regularized theta lift of the PoincarΓ© series π‘„πΏπ‘˜+1/2,𝛽,π‘š(𝜏, 𝑠)for the present lattice 𝐿of signature (2,1) is given by

Ξ¦Q,πΏπ‘˜,𝛽,π‘š(𝑧, 𝑠) = 2𝑁𝑠Γ(𝑠+π‘˜) πœ‹π‘ +π‘˜

βˆ‘οΈ

π‘„βˆˆπ’¬π›½,4𝑁 π‘š 𝑄̸≑0

(οΈ‚|𝑄(𝑧,1)|2

Im(𝑧)2 βˆ’2𝑁 π‘š

)οΈ‚βˆ’π‘ βˆ’π‘˜(οΈ‚

𝑄(¯𝑧,1) Im(𝑧)2

)οΈ‚π‘˜

for 𝑧 ∈H and π‘ βˆˆC with Re(𝑠)>3/2βˆ’π‘˜/2.

96

Proof. This is a direct consequences of part (b) of Theorem 5.1.3 where we only have to apply the expressions for the quantities π‘ž(Im(𝑍)), π‘žπ‘(πœ†) and (πœ†, 𝑍𝐿) for 𝑍 ∈ H1

corresponding to 𝑧 ∈H recalled at the beginning of the present section.

As in Corollary 5.2.2 we also present Proposition 5.2.4 for the special case π‘˜ = 0.

However, we ignore the caseπ‘š = 0, which is simply given by Ξ¦Q,πΏπ‘˜,𝛽,0(𝑧, 𝑠) = Ξ¦Sel,πΏπ‘˜,𝛽,0(𝑧, 𝑠) = 2𝑁𝑠Γ(𝑠+π‘˜)

πœ‹π‘ +π‘˜ π‘“π‘˜,𝛽,0(𝑧,2𝑠)

for 𝑧 ∈Hand π‘ βˆˆC with Re(𝑠)>1/2βˆ’π‘˜/2(compare part (2) of Remark 5.1.4).

Corollary 5.2.5. Let 𝛽 βˆˆπΏβ€²/𝐿 and π‘šβˆˆZ+π‘ž(𝛽) with π‘šΜΈ= 0. Then Ξ¦Q,𝐿0,𝛽,π‘š(𝑧, 𝑠) = 2 Ξ“(𝑠)

(2πœ‹|π‘š|)𝑠

βˆ‘οΈ

π‘„βˆˆπ’¬π›½,4𝑁 π‘š/Ξ“0(𝑁)

𝑔𝑄(𝑧, 𝑠) (5.2.3)

for 𝑧 ∈ H and 𝑠 ∈C with Re(𝑠) >3/2. Here given π‘„βˆˆ 𝒬𝛽,4𝑁 π‘š the associated function 𝑔𝑄(𝑧, 𝑠) is defined by

𝑔𝑄(𝑧, 𝑠) :=

⎧

βŽͺβŽͺ

βŽͺβŽͺ

⎨

βŽͺβŽͺ

βŽͺβŽͺ

⎩

βˆ‘οΈ

π‘€βˆˆ(Ξ“0(𝑁))π‘π‘„βˆ–Ξ“0(𝑁)

(︁

sinh(𝑑hyp(𝑀 𝑧, 𝑐𝑄))2+ cosh(𝑑hyp(𝑀 𝑧, 𝑐𝑄))2)οΈβˆ’π‘ 

, if π‘š >0,

βˆ‘οΈ

π‘€βˆˆ(Ξ“0(𝑁))πœπ‘„βˆ–Ξ“0(𝑁)

(︁

sinh(𝑑hyp(𝑀 𝑧, πœπ‘„))2 + cosh(𝑑hyp(𝑀 𝑧, πœπ‘„))2)οΈβˆ’π‘ 

, if π‘š <0, for 𝑧 ∈ H and 𝑠 ∈ C with Re(𝑠) > 1/2. In particular, the right-hand side of equation (5.2.3)yields a holomorphic continuation ofΞ¦Q,𝐿0,𝛽,π‘š(𝑧, 𝑠)is𝑠to the half-planeRe(𝑠)>1/2, and the functions 𝑔𝑄(𝑧, 𝑠) are modular of weight 0 and level 𝑁.

