• Keine Ergebnisse gefunden

Material and methods

CHAPTER 5 to a generalized formula (fg C cell-1= 133.754 x V0.438)

used for bacterial cells larger than 0.025 um3 (65).

From this a single-cell assimilation rate was calculated based on the 13C enrichment, the measured labelling percent, and divided by the incubation period. The contribution of SUP05 bacteria to CO2 fixation was calculated using the single-cell CO2 fixation rate (fmol C cell-1d-1) and the SUP05 cell densities (cells mL-1).

The percent contribution of SUP05 to bulk carbon fixation was calculated from the SUP05 CO2 fixation rate divided by the bulk CO2 fixation rate.

The sulfide, sulfur and nitrate fluxes shown in Table 1 were determined at the chemocline at station U1 from 30-40 m, 20-30 m, and 12-30 m depth, respectively. The eddy diffusivity (1.4 x 10-4 m2 s-1) was determined for the mid to upper shelf of the Peruvian upwelling region from microstructure profiles (Schlosser et al., in prep). A negative value indicates an upward water column flux.

The environmental growth factor was calculated from the chemocline using the measured SUP05 CO2 fixation rate divided by the measured denitrification rate at 30 m, assuming that SUP05 was primarily responsible for measured denitrification rate (lower value) or 68% of measured denitrification (denitri-fication based on total sulfide flux; upper value). We convert this growth factor using Eq. 3 to arrive a sulfide oxidation growth factor.

Remote sensing imagery

Remote sensing imagery was acquired by Moderate Resolution Imaging Spectroradiometer (MODIS) downloaded from the NASA Ocean Colour Database (www.oceancolor.gsfc.nasa.gov/cms/). Level 2 and 3 data were processed using SeaDAS software ver-sion 7.3.1 (www.seadas.gsfc.nasa.gov/). Sea surface satellite altimetry images were downloaded from the Colorado Center for Astrodynamics Research (www.

eddy.colorado.edu/ccar/ssh/nrt_global_grid_viewer).

Data Availability

Metagenomic and 16S rRNA contigs were submitted to the NCBI database under the accession number

(XXXXXXX-XXXXXXX application pending).

Water column nutrients and physical data are avail-able at Pangaea: https://doi.pangaea.de/10.1594/

PANGAEA.860727; while station sulfur chemistry, SUP05 cell densities and rate process measurements have been submitted to Pangea: https://doi.pangaea.

de/10.1594/PANGAEA.876062.

Author Contributions

C.M.C., G.L., T.G.F., B.F., H.G-V., S.T., and M.M.M.K.

designed the study; C.M.C., H.G-V., P.F.H., S.L., N.J.S., T.K., S.T., and H.S. performed experiments; C.M.C., G.L., T.G.F., H.G-V., P.F.H., S.L., N.J.S., T.K., S.T., H.S., C.L and R.A.S. analysed data; C.M.C., G.L., T.G.F., and M.M.M.K. wrote the manuscript with input from all co-authors.

Acknowledgements

We are grateful to the Peruvian authorities, the captain and crew of the RV Meteor, chief scientist T. Kanzow, C. Schelten for administrative support, and P. Lam, and G. Klockgether for extensive onboard experi-mental and analytical support. M. Dengler graciously provided pre-publication eddy diffusion coefficients, and the MPI Plön assisted with sequencing. This work was supported by the Max Planck Society for the Advancement of Science and the German National Science Foundation (DFG) Sonderforschungsbereich (SFB754) GEOMAR, Kiel. CMC was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) scholarship.

References

1. ‘†‹•’‘–‹ǡ‡–ƒŽǤȋ͸ͶͶͷȌŠ‡‘…‡ƒ‹…ϔ‹š‡†‹–”‘‰‡

and nitrous oxide budgets: Moving targets as we enter

–Š‡ƒ–Š”‘’‘…‡‡ǫ…‹‡–‹ƒƒ”‹ƒͼͻȋ͸Ȍǣ;ͻǦͷͶͻǤ 2. Lam P & Kuypers MMM (2011) Microbial nitrogen

cycling processes in oxygen minimum zones. Ann Rev Mar Sci 3:317-345.

3. ”—„‡”Ƭƒ”‹‡–‘ȋͷͿͿͽȌŽ‘„ƒŽ’ƒ––‡”•‘ˆ

ƒ”‹‡‹–”‘‰‡ϔ‹šƒ–‹‘ƒ††‡‹–”‹ϔ‹…ƒ–‹‘ǤŽ‘„ƒŽ

Biogeochemical Cycles 11(2):235-266.

99 4. Naqvi SWA, et al. (2000) Increased marine

produc-tion of N2O due to intensifying anoxia on the Indian …‘–‹‡–ƒŽ•Š‡ŽˆǤƒ–—”‡ͺͶ;ȋͼ;ͷͶȌǣ͹ͺͼǦ͹ͺͿǤ 5. …Š—…ǡ‡–ƒŽǤȋ͸Ͷͷ͹Ȍ‹ƒ–Š›†”‘‰‡•—Žϔ‹†‡’Ž—‡

in the oxygen minimum zone off Peru supports

chemo-Ž‹–Š‘ƒ—–‘–”‘’Š›Ǥ‘‡;ȋ;Ȍǣ‡ͼ;ͼͼͷǤ

6. ƒ˜‹ǡ‡–ƒŽǤȋ͸ͶͶͿȌ‡–‘š‹ϔ‹…ƒ–‹‘‘ˆ•—Ž’Š‹†‹…ˆ”‹…ƒ

shelf waters by blooming chemolithotrophs. Nature ͺͻͽȋͽ͸͸ͿȌǣͻ;ͷǦͻ;ͺǤ

7. ƒŽžǡ ƒï†‡œǡŠƒ†”—’ǡƒ–‹„žÓ‡œ ǡƬ ƒ”Àƒ•ȋ͸ͶͷͺȌ‡’‘”ƒŽ†›ƒ‹…•‘ˆ‹–”‘‰‡Ž‘••

in the coastal upwelling ecosystem off central Chile:

