• Keine Ergebnisse gefunden

We thank the Peruvian authorities for access to na-tional waters as well as the crew of the RV Meteor for assistance onboard the M90 research expedition as

well as co-chief scientist M. Frank. We would also like to thank C. Schelten for administrative support;

technical assistance by T. Kalvelage; proof reading of the manuscript by H. Marchant and the editor and two anonymous reviewers for constructive feedback.

References

1.ƒ”•–‡•‡ǡ–”ƒƒǡƬ‹•„‡…ȋ͸ͶͶ;Ȍš›‰‡

minimum zones in the eastern tropical Atlantic and Pa-…‹ϔ‹…‘…‡ƒ•Ǥ”‘‰”‡••‹…‡ƒ‘‰”ƒ’Š›ͽͽȋͺȌǣ͹͹ͷǦ͹ͻͶǤ 2. Lam P & Kuypers MMM (2011) Microbial nitrogen

cycling processes in oxygen minimum zones. Ann Rev Mar Sci 3:317-345.

3. Tiano L, et al. (2014) Oxygen distribution and aerobic respiration in the north and south eastern tropical

ƒ…‹ϔ‹…‘š›‰‡‹‹—œ‘‡•Ǥ‡‡’‡ƒ‡•‡ƒ”…Š

ƒ”–ǣ…‡ƒ‘‰”ƒ’Š‹…‡•‡ƒ”…Šƒ’‡”•Ϳͺǣͷͽ͹Ǧͷ;͹Ǥ 4. Thamdrup B, Dalsgaard T, & Revsbech NP (2012)

Widespread functional anoxia in the oxygen minimum

œ‘‡‘ˆ–Š‡ƒ•–‡”‘—–Šƒ…‹ϔ‹…Ǥ‡‡’‡ƒ‡•‡ƒ”…Š Part I: Oceanographic Research Papers 65:36-45.

5. ‘†‹•’‘–‹ǡ‡–ƒŽǤȋ͸ͶͶͷȌŠ‡‘…‡ƒ‹…ϔ‹š‡†‹–”‘‰‡

and nitrous oxide budgets: Moving targets as we enter

–Š‡ƒ–Š”‘’‘…‡‡ǫ…‹‡–‹ƒƒ”‹ƒͼͻȋ͸Ȍǣ;ͻǦͷͶͻǤ 6. ŽŽ‘ƒǡƒϔ‹‡Ž†ǡ‡‘‰

ǡ‡–‡Ž‹‡”ǡƬ–‡™-ƒ”– ȋ͸Ͷͷ͸Ȍ‹…”‘„‹ƒŽ‘…‡ƒ‘‰”ƒ’Š›‘ˆƒ‘š‹…

oxygen minimum zones. Proceedings of the National Academy of Sciences of the United States of America 109(40):15996-16003.

7. Kuypers MM, et al. (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences of the United States of America ͷͶ͸ȋͷ;Ȍǣͼͺͽ;Ǧͼͺ;͹Ǥ

8. ‡•‡ǡ‡–ƒŽǤȋ͸ͶͷͷȌ–‡•‹˜‡‹–”‘‰‡Ž‘••‘˜‡”

the Omani Shelf due to anammox coupled with

dis-•‹‹Žƒ–‘”›‹–”‹–‡”‡†—…–‹‘–‘ƒ‘‹—ǤŠ‡

journal 5(10):1660-1670.

9. Hamersley MR, et al. (2007) Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Lim-nology and Oceanography 52(3):923-933.

10. Lam P, et al. (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences of the United States of

CHAPTER 3

America 106(12):4752-4757.

11. Thamdrup B, et al. (2006) Anaerobic ammonium

‘š‹†ƒ–‹‘‹–Š‡‘š›‰‡Ǧ†‡ϔ‹…‹‡–™ƒ–‡”•‘ˆˆ‘”–Š‡”

Chile. Limnology and Oceanography 51(5):2145-2156.

12. Galán A, et al. (2009) Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen mini-mum zone off northern Chile. Deep Sea Research Part II: Topical Studies in Oceanography 56(16):1021-1031.