Proof. Forπ‘˜ = 0 and π‘šΜΈ= 0 Proposition 5.2.4 simplifies to Ξ¦Q,𝐿0,𝛽,π‘š(𝑧, 𝑠) = 2𝑁𝑠Γ(𝑠)

πœ‹π‘ 

βˆ‘οΈ

π‘„βˆˆπ’¬π›½,4𝑁 π‘š

(οΈ‚|𝑄(𝑧,1)|2

Im(𝑧)2 βˆ’2𝑁 π‘š )οΈ‚βˆ’π‘ 

.

for 𝑧 ∈Hand 𝑠 ∈Cwith Re(𝑠)>3/2. Now, an application of Lemma 2.5.4 to the term

|𝑄(𝑧,1)|2/Im(𝑧)2 together with the identity cosh(𝑧)2 βˆ’sinh(𝑧)2 = 1 yields the claimed formula. Moreover, since sinh(π‘₯)2 β‰₯0 for π‘₯ ∈R, the sum defining the function 𝑔𝑄(𝑧, 𝑠) withπ‘„βˆˆ 𝒬𝛽,4𝑁 π‘šis either dominated by the hyperbolic Eisenstein series 𝐸𝑐hyp𝑄 (𝑧,2 Re(𝑠)) if π‘š >0, or by the hyperbolic kernel function 𝐾(𝑧, πœπ‘„,2 Re(𝑠)) if π‘š <0. Therefore, the function 𝑔𝑄(𝑧, 𝑠) is indeed well-defined for 𝑧 ∈Hand 𝑠 ∈Cwith Re(𝑠)>1/2.

Remark 5.2.6. There are different, trivially equivalent ways of writing the functions 𝑔𝑄(𝑧, 𝑠) appearing in the previous corollary, since

sinh(𝑧)2 + cosh(𝑧)2 = 2 sinh(𝑧)2+ 1 = 2 cosh(𝑧)2βˆ’1 = cosh(2𝑧)

for 𝑧 ∈H. In particular, if𝑐 is a geodesic inH which is either closed or infinite then 𝑔𝑄(𝑧, 𝑠) = βˆ‘οΈ

π‘€βˆˆ(Ξ“0(𝑁))π‘βˆ–Ξ“0(𝑁)

cosh(2𝑑hyp(𝑀 𝑧, 𝑐))βˆ’π‘ 

for 𝑧 ∈ H and 𝑠 ∈ C with Re(𝑠) > 1/2, where we choose 𝑄 ∈ 𝒬 such that 𝑐𝑄 = 𝑐 (see Corollary 2.3.2). So for 𝑄 ∈ 𝒬 with discriminant Ξ”(𝑄) >0 the function 𝑔𝑄(𝑧, 𝑠) is similar to the corresponding hyperbolic Eisenstein series 𝐸𝑐hyp

𝑄 (𝑧,2𝑠).

5.3 The hyperbolic kernel function as a theta lift of signature (2, 2)

Let now (𝑉, π‘ž) be the orthogonal space of signature (2,2) from Section 4.4, i.e., let 𝑉 be the vector space of 2Γ—2-matrices with rational entries equipped with the quadratic form π‘ž(𝑋) = βˆ’det(𝑋), and given some positive integer 𝑁 let 𝐿 be the lattice in 𝑉 given by matrices of the form (οΈ€ π‘Ž 𝑏

𝑁 𝑐 𝑑

)οΈ€ with π‘Ž, 𝑏, 𝑐, 𝑑 ∈ Z. Fixing 𝑒1 = (οΈ€0 1

0 0

)οΈ€ ∈ 𝐿 and 𝑒2 = (οΈ€0 0

1 0

)οΈ€ ∈ 𝐿′ we can identify the induced generalized upper half-plane H2 with the product of two copies of the upper half-plane, i.e., with HΓ—H.

We further recall from Section 4.4 that the discriminant form 𝐿′/𝐿 can be identified with the quotient (Z/𝑁Z)2, and that the dual lattice 𝐿′ of 𝐿 consists of matrices of the form(οΈ€π‘Ž 𝑏/𝑁

𝑐 𝑑

)οΈ€ with π‘Ž, 𝑏, 𝑐, π‘‘βˆˆZ. Thus 𝐿𝛽,π‘š =

{οΈ‚(οΈ‚π‘Ž 𝑏/𝑁

𝑐 𝑑

)οΈ‚

: π‘Ž, 𝑏, 𝑐, π‘‘βˆˆZ, 𝑏≑𝛽1 mod 𝑁, 𝑐≑𝛽2 mod 𝑁,𝑏𝑐

𝑁 βˆ’π‘Žπ‘‘=π‘š }οΈ‚

for 𝛽 = (𝛽1, 𝛽2)∈(Z/𝑁Z)2. In particular, we find 𝐿0,βˆ’1 = Ξ“0(𝑁) and 𝐿0,1 =

{οΈ‚(οΈ‚ π‘Ž 𝑏 𝑐𝑁 𝑑

)οΈ‚

:π‘Ž, 𝑏, 𝑐, π‘‘βˆˆZ, π‘Žπ‘‘βˆ’π‘π‘π‘ =βˆ’1 }οΈ‚

=

(οΈ‚1 0 0 βˆ’1

)οΈ‚

Ξ“0(𝑁).