˜‹†‡…‡‘ˆƒ—–‘–”‘’Š‹…†‡‹–”‹ϔ‹…ƒ–‹‘–Š”‘—‰Š•—Žϔ‹†‡

‘š‹†ƒ–‹‘Ǥ‹‘Ž‘‰›ƒ†…‡ƒ‘‰”ƒ’Š›ͻͿȋͼȌǣͷ;ͼͻǦ ͷ;ͽ;Ǥ

8. ‡‡•ǡ—””‹‡ǡƬƒ—ȋ͸ͶͶ͸Ȍƒ–‡ŽŽ‹–‡‹ƒ‰‹‰ǣ Massive emissions of toxic gas in the Atlantic. Nature ͺͷͻȋͼ;ͽͷȌǣͺͿ͹ǦͺͿͺǤ

9. ‡‡•ǡ—””‹‡ǡƒ—ǡƬ‡ƒ”†ȋ͸ͶͶͺȌ›-drogen sulphide eruptions in the Atlantic Ocean off southern Africa: implications of a new view based on

‡ƒ‹ •ƒ–‡ŽŽ‹–‡‹ƒ‰‡”›Ǥ‡‡’‡ƒ‡•‡ƒ”…Šƒ”–

I: Oceanographic Research Papers 51(2):153-172.

10.

Š†‡ǡ‹‡‰‡Žǡ‡‹éƒǡƬ‡”–Šȋ͸ͶͶͽȌ†‡-–‹ϔ‹…ƒ–‹‘ƒ†‹˜‡•–‹‰ƒ–‹‘‘ˆ•—Ž’Š—”’Ž—‡•ƒŽ‘‰–Š‡

ƒ‹„‹ƒ…‘ƒ•–—•‹‰–Š‡•‡•‘”Ǥ‘–‹‡–ƒŽ

Shelf Research 27(6):744-756.

11. Walsh DA, et al. (2009) Metagenome of a versatile chemolithoautotroph from expanding oceanic dead

œ‘‡•Ǥ…‹‡…‡͹͸ͼȋͻͿͻ͸Ȍǣͻͽ;Ǧͻ;͸Ǥ

12. Hawley AK, Brewer HM, Norbeck AD, Pasa-Tolic L, &

ƒŽŽƒȋ͸ͶͷͺȌ‡–ƒ’”‘–‡‘‹…•”‡˜‡ƒŽ•†‹ˆˆ‡”‡–‹ƒŽ

modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proceedings of the National Academy of Sciences of the United States of America 111(31):11395-11400.

13.ƒϔ‹‡Ž†ǡ‡–ƒŽǤȋ͸ͶͷͶȌ…”›’–‹…•—Žˆ—”…›…Ž‡‹

oxygen-minimum-zone waters off the Chilean coast.

…‹‡…‡͹͹ͶȋͼͶͶͿȌǣͷ͹ͽͻǦͷ͹ͽ;Ǥ

14. —…Š•ǡ‘‡„‡ǡ—„‘˜ǡ—”‹ŽŽǡƬƒ

ȋ͸ͶͶͻȌ‘Ž‡…—Žƒ”‹†‡–‹ϔ‹…ƒ–‹‘‘ˆ’‹…‘’Žƒ–‘

populationsin contrasting waters of the Arabian Sea.

“—ƒ–‹…‹…”‘„‹ƒŽ…‘Ž‘‰›͹Ϳȋ͸ȌǣͷͺͻǦͷͻͽǤ

15. –‡˜‡•ƬŽŽ‘ƒȋ͸ͶͶ;Ȍƒ…–‡”‹ƒŽ†‹˜‡”•‹–›‹–Š‡

oxygen minimum zone of the eastern tropical South

ƒ…‹ϔ‹…Ǥ˜‹”‘‡–ƒŽ‹…”‘„‹‘Ž‘‰›ͷͶȋͻȌǣͷ͸ͺͺǦͷ͸ͻͿǤ 16.–‡™ƒ”– ǡŽŽ‘ƒǡƬ‡‘‰ ȋ͸Ͷͷ͸Ȍ‹…”‘„‹ƒŽ

metatranscriptomics in a permanent marine

oxy-‰‡‹‹—œ‘‡Ǥ˜‹”‘‡–ƒŽ‹…”‘„‹‘Ž‘‰›

14(1):23-40.

17.ƒ”‘ŽƒƬ‡ƒȋ͸ͶͷͻȌ”ƒ•…”‹’–‘‹…

evidence for microbial sulfur cycling in the eastern

–”‘’‹…ƒŽ‘”–Šƒ…‹ϔ‹…‘š›‰‡‹‹—œ‘‡Ǥ ”‘–‹‡”•

in microbiology 6.

18. Bristow LA, et al. (2017) N2 production rates limited by nitrite availability in the Bay of Bengal oxygen mini-mum zone. Nature Geosci 10(1):24-29.

19.ŠƒŠǡŠƒ‰ǡƬ‘””‹•ȋ͸ͶͷͼȌ—Ž–‹˜ƒ–‹‘

of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes

ammo-‹—ǤŠ‡‘—”ƒŽǤ

20. Louca S, et al. (2016) Integrating biogeochemis-try with multiomic sequence information in a model oxygen minimum zone. Proceedings of the National …ƒ†‡›‘ˆ…‹‡…‡•ͷͷ͹ǣͻͿ͸ͻǦͻͿ͹͹Ǥ

21.‘Š•–‘ǡ‡–ƒŽǤȋ͸ͶͷͺȌŽƒ…‹‰ƒ—’’‡”Ž‹‹–

on cryptic marine sulphur cycling. Nature advance online publication.