13. Kalvelage T, et al. (2013) Nitrogen cycling driven

„›‘”‰ƒ‹…ƒ––‡”‡š’‘”–‹–Š‡‘—–Šƒ…‹ϔ‹…‘š›‰‡

‹‹—œ‘‡Ǥƒ–—”‡‡‘•…‹ͼȋ͹Ȍǣ͸͸;Ǧ͸͹ͺǤ 14. Altabet MA, et al. (2012) An eddy-stimulated hotspot

ˆ‘”ϔ‹š‡†‹–”‘‰‡ǦŽ‘••ˆ”‘–Š‡‡”—‘š›‰‡‹‹—

œ‘‡Ǥ‹‘‰‡‘•…‹‡…‡•Ϳȋͷ͸Ȍǣͺ;ͿͽǦͺͿͶ;Ǥ

15. Mahadevan A (2016) The Impact of Submesoscale Physics on Primary Productivity of Plankton. Annual

‡˜‹‡™‘ˆƒ”‹‡…‹‡…‡;ȋͷȌǤ

16. Chelton DB, Schlax MG, Samelson RM, & de Szoeke RA (2007) Global observations of large oceanic eddies.

Geophysical Research Letters 34(15).

17.Ž‡‹Ƭƒ’‡›”‡ȋ͸ͶͶͿȌŠ‡…‡ƒ‹…‡”–‹…ƒŽ—’

Induced by Mesoscale and Submesoscale Turbulence.

Annual Review of Marine Science 1(1):351-375.

18. ‘Šƒ‡••‡ǡ‡–ƒŽǤȋͷͿͿͼȌ‘ƒ•–ƒŽ‘…‡ƒˆ”‘–•

ƒ†‡††‹‡•‹ƒ‰‡†™‹–Šͷ•›–Š‡–‹…ƒ’‡”–—”‡

”ƒ†ƒ”Ǥ‘—”ƒŽ‘ˆ‡‘’Š›•‹…ƒŽ‡•‡ƒ”…Šǣ…‡ƒ•

101(C3):6651-6667.

19.

‹‹Ž‡”ȋͷͿͼͿȌ–Š‡ƒ†‹˜‡”‰‡…‡‹ƒ‘…‡-ƒ‹…Œ‡–Ǥ‘—”ƒŽ‘ˆ‡‘’Š›•‹…ƒŽ‡•‡ƒ”…Šͽͺȋ͸;ȌǣͽͶͺ;Ǧ 7052.

20. …‹ŽŽ‹…—††›ǡȋ͸ͶͷͼȌ‡…Šƒ‹••‘ˆŠ›•‹…ƒŽǦ Biological-Biogeochemical Interaction at the Oce-anic Mesoscale. Annual Review of Marine Science

;ȋͷȌǣͷ͸ͻǦͷͻͿǤ

21. Gaube P, Chelton DB, Samelson RM, Schlax MG, &

O’Neill LW (2015) Satellite Observations of Mesoscale

††›Ǧ†—…‡†ƒ—’‹‰Ǥ‘—”ƒŽ‘ˆŠ›•‹…ƒŽ

Oceanography 45(1):104-132.

22. ƒ—„‡ǡŠ‡Ž–‘ǡ–”—––‘ǡƬ‡Š”‡ˆ‡Ž†

(2013) Satellite observations of chlorophyll,

phyto-’Žƒ–‘„‹‘ƒ••ǡƒ†ƒ’—’‹‰‹‘Ž‹‡ƒ”

‡•‘•…ƒŽ‡‡††‹‡•Ǥ‘—”ƒŽ‘ˆ‡‘’Š›•‹…ƒŽ‡•‡ƒ”…Šǣ …‡ƒ•ͷͷ;ȋͷ͸Ȍǣͼ͹ͺͿǦͼ͹ͽͶǤ

23. …‹ŽŽ‹…—††›ǡ‡–ƒŽǤȋͷͿͿ;ȌϔŽ—‡…‡‘ˆ‡•‘•…ƒŽ‡

eddies on new production in the Sargasso Sea. Nature

394(6690):263-266.