We concentrate on these two special cases from now on, namely𝛽 = 0 and π‘š=Β±1. One can check that the general case 𝛽 ∈ 𝐿′/𝐿 and π‘š ∈ Z+π‘ž(𝛽) with π‘š ΜΈ= 0 can indeed be reduced to these special cases, even though we do in general not end up with the group Ξ“0(𝑁), but with some scaled version of it.

Since we assume that 𝛽 = 0 we trivially have 𝛽 = βˆ’π›½ in 𝐿′/𝐿. Hence the theta lifts from Theorem 5.1.3 vanish completely if π‘˜ is odd (compare Remark 5.1.4). So we additionally assume that π‘˜ is even from now on.

In the following we quickly recall some more notation from Section 4.4, concentrating on the special case𝛽 = 0andπ‘š=Β±1. Given𝑧, 𝑧′ ∈Hthe tuple(𝑧, 𝑧′)inHΓ—Hcorresponds to the element 𝑍 =(︀𝑧 0

0βˆ’π‘§β€²

)οΈ€ in the generalized upper half-plane H2. As in Section 4.4 we write π‘žπ‘§,𝑧′ for the majorant π‘žπ‘ associated to 𝑍, and for πœ†βˆˆ 𝑉 we denote the orthogonal projection of πœ† onto the 2-dimensional positive definite subspace corresponding to 𝑍 by πœ†π‘§,𝑧′. Further, we use the notation

𝑍𝐿(𝑧, 𝑧′) =𝑍𝐿 =

(︂𝑧 βˆ’π‘§π‘§β€² 1 βˆ’π‘§β€²

)οΈ‚

,

and we recall that π‘ž(Im(𝑍)) = Im(𝑧) Im(𝑧′) for𝑧, 𝑧′ ∈H with 𝑍 =(︀𝑧 0

0 βˆ’π‘§β€²

)οΈ€. Lemma 5.3.1. Let πœ†βˆˆπΏ0,Β±1 and 𝑧, 𝑧′ ∈H. Then

(πœ†, 𝑍𝐿(𝑧, 𝑧′)) =𝑗(𝑀1(πœ†), 𝑧′)(𝑀1(πœ†)𝑧′±𝑧) = 𝑗(𝑀2(πœ†), 𝑧)(𝑧′±𝑀2(πœ†)𝑧) where 𝑀1(πœ†) :=(οΈ€1 0

0 βˆ“1

)οΈ€πœ† and 𝑀2(πœ†) :=(οΈ€1 0

0 βˆ“1

)οΈ€πœ†βˆ’1 are both elements ofΞ“0(𝑁).

Proof. By definition we have (πœ†, 𝑍𝐿(𝑧, 𝑧′)) = π‘Žπ‘§β€² +π‘βˆ’π‘π‘§π‘§β€² βˆ’π‘‘π‘§ for πœ†=(οΈ€π‘Ž 𝑏

𝑐 𝑑

)οΈ€. Now the lemma follows by a straightforward computation.

98

In particular, the previous lemma implies that we have(πœ†, 𝑍𝐿(𝑧, 𝑧′)) = 0for πœ†βˆˆπΏ0,Β±1 if and only if 𝑧 =βˆ“π‘€1(πœ†)𝑧′. So 𝐻0,1𝐿 =βˆ… asβˆ’π‘€1(πœ†)𝑧′ ∈/ H for πœ†βˆˆπΏ0,1, and

𝐻0,βˆ’1𝐿 ={(𝑧, 𝑧′)∈HΓ—H: 𝑧≑𝑧′ mod Ξ“0(𝑁)}.

Here the set𝐻0,Β±1𝐿 is defined as in (5.1.1). Since𝐻0,βˆ’1𝐿 can be understood as the diagonal in the product of modular curves π‘Œ0(𝑁)Γ—π‘Œ0(𝑁), we use the notation

π·βˆ’1 :=𝐻0,βˆ’1𝐿 ={(𝑧, 𝑧′)∈HΓ—H: 𝑧 ≑𝑧′ mod Ξ“0(𝑁)}.

(5.3.1)

To simplify notation we also set 𝐷1 :=βˆ…, such that𝐷±1 =𝐻0,Β±1𝐿 .

Next we consider the quantitiesπ‘ž(πœ†π‘§,𝑧′) and π‘žπ‘§,𝑧′(πœ†). Applying the previous lemma to the identity given in (4.4.4) we directly find that

π‘ž(πœ†π‘§,𝑧′) = |𝑧±𝑀1(πœ†)𝑧′)|2

4 Im(𝑧) Im(𝑀1(πœ†)𝑧′) = |𝑀2(πœ†)𝑧′±𝑧)|2 4 Im(𝑀2(πœ†)𝑧) Im(𝑧′) (5.3.2)

for 𝑧, 𝑧′ ∈ H and πœ† ∈ 𝐿0,Β±1, where the matrices 𝑀1(πœ†), 𝑀2(πœ†) ∈ Ξ“0(𝑁) are given as in Lemma 5.3.1. Moreover, π‘žπ‘§,𝑧′(πœ†) is given as follows:

Lemma 5.3.2. Let 𝑧, 𝑧′ ∈H and πœ† ∈𝐿0,π‘š with π‘š=Β±1.