22. ƒ‰ƒ‹ǡ‡–ƒŽǤȋ͸ͶͷͻȌ‘‹ƒ–”‘Ž‡‘ˆ‡††‹‡•ƒ†ϔ‹Žƒ-ments in the offshore transport of carbon and nutrients

‹–Š‡ƒŽ‹ˆ‘”‹ƒ—””‡–›•–‡Ǥ‘—”ƒŽ‘ˆ‡‘’Š›•‹…ƒŽ

‡•‡ƒ”…Šǣ…‡ƒ•ͷ͸Ͷȋ;Ȍǣͻ͹ͷ;Ǧͻ͹ͺͷǤ

23.”—„‡”ǡ‡–ƒŽǤȋ͸ͶͷͷȌ††›Ǧ‹†—…‡†”‡†—…–‹‘‘ˆ

biological production in eastern boundary upwelling

•›•–‡•Ǥƒ–—”‡‡‘•…‹ͺȋͷͷȌǣͽ;ͽǦͽͿ͸Ǥ

24. Thomsen S, et al. (2016) The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and

—–”‹‡–†‹•–”‹„—–‹‘•Ǥ‘—”ƒŽ‘ˆ‡‘’Š›•‹…ƒŽ‡•‡ƒ”…Šǣ Oceans: 476–501.

25. ”‹ǡƒŽ’‡”ǡ—›‡”ǡƬ‹–ŠȋͷͿ;͹Ȍ The physical environment of the Peruvian upwelling

•›•–‡Ǥ”‘‰”‡••‹…‡ƒ‘‰”ƒ’Š›ͷ͸ǣ͸;ͻǦ͹ͶͻǤ 26. Šƒ‹‰‡ƒ—ǡ‡‡š‹‡”ǡŽ†‹ǡ”ƒ†‘•ǡƬ‹œƒ””‘

ȋ͸ͶͷͷȌ‡”–‹…ƒŽ•–”—…–—”‡‘ˆ‡•‘•…ƒŽ‡‡††‹‡•‹–Š‡

‡ƒ•–‡”‘—–Šƒ…‹ϔ‹……‡ƒǣ…‘’‘•‹–‡ƒƒŽ›•‹•ˆ”‘

ƒŽ–‹‡–”›ƒ†”‰‘’”‘ϔ‹Ž‹‰ϔŽ‘ƒ–•Ǥ‘—”ƒŽ‘ˆ‡‘’Š›•‹-cal Research: Oceans 116(C11):n/a-n/a.

27.‘Žƒ• ǡ…‹ŽŽ‹ƒ•ǡƒ’‡–ǡƬ—”‹ƒȋ͸Ͷͷ͸Ȍ Heat balance and eddies in the Peru-Chile current

CHAPTER 5

system. Climate Dynamics 39(1):509-529.

28. ‘Š•‘Ƭ…ƒ‰‰ƒ”–ȋ͸ͶͷͶȌ“—ƒ–‘”‹ƒŽƒ-…‹ϔ‹…ͷ͹νƒ–‡”††‹‡•‹–Š‡ƒ•–‡”—„–”‘’‹…ƒŽ

‘—–Šƒ…‹ϔ‹……‡ƒǤ‘—”ƒŽ‘ˆŠ›•‹…ƒŽ…‡ƒ‘‰”ƒ’Š›

40(1):226-236.

29.ƒ”†‘•‘ǡ‡–ƒŽǤȋ͸ͶͶͼȌ—Žϔ‹†‡‘š‹†ƒ–‹‘—†‡”

chemolithoautotrophic denitrifying conditions.

Bio-–‡…Š‘Ž‘‰›ƒ†‹‘‡‰‹‡‡”‹‰Ϳͻǣͷͷͺ;ǦͷͷͻͽǤ 30.

‡ŽŽ›ȋͷͿ;͸Ȍ‹‘…Š‡‹•–”›‘ˆ–Š‡…Š‡‘Ž‹–Š‘–”‘-phic oxidation of inorganic sulphur. Philoso‡ŽŽ›ȋͷͿ;͸Ȍ‹‘…Š‡‹•–”›‘ˆ–Š‡…Š‡‘Ž‹–Š‘–”‘-phical transactions of the Royal Society of London. Series B:

‹‘Ž‘‰‹…ƒŽ•…‹‡…‡•͸Ϳ;ȋͷͶͿ͹ȌǣͺͿͿǦͻ͸;Ǥ

31. Kelly PD (1999) Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways. Archives of Microbiology 171(4):219-229.

32.‡Ž•‘ǡޔ‰‡•‡ǡƬ‡˜•„‡…ŠȋͷͿ;ͼȌ Growth pattern and yield of a chemoautotrophic

Beg-‰‹ƒ–‘ƒ•’Ǥ‹‘š›‰‡Ǧ•—Žϔ‹†‡‹…”‘‰”ƒ†‹‡–•Ǥ’’Ž‹‡†

and environmental microbiology 52(2):225-233.

33. Dahl C, et al. (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins dur-ing sulfur oxidation in the phototrophic sulfur

bacte-”‹—ŽŽ‘…Š”‘ƒ–‹—˜‹‘•—Ǥ‘—”ƒŽ‘ˆ„ƒ…–‡”‹‘Ž‘‰›

ͷ;ͽȋͺȌǣͷ͹Ϳ͸ǦͷͺͶͺǤ

34. ”‡‰‡”•‡ǡ”›ƒ–ǡƬ ”‹‰ƒƒ”†Ǧȋ͸ͶͷͷȌ

‡…Šƒ‹••ƒ†˜‘Ž—–‹‘‘ˆš‹†ƒ–‹˜‡—Žˆ—”‡-–ƒ„‘Ž‹•‹”‡‡—Žˆ—”ƒ…–‡”‹ƒǤ ”‘–‹‡”•‹‹-crobiology 2.