24. …‹ŽŽ‹…—††›ǡ‡–ƒŽǤȋ͸ͶͶͽȌ††›Ȁ‹†–‡”ƒ…–‹‘•

–‹—Žƒ–‡š–”ƒ‘”†‹ƒ”›‹†Ǧ…‡ƒŽƒ–‘Ž‘‘•Ǥ …‹‡…‡͹ͷͼȋͻ;͸ͽȌǣͷͶ͸ͷǦͷͶ͸ͼǤ

25.‹ǡ‹ǡ‹‰ǡƬƒ‰ȋ͸ͶͷͺȌŠƒ…‡‡–‘ˆ

‡††›Ǧƒ’—’‹‰‹•‹†‡ƒ–‹…›…Ž‘‹…‡††‹‡•™‹–Š

wind-parallel extension: Satellite observations and

—‡”‹…ƒŽ•–—†‹‡•‹–Š‡‘—–ŠŠ‹ƒ‡ƒǤ‘—”ƒŽ‘ˆ

Marine Systems 132:150-161.

26. Mizobata K, et al. (2002) Bering Sea cyclonic and anticyclonic eddies observed during summer 2000 and 2001. Progress in Oceanography 55(1–2):65-75.

27. Lévy M & Klein P (2004) Does the low frequency variability of mesoscale dynamics explain a part of the phytoplankton and zooplankton spectral vari-ability? Proceedings of the Royal Society of London ǣƒ–Š‡ƒ–‹…ƒŽǡŠ›•‹…ƒŽƒ†‰‹‡‡”‹‰…‹‡…‡•

ͺͼͶȋ͸ͶͺͼȌǣͷͼͽ͹Ǧͷͼ;ͽǤ

28. Kahru M, Mitchell BG, Gille ST, Hewes CD, &

Holm-

ƒ•‡ȋ͸ͶͶͽȌ††‹‡•‡Šƒ…‡„‹‘Ž‘‰‹…ƒŽ’”‘†—…-–‹‘‹–Š‡‡††‡ŽŽǦ…‘–‹ƒ‘ϔŽ—‡…‡‘ˆ–Š‡‘—–Š‡”

Ocean. Geophysical Research Letters 34(14): L14603.

29. ‡†™‡ŽŽǡ…‹ŽŽ‹…—††›”ǡƬ†‡”•‘ȋ͸ͶͶ;Ȍ

—–”‹‡–ϔŽ—š‹–‘ƒ‹–‡•‡†‡‡’…ŠŽ‘”‘’Š›ŽŽŽƒ›‡”‹

a mode-water eddy. Deep Sea Research Part II: Topi-cal Studies in Oceanography 55(10–13):1139-1160.

30. ƒ”–‹Ƭ‹…Šƒ”†•ȋ͸ͶͶͷȌ‡…Šƒ‹••ˆ‘”

vertical nutrient transport within a North Atlantic mesoscale eddy. Deep Sea Research Part II: Topical

–—†‹‡•‹…‡ƒ‘‰”ƒ’Š›ͺ;ȋͺȂͻȌǣͽͻͽǦͽͽ͹Ǥ

31. ‹‡Ž†‹‰ǡ‡–ƒŽǤȋ͸ͶͶͷȌ‡•‘•…ƒŽ‡•—„†—…–‹‘ƒ––Š‡

Almeria–Oran front: Part 2. Biophysical interactions.

‘—”ƒŽ‘ˆƒ”‹‡›•–‡•͹Ͷȋ͹ȂͺȌǣ͸;ͽǦ͹ͶͺǤ 32. ƒ†ǡ‡–ƒŽǤȋ͸ͶͷͻȌ††›Ǧ†”‹˜‡•—„†—…–‹‘

exports particulate organic carbon from the spring

„Ž‘‘Ǥ…‹‡…‡͹ͺ;ȋͼ͸͹ͷȌǣ͸͸͸Ǧ͸͸ͻǤ

33. Thomsen S, et al. (2016) Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru?

‡‘’Š›•‹…ƒŽ‡•‡ƒ”…Š‡––‡”•ͺ͹ȋͷͻȌǣ;ͷ͹͹Ǧ;ͷͺ͸Ǥ 34. Šƒ‹‰‡ƒ—ǡ‹œ‘Ž‡ǡƬ”ƒ†‘•ȋ͸ͶͶ;Ȍ‡•‘•…ƒŽ‡

‡††‹‡•‘ˆˆ‡”—‹ƒŽ–‹‡–‡””‡…‘”†•ǣ†‡–‹ϔ‹…ƒ–‹‘ƒŽ-gorithms and eddy spatio-temporal patterns. Progress in Oceanography 79(2–4):106-119.