(a) If π‘š= 1 then

π‘žπ‘§,𝑧′(πœ†) = cosh(︁

𝑑hyp(︁

𝑧,βˆ’π‘€1(πœ†)𝑧′)︁)︁

= cosh(οΈ€

𝑑hyp(οΈ€

𝑀2(πœ†)𝑧,βˆ’π‘§β€²)οΈ€)οΈ€

. (b) If π‘š=βˆ’1 then

π‘žπ‘§,𝑧′(πœ†) = cosh(𝑑hyp(𝑧, 𝑀1(πœ†)𝑧′)) = cosh(𝑑hyp(𝑀2(πœ†)𝑧, 𝑧′)).

Here the matrices 𝑀1(πœ†), 𝑀2(πœ†)βˆˆΞ“0(𝑁) are defined as in Lemma 5.3.1.

Proof. Since π‘žπ‘§,𝑧′(πœ†) = 2π‘ž(πœ†π‘§,𝑧′)βˆ’π‘ž(πœ†) equation (5.3.2) implies that π‘žπ‘§,𝑧′(πœ†) = |𝑧±𝑀1(πœ†)𝑧′)|2

2 Im(𝑧) Im(𝑀1(πœ†)𝑧′)βˆ“1 = |𝑀2(πœ†)𝑧′±𝑧)|2

2 Im(𝑀2(πœ†)𝑧) Im(𝑧′)βˆ“1

for πœ†βˆˆπΏ0,Β±1. Now part (b) follows directly from the identity given in (2.1.1). Moreover, an easy computation using again (2.1.1) shows that

|𝑧+𝑧′|2

2 Im(𝑧) Im(𝑧′) βˆ’1 = cosh(οΈ€

𝑑hyp(οΈ€

𝑧,βˆ’π‘§β€²)οΈ€)οΈ€

for 𝑧, 𝑧′ ∈H, which proves part (a).

We now restate part (a) of Theorem 5.1.3 for the present lattice𝐿 of signature (2,2), and for 𝛽 = 0 and π‘š =Β±1:

Proposition 5.3.3. Let π‘˜ ∈ Z with π‘˜ β‰₯ 0 even. The regularized theta lift of Selberg’s PoincarΓ© series π‘ˆπ‘˜,0,Β±1𝐿 (𝜏, 𝑠) for the present lattice𝐿 of signature (2,2) is given by

Ξ¦Sel,πΏπ‘˜,0,Β±1(𝑧, 𝑧′, 𝑠) = 2 Ξ“(𝑠+π‘˜) πœ‹π‘ +π‘˜

βˆ‘οΈ

π‘€βˆˆΞ“0(𝑁)

(οΈ‚Im(𝑧) Im(𝑧′)

|𝑧±𝑧′|2 )︂𝑠

(𝑧±𝑧′)βˆ’π‘˜

βƒ’

βƒ’

βƒ’

βƒ’π‘˜

𝑀

for (𝑧, 𝑧′)∈(HΓ—H)βˆ–π·Β±1 and π‘ βˆˆC with Re(𝑠)>2βˆ’π‘˜/2. Here the weightπ‘˜ action on the right-hand side of the above identity can either be seen as an action in the variable 𝑧, or in the variable 𝑧′.

Proof. By part (a) of Theorem 5.1.3, equation (5.3.2) and Lemma 5.3.1 we find Ξ¦Sel,πΏπ‘˜,0,Β±1(𝑧, 𝑧′, 𝑠) = 2 Ξ“(𝑠+π‘˜)

πœ‹π‘ +π‘˜

βˆ‘οΈ

πœ†βˆˆπΏ0,Β±1

(οΈ‚Im(𝑧) Im(𝑀1(πœ†)𝑧′)

|𝑧±𝑀1(πœ†)𝑧′)|2 )︂𝑠

𝑗(𝑀1(πœ†), 𝑧′)βˆ’π‘˜(𝑧±𝑀1(πœ†)𝑧′)βˆ’π‘˜

= 2 Ξ“(𝑠+π‘˜) πœ‹π‘ +π‘˜

βˆ‘οΈ

π‘€βˆˆΞ“0(𝑁)

(οΈ‚Im(𝑧) Im(𝑧′)

|𝑧±𝑧′)|2 )︂𝑠

(𝑧±𝑧′)βˆ’π‘˜

βƒ’

βƒ’

βƒ’

βƒ’π‘˜

𝑀,

since the mapπœ† ↦→𝑀1(πœ†)with𝑀1(πœ†)as in Lemma 5.3.1 gives a bijection𝐿0,Β±1 β†’Ξ“0(𝑁).