35. Kuwahara H, et al. (2007) Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii. Current Biology ͷͽȋͷͶȌǣ;;ͷǦ;;ͼǤ

36. Newton IL, et al. (2007) The Calyptogena

mag-‹ϔ‹…ƒ…Š‡‘ƒ—–‘–”‘’Š‹…•›„‹‘–‰‡‘‡Ǥ…‹‡…‡

͹ͷͻȋͻ;ͷͺȌǣͿͿ;ǦͷͶͶͶǤ

37. Marshall KT & Morris RM (2013) Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 …Žƒ†‡Ǥͽȋ͸Ȍǣͺͻ͸ǦͺͻͻǤ

38.‘›ǡ‡–ƒŽǤȋ͸ͶͶͿȌ‡˜‡”•‡†‹••‹‹Žƒ–‘”›•—Žϔ‹–‡”‡-ductase as phylogenetic marker for a subgroup of

•—Žˆ—”Ǧ‘š‹†‹œ‹‰’”‘ƒ”›‘–‡•Ǥ˜‹”‘‡–ƒŽ‹…”‘-„‹‘Ž‘‰›ͷͷǣ͸;ͿǦ͸ͿͿǤ

39. ƒ”œƒǡ‡–ƒŽǤȋ͸ͶͷͺȌ‹–‹‰–Š‡…Žƒ••‹ϔ‹…ƒ–‹‘‘ˆ…—Ž-tured and unculƒ”œƒǡ‡–ƒŽǤȋ͸ͶͷͺȌ‹–‹‰–Š‡…Žƒ••‹ϔ‹…ƒ–‹‘‘ˆ…—Ž-tured bacteria and archaea using 16S

rRNA gene sequences. Nat Rev Micro 12(9):635-645.

40. Šƒ‹‰‡ƒ—ǡ‹œ‘Ž‡ǡƬ”ƒ†‘•ȋ͸ͶͶ;Ȍ‡•‘•…ƒŽ‡

‡††‹‡•‘ˆˆ‡”—‹ƒŽ–‹‡–‡””‡…‘”†•ǣ†‡–‹ϔ‹…ƒ–‹‘ƒŽ-gorithms and eddy spatio-temporal patterns. Progress in Oceanography 79(2–4):106-119.

41. Šƒ‹‰‡ƒ—ǡŽ†‹ǡƬ‡™‹––‡ȋ͸ͶͶͿȌ††›ƒ…–‹˜-ity in the four major upwelling systems from satellite altimetry (1992–2007). Progress in Oceanography

;͹ȋͷȂͺȌǣͷͷͽǦͷ͸͹Ǥ

42. Thamdrup B, et al. (2006) Anaerobic ammonium

‘š‹†ƒ–‹‘‹–Š‡‘š›‰‡Ǧ†‡ϔ‹…‹‡–™ƒ–‡”•‘ˆˆ‘”–Š‡”

Chile. Limnology and Oceanography 51(5):2145-2156.

43. Kalvelage T, et al. (2013) Nitrogen cycling driven

„›‘”‰ƒ‹…ƒ––‡”‡š’‘”–‹–Š‡‘—–Šƒ…‹ϔ‹…‘š›‰‡

‹‹—œ‘‡Ǥƒ–—”‡‡‘•…‹ͼȋ͹Ȍǣ͸͸;Ǧ͸͹ͺǤ 44. Hamersley MR, et al. (2007) Anaerobic ammonium

oxidation in the Peruvian oxygen minimum zone. Lim-nology and Oceanography 52(3):923-933.

45. ƒŽ•‰ƒƒ”†ǡŠƒ†”—’ǡ ƒ”Àƒ•ǡƬ‡˜•„‡…Š ȋ͸Ͷͷ͸Ȍƒ‘šƒ††‡‹–”‹ϔ‹…ƒ–‹‘‹–Š‡‘š›‰‡

‹‹—œ‘‡‘ˆ–Š‡‡ƒ•–‡”‘—–Šƒ…‹ϔ‹…Ǥ‹‘Ž‘‰›

and Oceanography 57(5):1331-1346.

46. Callbeck CM, Lavik G, Stramma L, Kuypers MMM, &

”‹•–‘™ȋ͸ͶͷͽȌŠƒ…‡†‹–”‘‰‡Ž‘••„›‡††›Ǧ induced vertical transport in the offshore peruvian oxygen minimum zone. PloS one 12(1):e0170059.

47.Ž‹‡ȋͷͿͼͿȌ’‡…–”‘’Š‘–‘‡–”‹…‡–‡”‹ƒ–‹‘

‘ˆ›†”‘‰‡—Žϔ‹†‡‹ƒ–—”ƒŽƒ–‡”•Ǥ‹‘Ž‘‰›ƒ†

…‡ƒ‘‰”ƒ’Š›ͷͺǣͺͻͺǦͺͻ;Ǥ

48.ƒ›•Š›ǡ”Ǥǡ‘”‡•–‡‹ǡƬ ‡”†‡Žƒ

ȋ͸ͶͶͿȌ”‘–‘…‘Žˆ‘”—ƒ–‹–ƒ–‹˜‡‡–‡…–‹‘‘ˆŽ‡‡- –ƒŽ—Žˆ—”ƒ†‘Ž›•—Žϔ‹†‡‡”‘ǦƒŽ‡–—Žˆ—”‹•–”‹„—-tion in Natural Aquatic Samples. Geostandards and Geoanalytical Research 33(3):415-435.

49. ‘Ž–ƒ’’‡Ž•ǡƒ˜‹ǡ‡•‡ǡƬ—›’‡”•

ȋ͸ͶͷͷȌŠƒ’–‡”–‡ǦͷͻǦƒ„‡Ž‹‰š’‡”‹‡–•–‘

‹••‡…––Š‡‘–”‹„—–‹‘•‘ˆ‡–‡”‘–”‘’Š‹…‡‹–”‹ϔ‹…ƒ-tion and Anammox to Nitrogen Removal in the OMZ

ƒ–‡”•‘ˆ–Š‡…‡ƒǤ‡–Š‘†•‹œ›‘Ž‘‰›ǡ‡•‡ƒ”…Š

‘‹–”‹ϔ‹…ƒ–‹‘ƒ†‡Žƒ–‡†”‘…‡••‡•ǡƒ”–ǡ‡†Ž‘–œ

ȋ…ƒ†‡‹…”‡••Ȍǡ‘Žͺ;ͼǡ’’͸͸͹Ǧ͸ͻͷǤ

50.‡”ƒ„ƒ†‡”‡ǡŠƒ†”—’ǡ‡˜•„‡…ŠǡƬ ‘ƒ†‹

R (2012) A critical assessment of the occurrence and extend of oxygen contamination during anaerobic incubations utilizing commercially available vials.

