• Keine Ergebnisse gefunden

Given that the Golgi is implicated in cell migration and polarity, it is not surprising to find that the Golgi is also important for tumorigenesis or for metastatic dissemination of tumor cells.

Indeed, the structure of the Golgi is altered in many cancers 111, 112 and some Golgi resident proteins have been implicated in controlling tumor formation. Surprisingly, however, none of these proteins is implicated in tumorigenesis because of a function in cell migration and polarity. The first Golgi protein to be linked with cancer was GOLPH3 75. GOLPH3 is a component of the TGN that regulates retrograde transport of proteins from endosomes to the TGN. GOLPH3 is often amplified in different tumors. In vitro, GOLPH3 knockdown reduces anchorage independent growth and proliferation, while its overexpression enhances these processes as well as H-Ras driven transformation. GOLPH3 interacts with VPS35, a protein of

Introduction – Secretory Pathway - 72

the retromer 113. VPS35 was shown to regulate mTOR activity in yeast 114 and accordingly, GOLPH3 overexpression resulted in increased mTOR activity, as assessed by phosphorylation levels of Akt (downstream of mTORC2) and S6K (downstream of mTORC1). Cells overexpressing GOLPH3 gave rise to bigger tumors in mouse xenotransplants. Finally, tumors overexpressing GOLPH3 resulted to be more sensitive to the mTOR inhibitor Rapamycin 75. The study by Scott et al. provided for the first time a mechanistic insight by which a Golgi protein can regulate tumor progression. However, more work is necessary to fully understand the role of GOLPH3 in cancer.

GM130 has ben also linked to cancer. Reduction of GM130 levels by aerosol delivery of shRNA resulted in reduction of tumor growth in the mouse lung 115. The study hints that GM130 loss leads to increased levels of autophagy and reduced proliferation. Even if the proposed mechanism is not completely clear, the finding that a Golgi resident protein is important in cancer is interesting and further studies will be necessary to understand the link between Golgi and cancer.

Figure 1 – Schematic of some of the signaling routes to and from the secretory pathway described in this introduction.

Introduction – Secretory Pathway - 73

References

1. Schweizer, A. et al. Identification of an intermediate compartment involved in protein transport from endoplasmic reticulum to Golgi apparatus. Eur J Cell Biol 53, 185-196 (1990).

2. Ben-Tekaya, H., Miura, K., Pepperkok, R. & Hauri, H.-P. Live imaging of bidirectional traffic from the ERGIC. Journal of Cell Science 118, 357-367 (2005).

3. Presley, J.F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81-85 (1997).

4. Rabouille, C. et al. Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. Journal of Cell Science 108, 1617-1627 (1995).

5. Spang, A. On vesicle formation and tethering in the ER–Golgi shuttle. Current Opinion in Cell Biology 21, 531-536 (2009).

6. Matsuoka, K. et al. COPII-Coated Vesicle Formation Reconstituted with Purified Coat Proteins and Chemically Defined Liposomes. Cell 93, 263-275 (1998).

7. Mancias, J.D. & Goldberg, J. Structural basis of cargo membrane protein discrimination by the human COPII coat machinery. The EMBO Journal 27, 2918-2928 (2008).

8. Watson, P., Townley, A.K., Koka, P., Palmer, K.J. & Stephens, D.J. Sec16 Defines Endoplasmic Reticulum Exit Sites and is Required for Secretory Cargo Export in Mammalian Cells. Traffic (Copenhagen, Denmark) 7, 1678-1687 (2006).

9. Bhattacharyya, D. & Glick, B.S. Two Mammalian Sec16 Homologues Have Nonredundant Functions in Endoplasmic Reticulum (ER) Export and Transitional ER Organization. Molecular Biology of the Cell 18, 839-849 (2007).

10. Connerly, P.L. et al. Sec16 is a Determinant of Transitional ER Organization. Current Biology 15, 1439-1447 (2005).

11. Ivan, V. et al. Drosophila Sec16 Mediates the Biogenesis of tER Sites Upstream of Sar1 through an Arginine-Rich Motif. Molecular Biology of the Cell 19, 4352-4365 (2008).

12. Hughes, H. et al. Organisation of human ER-exit sites: requirements for the localisation of Sec16 to transitional ER. Journal of Cell Science 122, 2924-2934 (2009).