Here we understand the given weight π‘˜ action as an action in the variable 𝑧′.

Analogously, using the bijectionπœ†β†¦β†’π‘€2(πœ†) we obtain the same expression for the lift Ξ¦Sel,πΏπ‘˜,0,Β±1(𝑧, 𝑧′, 𝑠) with the given weightπ‘˜ action being an action in the variable𝑧.

We remark that given a function𝑓: Hβ†’C[𝐿′/𝐿]modular of weightπ‘˜ with respect to 𝜌𝐿, the (regularized) theta lift of 𝑓 for the present lattice 𝐿 is in general only modular of weight π‘˜ with respect to the group Ξ“(𝑁) (see Section 4.4). However, the theta lift of the PoincarΓ© series π‘ˆπ‘˜,0,Β±1𝐿 (𝜏, 𝑠) is indeed modular of weight π‘˜ with respect to the larger group Ξ“0(𝑁).

For the sake of completeness we quickly treat the special cases π‘˜ = 0, and 𝑠 = 0 if π‘˜ β‰₯3, of the previous Proposition.

Corollary 5.3.4. Let π‘š=Β±1.

(a) If π‘˜= 0 then

Ξ¦Sel,𝐿0,0,π‘š(𝑧, 𝑧′, 𝑠) =

⎧

βŽͺβŽͺ

βŽͺβŽͺ

⎨

βŽͺβŽͺ

βŽͺβŽͺ

⎩ 2 Ξ“(𝑠)

(2πœ‹)𝑠

βˆ‘οΈ

π‘€βˆˆΞ“0(𝑁)

(︁

cosh(οΈ€

𝑑hyp(οΈ€

𝑧,βˆ’π‘§β€²)οΈ€)οΈ€

+ 1)οΈβˆ’π‘ βƒ’

βƒ’

βƒ’

βƒ’0

𝑀, if π‘š= 1, 2 Ξ“(𝑠)

(2πœ‹)𝑠

βˆ‘οΈ

π‘€βˆˆΞ“0(𝑁)

(︁

cosh (𝑑hyp(𝑧, 𝑧′))βˆ’1 )οΈβˆ’π‘ βƒ’

βƒ’

βƒ’

βƒ’0

𝑀, if π‘š=βˆ’1, for(𝑧, 𝑧′)∈(HΓ—H)βˆ–π·Β±1 and π‘ βˆˆCwithRe(𝑠)>2. Here the weight 0action on the right-hand side can either be seen as an action in the variable 𝑧, or in the variable 𝑧′. Further, the expression on the right-hand side yields a holomorphic continuation of the lift Ξ¦Sel,𝐿0,0,π‘š(𝑧, 𝑧′, 𝑠) in 𝑠 to the half-plane Re(𝑠)>1.

(b) If π‘˜β‰₯3 then

Ξ¦Sel,πΏπ‘˜,0,π‘š(𝑧, 𝑧′,0) = 2 Ξ“(π‘˜) πœ‹π‘˜

βˆ‘οΈ

π‘€βˆˆΞ“0(𝑁)

(𝑧±𝑧′)βˆ’π‘˜

βƒ’

βƒ’

βƒ’π‘˜

𝑀

for(𝑧, 𝑧′)∈(HΓ—H)βˆ–π·Β±1. Here the weight π‘˜ action on the right-hand side can either be seen as an action in the variable 𝑧, or in the variable 𝑧′.

100

Proof. As in the proof of Lemma 5.3.2 we find that

|𝑧±𝑧′|2 2 Im(𝑧) Im(𝑧′) =

{οΈƒcosh(𝑑hyp(𝑧,βˆ’π‘§β€²)) + 1, if Β±1 = 1, cosh(𝑑hyp(𝑧, 𝑧′))βˆ’1, if Β±1 = βˆ’1,

for 𝑧, 𝑧′ ∈ H. Thus, the formula in part (a) follows directly from Proposition 5.3.3.