101

‘—”ƒŽ‘ˆ‹…”‘„‹‘Ž‘‰‹…ƒŽ‡–Š‘†•;;ȋͷȌǣͷͺͽǦͷͻͺǤ 51. ò••‡Žǡ‡–ƒŽǤȋ͸Ͷͷ͸Ȍ‹–”‹–‡‘š‹†ƒ–‹‘‹–Š‡ƒ‹„‹ƒ

‘š›‰‡‹‹—œ‘‡ǤŠ‡‘—”ƒŽͼǣͷ͸ͶͶǦͷ͸ͶͿǤ 52. Thamdrup B & Dalsgaard T (2002) Production of N2

through Anaerobic Ammonium Oxidation Coupled to

‹–”ƒ–‡‡†—…–‹‘‹ƒ”‹‡‡†‹‡–•Ǥ’’Ž˜‹”‘

‹…”‘„‹‘Žͼ;ȋ͹Ȍǣͷ͹ͷ͸Ǧͷ͹ͷ;Ǥ

53. Nurk S, et al. (2013) Assembling genomes and mini-metagenomes from highly chimeric reads. Research in Computational Molecular Biology: 17th Annual

In-–‡”ƒ–‹‘ƒŽ‘ˆ‡”‡…‡ǡ͸Ͷͷ͹ǡ‡‹Œ‹‰ǡŠ‹ƒǡ

’”‹ŽͽǦͷͶǡ͸Ͷͷ͹Ǥ”‘…‡‡†‹‰•ǡ‡†•‡‰ǡ‹ƒ‰ǡ

— ǡƬŠƒ‰ȋ’”‹‰‡”‡”Ž‹‡‹†‡Ž„‡”‰ǡ‡”Ž‹ǡ

‡‹†‡Ž„‡”‰Ȍǡ’’ͷͻ;ǦͷͽͶǤ

54. ‹…ǡ…Š—Ž–œǡ‘„‡ŽǡƬ‘Ž–ȋ͸ͶͷͻȌƒ-dage: interactive visualization of de novo genome assemblies. Bioinformatics 31(20):3350-3352.

55. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, & Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research 25(7):1043-1055.

56. Seemann T (2014) Prokka: rapid prokaryotic genome

ƒ‘–ƒ–‹‘Ǥ‹‘‹ˆ‘”ƒ–‹…•͹ͶȋͷͺȌǣ͸Ͷͼ;Ǧ͸ͶͼͿǤ 57.—›œ‡”ǡ‡•‡ǡ‹”•‡ǡƬƒƒ•…ŠȋͷͿͿͻȌ

Phylogenetic relationships of Thiomicrospira species

ƒ†–Š‡‹”‹†‡–‹ϔ‹…ƒ–‹‘‹†‡‡’Ǧ•‡ƒŠ›†”‘–Š‡”ƒŽ˜‡–

samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164(3):165-172.

58.‡••‹‰ȋͷͿ;͹Ȍ‡™ͷ͹˜‡…–‘”•ˆ‘”…Ž‘‹‰Ǥ‡–Š-‘†•‹œ›‘Ž‘‰›ͷͶͷǣ͸ͶǦͽ;Ǥ

59.”—‡••‡ǡ‡’Ž‹‡•ǡƬŽÚ…‡” ȋ͸Ͷͷ͸Ȍǣ…-curate high-throughput multiple sequence alignment

‘ˆ”‹„‘•‘ƒŽ‰‡‡•Ǥ‹‘‹ˆ‘”ƒ–‹…•͸;ȋͷͺȌǣͷ;͸͹Ǧ ͷ;͸ͿǤ

60.—ƒ•–ǡ‡–ƒŽǤȋ͸Ͷͷ͹ȌŠ‡”‹„‘•‘ƒŽ‰‡‡

database project: improved data processing and web-based tools. Nucleic Acids Research 41(D1):D590-D596.

61. Ludwig W, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Research 32(4):1363-1371.

62. ‡”–ŠƒŽ‡”ǡ‡”–ŠƒŽ‡”ǡƬƒȋ͸ͶͶ͸Ȍ Ž—‘-rescence in situ hybridization and catalyzed reporter

†‡’‘•‹–‹‘ˆ‘”–Š‡‹†‡–‹ϔ‹…ƒ–‹‘‘ˆƒ”‹‡„ƒ…–‡”‹ƒǤ

’’Ž‹‡†ƒ†‡˜‹”‘‡–ƒŽ‹…”‘„‹‘Ž‘‰›ͼ;ȋͼȌǣ͹ͶͿͺǦ

3101.

63. Polerecky L, et al. (2012) Look@NanoSIMS – a tool for the analysis of nanoSIMS data in environmental

micro-„‹‘Ž‘‰›Ǥ˜‹”‘‡–ƒŽ‹…”‘„‹‘Ž‘‰›ͷͺǣͷͶͶͿǦͷͶ͸͹Ǥ 64. —•ƒ–ǡ‡–ƒŽǤȋ͸ͶͷͺȌŠ‡‡ˆˆ‡…–‘ˆ ƒ†Ǧ ‘–Š‡‹•‘–‘’‹……‘’‘•‹–‹‘‘ˆͷ͹Ǧƒ†ͷͻǦ labeled Pseudomonas putida cells measured by nanoSIMS. Systematic and Applied Microbiology 37(4):267-276.

65.‘ƒ‘˜ƒƬƒœŠ‹ ȋ͸ͶͷͶȌ‡Žƒ–‹‘•Š‹’•

between the cell volume and the carbon content of bacteria. Oceanology 50(4):522-530.