35.Šƒ‹‰‡ƒ—ǡŽ†‹ǡƬ‡™‹––‡ȋ͸ͶͶͿȌ††›ƒ…–‹˜-ity in the four major upwelling systems from satellite

57 altimetry (1992–2007). Progress in Oceanography

;͹ȋͷȂͺȌǣͷͷͽǦͷ͸͹Ǥ

36. ƒŠƒ†‡˜ƒǡŠ‘ƒ•ǡƬƒ†‘ȋ͸ͶͶ;Ȍ

‘‡–‘̺††›Ȁ‹†–‡”ƒ…–‹‘•–‹—Žƒ–‡š-traordinary Mid-Ocean Plankton Blooms". Science

͹͸Ͷȋͻ;ͽͻȌǣͺͺ;Ǧͺͺ;Ǥ

37. Bourbonnais A, et al. (2015) N-loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer experiment. Global

‹‘‰‡‘…Š‡‹…ƒŽ›…Ž‡•͸ͿȋͼȌǣͽͿ͹Ǧ;ͷͷǤ

38. Stramma L, Bange HW, Czeschel R, Lorenzo A, &

”ƒȋ͸Ͷͷ͹Ȍ–Š‡”‘Ž‡‘ˆ‡•‘•…ƒŽ‡‡††‹‡•ˆ‘”

the biological productivity and biogeochemistry in the

‡ƒ•–‡”–”‘’‹…ƒŽƒ…‹ϔ‹……‡ƒ‘ˆˆ‡”—Ǥ‹‘‰‡‘•…‹‡…‡•

10(11):7293-7306.

39. ڕ…Š‡”ǡ‡–ƒŽǤȋ͸ͶͷͻȌ͸ϔ‹šƒ–‹‘‹‡††‹‡•‘ˆ–Š‡

‡ƒ•–‡”–”‘’‹…ƒŽ‘—–Šƒ…‹ϔ‹……‡ƒǤ‹‘‰‡‘•…‹‡…‡•

‹•…—••Ǥͷ͸ȋ͸͸Ȍǣͷ;ͿͺͻǦͷ;Ϳͽ͸Ǥ

40. Thomsen S, et al. (2016) The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and

—–”‹‡–†‹•–”‹„—–‹‘•Ǥ‘—”ƒŽ‘ˆ‡‘’Š›•‹…ƒŽ‡•‡ƒ”…Šǣ Oceans. 476-501.

41. Brannigan L (2016) Intense submesoscale upwell-ing in anticyclonic eddies. Geophysical Research Letters:n/a-n/a.

42.–”ƒ••ȋͷͿͿ͸ȌŠŽ‘”‘’Š›ŽŽ’ƒ–…Š‹‡••…ƒ—•‡†„›

mesoscale upwelling at fronts. Deep Sea Research Part A. Oceanographic Research Papers 39(1):75-96.

43. Lam P, et al. (2011) Origin and fate of the secondary nitrite maximum in the Arabian Sea. Biogeosciences

;ȋͼȌǣͷͻͼͻǦͷͻͽͽǤ

44. Kalvelage T, et al. (2015) Aerobic Microbial Respi-ration In Oceanic Oxygen Minimum Zones. PloS one 10(7):e0133526.

45. ƒŽ•‰ƒƒ”†ǡŠƒ†”—’ǡ ƒ”Àƒ•ǡƬ‡˜•„‡…Š ȋ͸Ͷͷ͸Ȍƒ‘šƒ††‡‹–”‹ϔ‹…ƒ–‹‘‹–Š‡‘š›‰‡

‹‹—œ‘‡‘ˆ–Š‡‡ƒ•–‡”‘—–Šƒ…‹ϔ‹…Ǥ‹‘Ž‘‰›

and Oceanography 57(5):1331-1346.