Moreover, if π‘š= 1 the given sum is clearly dominated by the hyperbolic kernel function 𝐾(𝑧,βˆ’π‘§β€²,Re(𝑠)), which is defined for Re(𝑠)>1. This proves the holomorphic continua-tion of the given theta lift forπ‘˜ = 0 and π‘š = 1 as claimed in (a). If π‘š=βˆ’1 we need to be more carefully:

Let π‘š = βˆ’1 and fix 𝑧, 𝑧′ ∈ H with 𝑧 ̸≑ 𝑧′ modulo Ξ“0(𝑁). Then we find πœ€ > 0 such that the set

{𝑀 βˆˆΞ“0(𝑁) : 𝑑hyp(𝑀 𝑧, 𝑧′)< πœ€}

is finite, and 𝐢 >0 such thattanh(π‘₯/2)β‰₯𝐢 for all π‘₯β‰₯πœ€. Hence cosh(𝑑hyp(𝑀 𝑧, 𝑧′))βˆ’1 = sinh(𝑑hyp(𝑀 𝑧, 𝑧′)) tanh

(︂𝑑hyp(𝑀 𝑧, 𝑧′) 2

)οΈ‚

β‰₯𝐢 sinh(𝑑hyp(𝑀 𝑧, 𝑧′)) for all 𝑀 βˆˆΞ“0(𝑁)with 𝑑hyp(𝑀 𝑧, 𝑧′)β‰₯πœ€, and thus

βƒ’

βƒ’

βƒ’

βƒ’

βˆ‘οΈ

π‘€βˆˆΞ“0(𝑁)

(︁

cosh(𝑑hyp(𝑀 𝑧, 𝑧′))βˆ’1)οΈβˆ’π‘ βƒ’

βƒ’

βƒ’

βƒ’

≀ βˆ‘οΈ

π‘€βˆˆΞ“0(𝑁) 𝑑hyp(𝑀 𝑧,𝑧′)<πœ€

(︁

cosh(𝑑hyp(𝑀 𝑧, 𝑧′))βˆ’1

)οΈβˆ’Re(𝑠)

+πΆβˆ’Re(𝑠) βˆ‘οΈ

π‘€βˆˆΞ“0(𝑁) 𝑑hyp(𝑀 𝑧,𝑧′)β‰₯πœ€

sinh(𝑑hyp(𝑀 𝑧, 𝑧′))βˆ’Re(𝑠)

for allπ‘ βˆˆCwithRe(𝑠)>2. Here the first sum is finite, and the second sum is dominated by the elliptic Eisenstein series 𝐸𝑧ellβ€²(𝑧,Re(𝑠)), which converges for Re(𝑠) > 1. This also proves the holomorphic continuation claimed in (a) in the case π‘š =βˆ’1.

Finally, we remark that part (b) is a trivial consequence of Proposition 5.3.3.

We now turn our attention to the theta lift of the PoincarΓ© series π‘„πΏπ‘˜,0,Β±1(𝜏, 𝑠) in the situation of the present lattice 𝐿. It turns out that for π‘š = βˆ’1 we exactly obtain the hyperbolic kernel function 𝐾(𝑧, 𝑧′, 𝑠), which we defined in Section 2.6.4. Using the relation between the hyperbolic kernel function and non-holomorphic Eisenstein series of weight 0 as given in Proposition 2.6.6 we are able to realize individual hyperbolic, parabolic and elliptic Eisenstein series.

Theorem 5.3.5. Let π‘˜ ∈Z with π‘˜ β‰₯0 even.

(a) The regularized theta lift of the PoincarΓ© series π‘„πΏπ‘˜,0,1(𝜏, 𝑠) for the present lattice 𝐿 of signature (2,2) is given by

Ξ¦Q,πΏπ‘˜,0,1(𝑧, 𝑧′, 𝑠) = 2 Ξ“(𝑠+π‘˜) (2πœ‹)𝑠+π‘˜

βˆ‘οΈ

π‘€βˆˆΞ“0(𝑁)

cosh(οΈ€

𝑑hyp(οΈ€

𝑧,βˆ’π‘§β€²)οΈ€)οΈ€βˆ’π‘ βˆ’π‘˜(οΈ‚

𝑧+𝑧′ Im(𝑧) Im(𝑧′)

)οΈ‚π‘˜ βƒ’

βƒ’

βƒ’

βƒ’π‘˜

𝑀 for 𝑧, 𝑧′ ∈ H and 𝑠 ∈ C with Re(𝑠) > 2βˆ’π‘˜/2. Here the weight π‘˜ action on the right-hand side can either be seen as an action in the variable 𝑧, or in the variable 𝑧′.

(b) The regularized theta lift of the PoincarΓ© series π‘„πΏπ‘˜,0,βˆ’1(𝜏, 𝑠) for the present lattice 𝐿 of signature (2,2) is given by

Ξ¦Q,πΏπ‘˜,0,βˆ’1(𝑧, 𝑧′, 𝑠) = 2 Ξ“(𝑠+π‘˜) (2πœ‹)𝑠+π‘˜

βˆ‘οΈ

π‘€βˆˆΞ“0(𝑁)

cosh(𝑑hyp(𝑧, 𝑧′))βˆ’π‘ βˆ’π‘˜

(οΈ‚ π‘§βˆ’π‘§β€² Im(𝑧) Im(𝑧′)

)οΈ‚π‘˜ βƒ’

βƒ’

βƒ’

βƒ’π‘˜

𝑀

for 𝑧, 𝑧′ ∈ H and 𝑠 ∈ C with Re(𝑠) > 2βˆ’π‘˜/2. Here the weight π‘˜ action on the right-hand side can either be seen as an action in the variable 𝑧, or in the variable 𝑧′.