13. Szul, T. & Sztul, E. COPII and COPI Traffic at the ER-Golgi Interface. Physiology 26, 348-364 (2011).

14. D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond.

Nat Rev Mol Cell Biol 7, 347-358 (2006).

15. Moelleken, J. et al. Differential localization of coatomer complex isoforms within the Golgi apparatus. Proc Natl Acad Sci U S A 104, 4425-4430 (2007).

16. Wegmann, D., Hess, P., Baier, C., Wieland, F.T. & Reinhard, C. Novel Isotypic γ/ζ Subunits Reveal Three Coatomer Complexes in Mammals. Molecular and Cellular Biology 24, 1070-1080 (2004).

17. Malsam, J., Satoh, A., Pelletier, L. & Warren, G. Golgin Tethers Define Subpopulations of COPI Vesicles. Science 307, 1095-1098 (2005).

18. Lanoix, J. et al. Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. The Journal of Cell Biology 155, 1199-1212 (2001).

19. Orci, L. et al. Anterograde flow of cargo across the Golgi stack potentially mediated via bidirectional “percolating” COPI vesicles. Proceedings of the National Academy of Sciences 97, 10400-10405 (2000).

Introduction – Secretory Pathway - 74

20. Yang, J.-S. et al. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. The Journal of Cell Biology 159, 69-78 (2002).

21. Moyer, Bryan D., Allan, Bernard B. & Balch, William E. Rab1 Interaction with a GM130 Effector Complex Regulates COPII Vesicle cis-Golgi Tethering. Traffic 2, 268-276 (2001).

22. Short, B. et al. A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. The Journal of Cell Biology 155, 877-884 (2001).

23. Scales, S.J., Pepperkok, R. & Kreis, T.E. Visualization of ER-to-Golgi Transport in Living Cells Reveals a Sequential Mode of Action for COPII and COPI. Cell 90, 1137-1148 (1997).

24. Sohda, M. et al. Interaction of Golgin-84 with the COG Complex Mediates the Intra-Golgi Retrograde Transport. Traffic 11, 1552-1566 (2010).

25. Cai, Y. et al. The Structural Basis for Activation of the Rab Ypt1p by the TRAPP Membrane-Tethering Complexes. Cell 133, 1202-1213 (2008).

26. Chen, S. et al. Trs65p, a subunit of the Ypt1p GEF TRAPPII, interacts with the Arf1p exchange factor Gea2p to facilitate COPI-mediated vesicle traffic. Molecular Biology of the Cell 22, 3634-3644 (2011).

27. Alvarez, C., Garcia-Mata, R., Brandon, E. & Sztul, E. COPI Recruitment Is Modulated by a Rab1b-dependent Mechanism. Molecular Biology of the Cell 14, 2116-2127 (2003).

28. Volchuk, A. et al. Megavesicles Implicated in the Rapid Transport of Intracisternal Aggregates across the Golgi Stack. Cell 102, 335-348 (2000).

29. Bonfanti, L. et al. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95, 993-1003 (1998).

30. Glick, B.S. & Luini, A. Models for Golgi Traffic: A Critical Assessment. Cold Spring Harbor Perspectives in Biology 3 (2011).

31. Orci, L., Amherdt, M., Ravazzola, M., Perrelet, A. & Rothman, J.E. Exclusion of Golgi Residents from Transport Vesicles Budding from Golgi Cisternae in Intact Cells. The Journal of Cell Biology 150, 1263-1270 (2000).

32. Trucco, A. et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6, 1071-1081 (2004).

33. Deborde, S. et al. Clathrin is a key regulator of basolateral polarity. Nature 452, 719-723 (2008).

34. Anitei, M. & Hoflack, B. Exit from the trans-Golgi network: from molecules to mechanisms. Curr Opin Cell Biol 23, 443-451 (2011).

35. Deborde, S. et al. Clathrin is a key regulator of basolateral polarity. Nature 452, 719-723 (2008).

36. Mostov, K.E., de Bruyn Kops, A. & Deitcher, D.L. Deletion of the cytoplasmic domain of the polymeric immunoglobulin receptor prevents basolateral localization and endocytosis. Cell 47, 359-364 (1986).