CHAPTER 5

)LJ63K\ORJHQHWLFGLYHUVLW\RI*626U51$JHQHVUHFRYHUHGIURPVXO¿GLFDQGQRQVXO¿GLFVWDWLRQV from the Peruvian upwelling region. 7KHSK\ORJHQHWLFWUHHZDVFDOFXODWHGXVLQJWKHQHLJKERUMRLQLQJDQG5$[0/

PHWKRGVLQFOXGLQJYDULRXV¿OWHUVDQXQURRWHGFRQVHQVXVWUHHLVVKRZQ7KHW\SHIDFHLQEOXHEODFNDQGJUHHQUHSUH-sent sequences recovered from other studies. The sequences indicated in red typeface were recovered from two

sul-¿GLFVWDWLRQV8DQG8DDQGIURPRQHQRQVXO¿GLFVWDWLRQ7DEOH67KHFRYHUDJHDQGVSHFL¿FLW\RIWKHQHZO\

GHVLJQHG),6+*62SUREHLVLQGLFDWHGE\WKHUHGOLQHIRURYHUDOOSUREHFRYHUDJHGHWDLOVVHH7DEOH67KHEURDG FRYHUDJH*62SUREHXVHGHOVHZKHUHLVLQGLFDWHGE\WKHEODFNOLQH1RWHWKH683VHTXHQFHVUHFRYHUHG IURPWKHVXO¿GLFVWDWLRQVDUHDWVLPLODULW\WR³Candidatus7KLRJOREXVDXWRWURSKLFD´PDNLQJLWE\GH¿QLWLRQDQHZ VSHFLHVSURSRVHGKHUHDV³Candidatus Thioglobus perditus”.

Supporting information

103

Fig. S2. Development and propagation of a subsurface mesoscale eddy: D+LJKHVWERWWRPZDWHUVXO¿GHFRQFHQ-WUDWLRQLQWKHDQGNJPUDQJHIURP)HEUXDU\0DUFKEI6QDSVKRWVRIWKHVXEVXUIDFHFXUUHQWYHORFLWLHV during the formation and propagation of a lower shelf forming mesoscale eddy. The red circles indicate the main stations VDPSOHGZLWKLQWKHJLYHQWLPHSHULRG)XOOGHWDLOVUHODWHGWRWKHHGG\K\GURG\QDPLFVDUHSUHVHQWHGLQ7KRPVHQHWDO

CHAPTER 5

)LJ6'LVWULEXWLRQRILQYHQWRULHVDQGUDWHVRIDGLVVROYHGVXO¿GHEHOHPHQWDOVXOIXUF'$3,DV683 GGHQLWUL¿FDWLRQHGDUN&22¿[DWLRQDQGI683&22¿[DWLRQ'HSWKVRILQWHJUDWLRQDUHIURPPGRZQWRWKH VHGLPHQWVIRUFRDVWDOVWDWLRQVIURPPGRZQWRPGHSWKIRURIIVKRUHVWDWLRQVZLWKWKHH[FHSWLRQRIWKHGDUN&22

¿[DWLRQUDWHVWKDWDUHLQWHJUDWHGIURPPIRUFRDVWDOVWDWLRQVDQGIURPPIRURIIVKRUHVWDWLRQV,QSDQHOF the highest SUP05 abundance is reported for the respective stations.

105

Fig. S4: Elemental sulfur and nitrate concentrations as a function of temperature-salinity for stations U1, L1 and L2. 'HQVLWLHVNJP) are indicated by the light gray isopycnals.

CHAPTER 5

Fig. S5. Depth distributions of dissolved oxygen, key sulfur and nitrogen species, chlorophyll a, SUP05 cell GHQVLWLHV*62SUREHDQGUDWHVRIGDUNFDUERQ¿[DWLRQDQGGLVVLPLODWRU\QLWURJHQWUDQVIRUPDWLRQVDWWKH three main stations U1, L1, and L2. Error bars for nitrogen transformation rates represent the standard error and were estimated according to the slope of the N2 production rate (see Material and Methods).

107

)LJ6&$5'),6+TXDQWL¿FDWLRQRIWKHGLVWULEXWLRQRI683*62DQGGHOWDSURWHREDFWHULD (Delta495): GHSWKSUR¿OHVRID683DQGEGHOWDSURWHEDFWHULDFHOOGHQVLWLHVFG&$5'),6+LPDJHRI planktonic and aggregate-associated SUP05 and deltaproteobacteria from two samples. Blue-green stained FHOOVDOVRPDUNHGZLWKJUHHQDUURZVUHSUHVHQW683EDFWHULDK\EULGL]HGZLWKWKH*62SUREH%OXHVKRZV DOOFHOOVPDUNHGZLWKWKH'1$VWDLQƍGLDPLGLQRSKHQ\OLQGROH'$3,5HGVWDLQHGFHOOVUHSUHVHQWGHOWDSUR-WHREDFWHULDK\EULGL]HGZLWKWKH'HOWDSUREH

CHAPTER 5

)LJ6'LVWULEXWLRQRI¿ODPHQWVLQWKH(DVWHUQ7URSLFDO6RXWK3DFL¿FD0DUFKFRPSRVLWHLPDJHRI QHDUVXUIDFHFKORURSK\OOFRQFHQWUDWLRQVZKHUHEODFNDUURZVLQGLFDWH¿ODPHQWVE)HEUXDU\QHDUVXUIDFH chlorophyll concentrations with satellite-sea surface height altimetry (SSHA) overlay. The contours of the subsurface HGG\QRWGHWHFWDEOHE\66+$EXWGHWHFWDEOHEDVHGRQKRUL]RQWDOYHORFLWLHVLVLOOXVWUDWHGF-DQXDU\FRP-SRVLWHRIQHDUVXUIDFHFKORURSK\OOFRQFHQWUDWLRQVG-DQXDU\QHDUVXUIDFHFKORURSK\OOFRQFHQWUDWLRQVZLWK 66+$RYHUOD\6WDWLRQZKLWHFLUFOHORFDWHGNPIURPWKHFRDVWZDVVDPSOHG-DQXDU\WK

109

Table S1: List of stations sampled during the M93 research cruise February-March, 2013.