Proof. By (4.4.4) we have

π‘ž(Im(𝑍))βˆ’π‘˜(πœ†, 𝑍𝐿)π‘˜ = 4π‘˜π‘ž(πœ†π‘§,𝑧′)π‘˜(πœ†, 𝑍𝐿(𝑧, 𝑧′))βˆ’π‘˜ for πœ†βˆˆπ‘‰ and 𝑍 =(︀𝑧 0

0 βˆ’π‘§β€²

)οΈ€ with 𝑧, 𝑧′ ∈H. Thus, part (b) of Theorem 5.1.3 states that Ξ¦Q,πΏπ‘˜,0,Β±1(𝑍, 𝑠) = 2 Ξ“(𝑠+π‘˜)

(2πœ‹)𝑠+π‘˜

βˆ‘οΈ

πœ†βˆˆπΏ0,Β±1

π‘žπ‘§,𝑧′(πœ†)βˆ’π‘ βˆ’π‘˜

(οΈ‚ 4π‘ž(πœ†π‘§,𝑧′) (πœ†, 𝑍𝐿(𝑧, 𝑧′)

)οΈ‚π‘˜

for 𝑧, 𝑧′ ∈ H and 𝑠 ∈ C with Re(𝑠) >2βˆ’π‘˜/2. Applying Lemma 5.3.1, equation (5.3.2) and Lemma 5.3.2 we obtain the claimed statement.

We are mainly interested in the following special case of part (b) of the previous theorem, which gives a realization of the hyperbolic kernel function of level 𝑁 defined in Section 2.6.4 as the (regularized) theta lift of the non-holomorphic PoincarΓ© series 𝑄𝐿0,0,βˆ’1(𝜏, 𝑠) of weight 0.

Corollary 5.3.6. The regularized theta lift of the PoincarΓ© series 𝑄𝐿0,0,βˆ’1(𝜏, 𝑠) for the present lattice 𝐿 of signature (2,2)is given by

Ξ¦Q,𝐿0,0,βˆ’1(𝑧, 𝑧′, 𝑠) = 2 Ξ“(𝑠)

(2πœ‹)𝑠 𝐾(𝑧, 𝑧′, 𝑠)

for 𝑧, 𝑧′ ∈ H and 𝑠 ∈ C with Re(𝑠) > 2. Here right-hand side yields a holomorphic continuation of the lift Ξ¦Q,𝐿0,0,βˆ’1(𝑧, 𝑧′, 𝑠) in 𝑠 to the half-plane Re(𝑠)>1.

Proof. Part (b) of Theorem 5.3.5 states that Ξ¦Q,𝐿0,0,βˆ’1(𝑧, 𝑧′, 𝑠) = 2 Ξ“(𝑠)

(2πœ‹)𝑠

βˆ‘οΈ

π‘€βˆˆΞ“0(𝑁)

cosh(𝑑hyp(𝑀 𝑧, 𝑧′))βˆ’π‘ 

for 𝑧, 𝑧′ ∈H and π‘ βˆˆC with Re(𝑠)>2, which proves the given identity.

Applying the previous corollary to Proposition 2.6.6 we obtain the following technical realization of individual hyperbolic, parabolic and elliptic Eisenstein series:

Proposition 5.3.7.

102

(a) Let 𝑐 be a closed geodesic in H. Then 𝐸𝑐hyp(𝑧, 𝑠) = πœ‹π‘ 

Ξ“(𝑠/2)2

∫︁

[𝑐]

Ξ¦Q,𝐿0,0,βˆ’1(𝑧, 𝑀, 𝑠)𝑑𝑠(𝑀) for 𝑧 ∈H and 𝑠 ∈C with Re(𝑠)>1.

(b) Let 𝑝 be a cusp and let 𝑣 >1. Then 𝐸𝑝par(𝑧, 𝑠) = 2π‘ βˆ’1

4 π‘£π‘ βˆ’1

∞

βˆ‘οΈ

𝑛=0

πœ‹π‘ +2π‘›βˆ’1/2 𝑛! Ξ“(𝑠+𝑛+ 1/2)

∫︁ 1 0

Ξ¦Q,𝐿0,0,βˆ’1(𝑧, πœŽπ‘(𝑒+𝑖𝑣), 𝑠+ 2𝑛)𝑑𝑒

for 𝑧 ∈ H with Im(𝑀 𝑧) < 𝑣 for all 𝑀 ∈ Ξ“0(𝑁) and 𝑠 ∈ C with Re(𝑠) > 1. Here πœŽπ‘ ∈SL2(R)is a scaling matrix for the cusp𝑝, and the right-hand side of the equation is independent of 𝑣.