37. De Matteis, M.A. & Luini, A. Exiting the Golgi complex. Nat Rev Mol Cell Biol 9, 273-284 (2008).

38. Yeaman, C. et al. The O-glycosylated Stalk Domain Is Required for Apical Sorting of Neurotrophin Receptors in Polarized MDCK Cells. The Journal of Cell Biology 139, 929-940 (1997).

39. Schuck, S. & Simons, K. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. Journal of Cell Science 117, 5955-5964 (2004).

40. Rodriguez-Boulan, E. & Müsch, A. Protein sorting in the Golgi complex: Shifting paradigms. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1744, 455-464 (2005).

Introduction – Secretory Pathway - 75

41. Mellman, I. & Nelson, W.J. Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9, 833-845 (2008).

42. Bard, F. & Malhotra, V. The formation of TGN-to-plasma-membrane transport carriers.

Annu Rev Cell Dev Biol 22, 439-455 (2006).

43. Simmen, T., Honing, S., Icking, A., Tikkanen, R. & Hunziker, W. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nat Cell Biol 4, 154-159 (2002).

44. Wakana, Y. et al. A new class of carriers that transport selective cargo from the trans Golgi network to the cell surface. The EMBO Journal 31, 3976-3990 (2012).

45. Müsch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. The EMBO Journal 20, 2171-2179 (2001).

46. Egorov, M.V. et al. Faciogenital Dysplasia Protein (FGD1) Regulates Export of Cargo Proteins from the Golgi Complex via Cdc42 Activation. Molecular Biology of the Cell 20, 2413-2427 (2009).

47. Farhan, H. et al. MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening. The Journal of Cell Biology 189, 997-1011 (2010).

48. Farhan, H. & Rabouille, C. Signalling to and from the secretory pathway. Journal of Cell Science 124, 171-180 (2011).

49. Farhan, H., Weiss, M., Tani, K., Kaufman, R.J. & Hauri, H.P. Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load. The EMBO Journal 27, 2043-2054 (2008).

50. Zacharogianni, M. et al. ERK7 is a negative regulator of protein secretion in response to amino-acid starvation by modulating Sec16 membrane association. The EMBO Journal 30, 3684-3700 (2011). mechanism for Golgi checkpoint signalling. Embo j 24, 753-765 (2005).

54. Lowe, M., Gonatas, N.K. & Warren, G. The Mitotic Phosphorylation Cycle of the Cis-Golgi Matrix Protein Gm130. The Journal of Cell Biology 149, 341-356 (2000).

55. Wang, Y., Seemann, J., Pypaert, M., Shorter, J. & Warren, G. A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. Embo j 22, 3279-3290 (2003).

56. Lowe, M. et al. Cdc2 Kinase Directly Phosphorylates the cis-Golgi Matrix Protein GM130 and Is Required for Golgi Fragmentation in Mitosis. Cell 94, 783-793 (1998).

57. Sutterlin, C., Hsu, P., Mallabiabarrena, A. & Malhotra, V. Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells.

Cell 109, 359-369 (2002).

58. Jesch, S.A., Lewis, T.S., Ahn, N.G. & Linstedt, A.D. Mitotic Phosphorylation of Golgi Reassembly Stacking Protein 55 by Mitogen-activated Protein Kinase ERK2. Molecular Biology of the Cell 12, 1811-1817 (2001).

59. Shaul, Y.D. & Seger, R. ERK1c regulates Golgi fragmentation during mitosis. The Journal of Cell Biology 172, 885-897 (2006).

Introduction – Secretory Pathway - 76

60. Yadav, S., Puri, S. & Linstedt, A.D. A Primary Role for Golgi Positioning in Directed Secretion, Cell Polarity, and Wound Healing. Molecular Biology of the Cell 20, 1728-1736 (2009).

61. Preisinger, C. et al. YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14-3-3zeta. J Cell Biol 164, 1009-1020 (2004).

62. Maag, R.S., Mancini, M., Rosen, A. & Machamer, C.E. Caspase-resistant Golgin-160 Disrupts Apoptosis Induced by Secretory Pathway Stress and Ligation of Death Receptors. Molecular Biology of the Cell 16, 3019-3027 (2005).

63. Mancini, M. et al. Caspase-2 Is Localized at the Golgi Complex and Cleaves Golgin-160 during Apoptosis. The Journal of Cell Biology 149, 603-612 (2000).

64. Hicks, S.W. & Machamer, C.E. Golgi structure in stress sensing and apoptosis.

Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1744, 406-414 (2005).