ďďƌĞǀŝĂƚĞĚƐƚĂƟŽŶ ŶĂŵĞ;ƵƐĞĚŝŶƚĞdžƚͿ

DϵϬƐƚĂƟŽŶ ŶĂŵĞ

ĂƚĞĂŶĚƟŵĞ ƐĂŵƉůĞĚ

>ĂƟƚƵĚĞ;Σ^Ϳ >ŽŶŐŝƚƵĚĞ;ΣͿ

U2 295 Feb 9, 02:02 -12.38 -77.19

L1 318 Feb 11, 11:40 -12.64 -77.53

378 378 Feb 18, 17:04 -13.75 -76.64

L3 391 Feb 20, 21:04 -12.67 -77.82

L2 399 Feb 22, 12:23 -12.52 -77.60

U3 412 Feb 24, 10:00 -12.31 -77.30

U1a 413 Feb 25, 01:00 -12.23 -77.18

U1 471 Mar 4, 09:50 -12.23 -77.18

Table S2: Summary of PCR primers and ÀXRUHVFHQFHin situ hybridization probes used in this study.

13ULPHUDQGSUREHVSHFL¿FLW\ZHUHHYDOXDWHGin silicoXVLQJWKH6,/9$668UHIQUGDWDEDVH7KHSUREHFRYHUDJHLV HYDOXDWHGLQ7DEOH6

2 Unlabeled competitor probes (C) are as follows: *62F&7$7&&&&&$&7$7&$**7$*$*62F&7$

7&&&&&$&7$7&$**&$*$&RPSHWLWRUSUREHVHTXHQFHVZHUHGHVLJQHGWRH[FOXGHPLVPDWFKVHTXHQFHVLQGLFDWHG LQ7DEOH6

7KHGLIIHUHQWSUREHVZHUHWHVWHGXQGHUYDULRXVIRUPDPLGHFRQFHQWUDWLRQVWKHRSWLPDOLVVKRZQ

8QODEHOHGFRPSHWLWRUVSUREHVF'HOD$*77$*&&**7*&77&77F'HOE$*77$*&&**&*&77&7*

TDQGF'HOF$$77$*&&**7*&77&77ZHUHXVHGDFFRUGLQJWR Target group Primer/

probe

Sequence (5’ to 3’) Size(bp) Annealing temp/

formamide conc.

Ref.

ĂƚĂůLJƐĞĚƌĞƉŽƌƚĞĚĚĞƉŽƐŝƚŝŽŶʹĨůƵŽƌĞƐĐĞŶĐĞŝŶƐŝƚƵŚLJďƌŝĚŝnjĂƚŝŽŶƉƌŽďĞƐ 1

SUP05 GSO1312 CTA TCC CCC ACT ATC TGG TAG A 22 46°C / 35% 3 This study

Delta-proteobacteria

Del495a4 AGT TAG CCG GTG CTT CCT 18 46°C / 30% (4) Del495b4 AGT TAG CCG GCG CTT CCT 18 46°C / 30% (4) Del495c4 AAT TAG CCG GTG CTT CCT 18 46°C / 30% (4) WŽůLJŵĞƌƐĞĐŚĂŝŶƌĞĂĐƚŝŽŶƉƌŝŵĞƌƐ

Universal GM3f AGA GTT TGA TCM TGG C 16 50°C (6)

Universal GM4r TAC CTT GTT ACG ACT T 16 50°C (6)

CHAPTER 5

Taxonomy Coverage (%) Eligible

VHTXHQFHV

Number of SUREHVHTXHQFH matches GSO131 probe: 0 mismatches, total matches = 11 (1 mismatch, total matches = 95)

Bacteria 0.002 (0.02) 526819 11 (95)

Proteobacteria 0.005 (0.04) 209486 10 (90)

Gammaproteobacteria 0.01 (0.09) 97852 10 (87)

Oceanospirillales 0.2 (1.14) 6164 10 (70)

SUP05 cluster 4.1 (12.24) 245 10 (30)

Outgroup hits: Arctic96BD-19 cluster 0 (15.82) 177 0 (28) Outgroup hits: Other gammaproteobacteria 0 (0.03) 97852 0 (29)

Outgroup hits: Bacteroidetes 0.002 (0.006) 50630 1 (3)

Outgroup hits: Other 0 (8)

Del495a probe: 0 mismatches, total matches = 11609 (1 mismatch, total matches = 116906)

Bacteria 2.2 (21.8) 537344 11609 (116906)

Proteobacteria 4.3 (36.5) 214092 9279 (78225)

Deltaproteobacteria 62.5 (88.9) 14649 9149 (13161)

Outgroup hits: SUP05 cluster 0.82 (90.2) 245 2 (221)

Outgroup hits: Non deltaproteobacteria 103745

Del495b probe: 0 mismatches, total matches = 1018 (1 mismatch, total matches = 51283)

Bacteria 0.2 (9.5) 537344 1018 (51283)

Proteobacteria 0.2 (4.7) 214092 489 (10108)

Deltaproteobacteria 3.3 (66.7) 14649 484 (9765)

Outgroup hits: SUP05 cluster 0 (1.6) 245 0 (4)

Outgroup hits: Non deltaproteobacteria 534 (41518)

Del495c probe: 0 mismatches, total matches = 121 (1 mismatch, total matches = 13111)

Bacteria 0.02 (2.4) 537344 121 (13111)

Proteobacteria 0.04 (4.8) 214092 86 (10246)

Deltaproteobacteria 0.6 (63.9) 14649 84 (9361)

Outgroup hits: SUP05 cluster 0 (1.6) 245 0 (4)

Outgroup hits: Non deltaproteobacteria 37 (3750)

7DEOH6),6+SUREHVSHFL¿FLW\DQGFRYHUDJH Probes were evaluated in silicoXVLQJWKH6,/9$668UHIQU GDWDEDVH(OLJLEOHVHTXHQFHVDUHWKHWRWDOQXPEHURIVHTXHQFHVZLWKLQDJLYHQWD[RQRPLFJURXS7KHQXPEHURISUREH sequence matches is indicated; note that values indicated in parentheses represent the number of matches with a one nucleotide mismatch. Competitor probes were designed towards the mismatch sequences (see Table S2). Coverage repre-VHQWVWKHQXPEHURISUREHVHTXHQFHPDWFKHVGLYLGHGE\WKHQXPEHURIHOLJLEOHVHTXHQFHVH[SUHVVHGDVDSHUFHQWDJH