(c) Let π‘€βˆˆH. Then

𝐸𝑀ell(𝑧, 𝑠) = (2πœ‹)𝑠 2 ord(𝑀)

∞

βˆ‘οΈ

𝑛=0

(2πœ‹)2𝑛(𝑠/2)𝑛

𝑛! Ξ“(𝑠+ 2𝑛) Ξ¦Q,𝐿0,0,βˆ’1(𝑧, 𝑀, 𝑠+ 2𝑛) for 𝑧 ∈Hβˆ–Ξ“0(𝑁)𝑀 and π‘ βˆˆC with Re(𝑠)>1.

Proof. By Corollary 5.3.6 we have

𝐾(𝑧, 𝑧′, 𝑠) = (2πœ‹)𝑠

2 Ξ“(𝑠)Ξ¦Q,𝐿0,0,βˆ’1(𝑧, 𝑧′, 𝑠)

for 𝑧, 𝑧′ ∈H and 𝑠 ∈ C with Re(𝑠)> 1. Thus, part (a) and (c) follow directly from the corresponding parts (a) and (c) of Proposition 2.6.6. Furthermore, several applications of the well-known duplication formula of the Gamma function yield

(2πœ‹)𝑠+2𝑛

2 Ξ“(𝑠+ 2𝑛)Β· 2𝑠Γ(𝑠)2

4πœ‹Ξ“(2𝑠) Β·(𝑠/2)𝑛(𝑠/2 + 1/2)𝑛

(𝑠+ 1/2)𝑛 = πœ‹π‘ +2π‘›βˆ’1/2 4 Ξ“(𝑠+𝑛+ 1/2).

Together with part (b) of Proposition 2.6.6 we hence also obtain part (b) of the present proposition.

Remark 5.3.8.

(1) If we could establish the meromorphic continuation of the regularized theta lift Ξ¦Q,𝐿0,0,βˆ’1(𝑧, 𝑀, 𝑠) in 𝑠 to 𝑠= 0, part (a) of Proposition 5.3.7 would yield another proof of the Kronecker limit type formula

𝐸𝑐hyp(𝑧, 𝑠) =𝑂(𝑠2)

as 𝑠→0, for𝑐 a closed geodesic (compare equation (2.6.5)).

(2) Ignoring convergence, part (c) of Proposition 5.3.7 yields the formal identity 𝐸𝑀ell(𝑧, 𝑠) = 1

2 ord(𝑀) lim

π‘‡β†’βˆž

∫︁

ℱ𝑇

βŸ¨π‘„(𝜏, 𝑠),˜ Θ𝐿,0(𝜏,(𝑧, 𝑀))⟩

π‘‘πœ‡(𝜏), where we set

𝑄(𝜏, 𝑠) := (2πœ‹)˜ 𝑠

∞

βˆ‘οΈ

𝑛=0

(2πœ‹)2𝑛(𝑠/2)𝑛

𝑛! Ξ“(𝑠+ 2𝑛) 𝑄𝐿0,0,βˆ’1(𝜏, 𝑠+ 2𝑛).

Applying two times the duplication formula of the Gamma function we find that (2πœ‹)2𝑛(𝑠/2)𝑛

Ξ“(𝑠+ 2𝑛) = πœ‹2𝑛

(𝑠/2 + 1/2)𝑛Γ(𝑠).

Hence, we can use Remark 3.6.11 to see that the function 𝑄(𝜏, 𝑠)˜ is essentially the Maass-Selberg PoincarΓ© series 𝑀0,0,βˆ’1𝐿 (𝜏, 𝑠)given in Definition 3.6.10, namely

𝑄(𝜏, 𝑠) =˜ (2πœ‹)𝑠 Ξ“(𝑠)

∞

βˆ‘οΈ

𝑛=0

πœ‹2𝑛

𝑛! (𝑠/2 + 1/2)𝑛𝑄𝐿0,0,βˆ’1(𝜏, 𝑠+ 2𝑛) = πœ‹π‘ /2

Ξ“(𝑠)𝑀0,0,βˆ’1𝐿 (𝜏, 𝑠).

Therefore, up to the factorπœ‹π‘ /2/(2 ord(𝑀)Ξ“(𝑠))the elliptic Eisenstein series𝐸𝑀ell(𝑧, 𝑠) is the formal Borcherds lift of the PoincarΓ© series 𝑀0,0,βˆ’1𝐿 (𝜏, 𝑠).

5.4 The elliptic Eisenstein series as a theta lift of