65. Lane, J.D. et al. Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. The Journal of Cell Biology 156, 495-509 (2002).

66. Lowe, M., Lane, J.D., Woodman, P.G. & Allan, V.J. Caspase-mediated cleavage of syntaxin 5 and giantin accompanies inhibition of secretory traffic during apoptosis. J Cell Sci 117, 1139-1150 (2004).

67. Chiu, R., Novikov, L., Mukherjee, S. & Shields, D. A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis. The Journal of Cell Biology 159, 637-648 (2002).

68. Cheng, J.P.X. et al. Caspase cleavage of the Golgi stacking factor GRASP65 is required for Fas/CD95-mediated apoptosis. Cell Death and Dis 1, e82 (2010).

69. Hicks, S.W. & Machamer, C.E. The NH2-terminal Domain of Golgin-160 Contains Both Golgi and Nuclear Targeting Information. Journal of Biological Chemistry 277, 35833-35839 (2002).

70. Chiu, V.K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4, 343-350 (2002).

71. Bivona, T.G. et al. Phospholipase C[gamma] activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424, 694-698 (2003).

72. Matallanas, D. et al. Distinct Utilization of Effectors and Biological Outcomes Resulting from Site-Specific Ras Activation: Ras Functions in Lipid Rafts and Golgi Complex Are Dispensable for Proliferation and Transformation. Molecular and Cellular Biology 26, 100-116 (2006).

73. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651-657 (2006).

74. Mayinger, P. Signaling at the Golgi. Cold Spring Harbor Perspectives in Biology 3 (2011).

75. Scott, K.L. et al. GOLPH3 modulates mTOR signalling and rapamycin sensitivity in cancer.

Nature 459, 1085-1090 (2009).

76. Kupfer, A., Louvard, D. & Singer, S.J. Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci U S A 79, 2603-2607 (1982).

77. ten Klooster, J.P. et al. Mst4 and Ezrin Induce Brush Borders Downstream of the Lkb1/Strad/Mo25 Polarization Complex. Developmental Cell 16, 551-562 (2009).

78. Matsuki, T. et al. Reelin and Stk25 Have Opposing Roles in Neuronal Polarization and Dendritic Golgi Deployment. Cell 143, 826-836 (2010).

Introduction – Secretory Pathway - 77

79. Gloerich, M. et al. Rap2A links intestinal cell polarity to brush border formation. Nat Cell Biol 14, 793-801 (2012).

80. Zhang, S. et al. The tumor suppressor LKB1 regulates lung cancer cell polarity by mediating cdc42 recruitment and activity. Cancer Res 68, 740-748 (2008).

81. de Anda, F.C. et al. Centrosome localization determines neuronal polarity. Nature 436, 704-708 (2005).

82. Jareb, M. & Banker, G. Inhibition of axonal growth by brefeldin A in hippocampal neurons in culture. J Neurosci 17, 8955-8963 (1997).

83. Horton, A.C. et al. Polarized Secretory Trafficking Directs Cargo for Asymmetric Dendrite Growth and Morphogenesis. Neuron 48, 757-771 (2005).

84. Tanabe, K. et al. Atypical Protein Kinase C Regulates Primary Dendrite Specification of Cerebellar Purkinje Cells by Localizing Golgi Apparatus. The Journal of Neuroscience 30, 16983-16992 (2010).

85. Ye, B. et al. Growing Dendrites and Axons Differ in Their Reliance on the Secretory Pathway. Cell 130, 717-729 (2007).

86. Kupfer, A. & Dennert, G. Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells. J Immunol 133, 2762-2766 (1984).

87. Stinchcombe, J.C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G.M. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462-465 (2006).

88. Trambas, C.M. & Griffiths, G.M. Delivering the kiss of death. Nat Immunol 4, 399-403 (2003).

89. Etienne-Manneville, S. & Hall, A. Integrin-Mediated Activation of Cdc42 Controls Cell Polarity in Migrating Astrocytes through PKCζ. Cell 106, 489-498 (2001).

90. Palazzo, A.F. et al. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Current Biology 11, 1536-1541 (2001).

91. Osmani, N., Peglion, F., Chavrier, P. & Etienne-Manneville, S. Cdc42 localization and cell polarity depend on membrane traffic. The Journal of Cell Biology 191, 1261-1269 (2010).