111

7DEOH6.H\HQ]\PHVLGHQWL¿HGLQWKH683(763PHWDJHQRPH

Supporting information references

1. ƒ˜‹ǡ‡–ƒŽǤȋ͸ͶͶͿȌ‡–‘š‹ϔ‹…ƒ–‹‘‘ˆ•—Ž’Š‹†‹…ˆ”‹…ƒ•Š‡Žˆ™ƒ–‡”•„›„Ž‘‘‹‰…Š‡‘Ž‹–Š‘–”‘’Š•Ǥƒ–—”‡

ͺͻͽȋͽ͸͸ͿȌǣͻ;ͷǦͻ;ͺǤ

2. ƒ”œƒǡ‡–ƒŽǤȋ͸ͶͷͺȌ‹–‹‰–Š‡…Žƒ••‹ϔ‹…ƒ–‹‘‘ˆ…—Ž–—”‡†ƒ†—…—Ž–—”‡†„ƒ…–‡”‹ƒƒ†ƒ”…Šƒ‡ƒ—•‹‰ͷͼ”

gene sequences. Nat Rev Micro 12(9):635-645.

3. Thomsen S, et al. (2016) The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact

‘–Š‡‡ƒ”Ǧ…‘ƒ•–ƒŽ•ƒŽ‹‹–›ǡ‘š›‰‡ǡƒ†—–”‹‡–†‹•–”‹„—–‹‘•Ǥ‘—”ƒŽ‘ˆ‡‘’Š›•‹…ƒŽ‡•‡ƒ”…Šǣ…‡ƒ•ǣȀƒǦȀƒǤ 4. Loy A, et al. (2002) Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of

—Žˆƒ–‡Ǧ‡†—…‹‰”‘ƒ”›‘–‡•‹–Š‡˜‹”‘‡–Ǥ’’Ž‹‡†ƒ†‡˜‹”‘‡–ƒŽ‹…”‘„‹‘Ž‘‰›ͼ;ȋͷͶȌǣͻͶͼͺǦͻͶ;ͷǤ 5. ƒϔ‹‡Ž†ǡ‡–ƒŽǤȋ͸ͶͷͶȌ…”›’–‹…•—Žˆ—”…›…Ž‡‹‘š›‰‡Ǧ‹‹—Ǧœ‘‡™ƒ–‡”•‘ˆˆ–Š‡Š‹Ž‡ƒ…‘ƒ•–Ǥ…‹‡…‡

͹͹ͶȋͼͶͶͿȌǣͷ͹ͽͻǦͷ͹ͽ;Ǥ

6. —›œ‡”ǡ‡•‡ǡ‹”•‡ǡƬƒƒ•…ŠȋͷͿͿͻȌŠ›Ž‘‰‡‡–‹…”‡Žƒ–‹‘•Š‹’•‘ˆŠ‹‘‹…”‘•’‹”ƒ•’‡…‹‡•ƒ†

–Š‡‹”‹†‡–‹ϔ‹…ƒ–‹‘‹†‡‡’Ǧ•‡ƒŠ›†”‘–Š‡”ƒŽ˜‡–•ƒ’Ž‡•„›†‡ƒ–—”‹‰‰”ƒ†‹‡–‰‡Ž‡Ž‡…–”‘’Š‘”‡•‹•‘ˆͷͼ”

fragments. Arch Microbiol 164(3):165-172.

7. ƒ…ƒŽƒ†›ǡ‡–ƒŽǤȋ͸ͶͶͼȌ‘‹ƒ–‹…”‘„‹ƒŽ‘’—Žƒ–‹‘•‹‹‡•–‘‡Ǧ‘””‘†‹‰–”‡ƒ‹‘ϔ‹Ž•ǡ ”ƒ•ƒ••‹ƒ˜‡

›•–‡ǡ–ƒŽ›Ǥ’’Ž‹‡†ƒ†‡˜‹”‘‡–ƒŽ‹…”‘„‹‘Ž‘‰›ͽ͸ȋ;ȌǣͻͻͿͼǦͻͼͶͿǤ

8. ò…‡”ǡ‡–ƒŽǤȋ͸ͶͶͽȌ’”‘˜‡†ͷͼ”Ǧ–ƒ”‰‡–‡†’”‘„‡•‡–ˆ‘”ƒƒŽ›•‹•‘ˆ•—Žˆƒ–‡Ǧ”‡†—…‹‰„ƒ…–‡”‹ƒ„›ϔŽ—‘”‡•-…‡…‡‹•‹–—Š›„”‹†‹œƒ–‹‘Ǥ‘—”ƒŽ‘ˆ‹…”‘„‹‘Ž‘‰‹…ƒŽ‡–Š‘†•ͼͿȋ͹Ȍǣͻ͸͹Ǧͻ͸;Ǥ

Gene name Function/protein Locus tag

^ƵůĨƵƌŵĞƚĂďŽůŝƐŵ

soxXYZAB Oxidation of reduced sulfur compounds XXXXX

soxX Sulfur oxidation protein XXXXX

soxY Sulfur oxidation protein XXXXX

soxZ Sulfur oxidation protein XXXXX

soxA Diheme cytochrome XXXXX

soxB Sulfate thiol esterase XXXXX

soxZ Sulfur oxidation protein

dsrA Dissimilatory sulfite reductase XXXXX

dsrB Dissimilatory sulfite reductase XXXXX

dsrEFH Dissimilatory sulfite reductase XXXXX

dsrMKJOP Dissimilatory sulfite reductase XXXXX

aprA Adenylylsulfate reductase XXXXX

aprB Adenylylsulfate reductase XXXXX

sat Sulfate adenylyltransferase XXXXX

fccA Sulfide-binding, flavoprotein XXXXX

fccB Sulfide-binding, flavoprotein XXXXX

EŝƚƌŽŐĞŶŵĞƚĂďŽůŝƐŵ

narG Nitrate reductase XXXXX

nirS Nitrite reductase XXXXX

norB Nitric oxide reductase XXXXX

nosZ Nitrous oxide reductase XXXXX

͸

Chemolithoheterotrophic bacteria play a key role in sulfide oxidation