92. Pu, J. & Zhao, M. Golgi polarization in a strong electric field. Journal of Cell Science 118, 1117-1128 (2005).

93. Schmoranzer, J., Kreitzer, G. & Simon, S.M. Migrating fibroblasts perform polarized, microtubule-dependent exocytosis towards the leading edge. Journal of Cell Science 116, 4513-4519 (2003).

94. Chabin-Brion, K. et al. The Golgi Complex Is a Microtubule-organizing Organelle.

Molecular Biology of the Cell 12, 2047-2060 (2001).

95. Efimov, A. et al. Asymmetric CLASP-Dependent Nucleation of Noncentrosomal Microtubules at the trans-Golgi Network. Developmental Cell 12, 917-930 (2007).

96. Rivero, S., Cardenas, J., Bornens, M. & Rios, R.M. Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. The EMBO Journal 28, 1016-1028 (2009).

Introduction – Secretory Pathway - 78

99. Sato, Y. et al. MTCL1 crosslinks and stabilizes non-centrosomal microtubules on the Golgi membrane. Nat Commun 5 (2014).

100. Sato, Y. et al. The novel PAR-1-binding protein MTCL1 has crucial roles in organizing microtubules in polarizing epithelial cells. Journal of Cell Science 126, 4671-4683 (2013).

101. Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat Cell Biol 4, 513-518 (2002).

102. Bisel, B. et al. ERK regulates Golgi and centrosome orientation towards the leading edge through GRASP65. The Journal of Cell Biology 182, 837-843 (2008).

103. Feinstein, T.N. & Linstedt, A.D. GRASP55 regulates Golgi ribbon formation. Mol Biol Cell 19, 2696-2707 (2008).

104. Duran, J.M. et al. The Role of GRASP55 in Golgi Fragmentation and Entry of Cells into Mitosis. Molecular Biology of the Cell 19, 2579-2587 (2008).

105. Rı ́os, R.M., Sanchı ́s, A., Tassin, A.M., Fedriani, C. & Bornens, M. GMAP-210 Recruits γ-Tubulin Complexes to cis-Golgi Membranes and Is Required for Golgi Ribbon Formation.

Cell 118, 323-335 (2004).

106. Kodani, A. & Sütterlin, C. The Golgi Protein GM130 Regulates Centrosome Morphology and Function. Molecular Biology of the Cell 19, 745-753 (2008).

107. Kodani, A., Kristensen, I., Huang, L. & Sütterlin, C. GM130-dependent Control of Cdc42 Activity at the Golgi Regulates Centrosome Organization. Molecular Biology of the Cell 20, 1192-1200 (2009).

108. Salazar, M.A. et al. Tuba, a Novel Protein Containing Bin/Amphiphysin/Rvs and Dbl Homology Domains, Links Dynamin to Regulation of the Actin Cytoskeleton. Journal of Biological Chemistry 278, 49031-49043 (2003).

109. Baschieri, F. et al. Spatial control of Cdc42 signalling by a GM130–RasGRF complex regulates polarity and tumorigenesis. Nat Commun 5 (2014).

110. Kovacs, E.M., Makar, R.S. & Gertler, F.B. Tuba stimulates intracellular N-WASP-dependent actin assembly. J Cell Sci 119, 2715-2726 (2006).

111. Kellokumpu, S., Sormunen, R. & Kellokumpu, I. Abnormal glycosylation and altered Golgi structure in colorectal cancer: dependence on intra-Golgi pH. FEBS Letters 516, 217-224 (2002).

112. Weller, S.G. et al. Src kinase regulates the integrity and function of the Golgi apparatus via activation of dynamin 2. Proc Natl Acad Sci U S A 107, 5863-5868 (2010).

113. Bonifacino, J.S. & Hurley, J.H. Retromer. Current Opinion in Cell Biology 20, 427-436 (2008).

114. Xie, M.W. et al. Insights into TOR function and rapamycin response: Chemical genomic profiling by using a high-density cell array method. Proceedings of the National Academy of Sciences of the United States of America 102, 7215-7220 (2005).

115. Chang, S.-H. et al. GOLGA2/GM130, cis-Golgi Matrix Protein, is a Novel Target of Anticancer Gene Therapy. Molecular Therapy 20, 2052-2063 (2012).