46. Dalsgaard T, et al. (2014) Oxygen at Nanomolar Levels Reversibly Suppresses Process Rates and Gene

š’”‡••‹‘‹ƒ‘šƒ†‡‹–”‹ϔ‹…ƒ–‹‘‹–Š‡

Oxygen Minimum Zone off Northern Chile. mBio 5(6).

47. Kalvelage T, et al. (2011) Oxygen Sensitivity of Anam-mox and Coupled N-Cycle Processes in Oxygen

Mini-mum Zones. PloS one 6(12):e29299.

48. ”±˜ƒŽ‘Ǧƒ”–À‡œǡ‡–ƒŽǤȋ͸ͶͷͻȌϔŽ—‡…‡‘ˆ‡•‘-scale eddies on the distribution of nitrous oxide in the

‡ƒ•–‡”–”‘’‹…ƒŽ‘—–Šƒ…‹ϔ‹…Ǥ‹‘‰‡‘•…‹‡…‡•‹•…—••Ǥ 2015:9243-9273.

49. ”—„‡”ǡ‡–ƒŽǤȋ͸ͶͷͷȌ††›Ǧ‹†—…‡†”‡†—…–‹‘‘ˆ

biological production in eastern boundary upwelling

•›•–‡•Ǥƒ–—”‡‡‘•…‹ͺȋͷͷȌǣͽ;ͽǦͽͿ͸Ǥ

50. …‹ŽŽ‹…—††›ǡ†‡”•‘ǡ‘‡›ǡƬƒŽ–”—†

ȋ͸ͶͶ͹Ȍ††›Ǧ†”‹˜‡•‘—”…‡•ƒ†•‹•‘ˆ—–”‹‡–•

in the upper ocean: Results from a 0.1° resolution model of the North Atlantic. Global Biogeochemical Cycles 17(2):n/a-n/a.

51. Lapeyre G & Klein P (2006) Impact of the small-scale

‡Ž‘‰ƒ–‡†ϔ‹Žƒ‡–•‘–Š‡‘…‡ƒ‹…˜‡”–‹…ƒŽ’—’Ǥ

‘—”ƒŽ‘ˆƒ”‹‡‡•‡ƒ”…ŠͼͺȋͼȌǣ;͹ͻǦ;ͻͷǤ

52. ƒ‰ƒ‹ǡ‡–ƒŽǤȋ͸ͶͷͻȌ‘‹ƒ–”‘Ž‡‘ˆ‡††‹‡•ƒ†ϔ‹Žƒ-ments in the offshore transport of carbon and nutrients

‹–Š‡ƒŽ‹ˆ‘”‹ƒ—””‡–›•–‡Ǥ‘—”ƒŽ‘ˆ‡‘’Š›•‹…ƒŽ

‡•‡ƒ”…Šǣ…‡ƒ•ͷ͸Ͷȋ;Ȍǣͻ͹ͷ;Ǧͻ͹ͺͷǤ

53. ‹Ž‡”ȋͷ;;;Ȍ‹‡‡•–‹—‰†‡•‹ƒ••‡”

‰‡ŽÚ•–‡ƒ—‡”•–‘ˆˆ‡•Ǥ‡”‹…Š–‡†‡”†‡—–•…Š‡…Š‡-‹•…Š‡‡•‡ŽŽ•…Šƒˆ–͸ͷȋ͸Ȍǣ͸;ͺ͹Ǧ͸;ͻͺǤ

54. ”—„‡”Ƭƒ”‹‡–‘ȋͷͿͿͽȌŽ‘„ƒŽ’ƒ––‡”•‘ˆ

ƒ”‹‡‹–”‘‰‡ϔ‹šƒ–‹‘ƒ††‡‹–”‹ϔ‹…ƒ–‹‘ǤŽ‘„ƒŽ

Biogeochemical Cycles 11(2):235-266.

55. ‘Ž–ƒ’’‡Ž•ǡƒ˜‹ǡ‡•‡ǡƬ—›’‡”•

(2011) 15N-labeling experiments to dissect the

contri-„—–‹‘•‘ˆŠ‡–‡”‘–”‘’Š‹…†‡‹–”‹ϔ‹…ƒ–‹‘ƒ†ƒƒ‘š

to nitrogen removal in the OMZ waters of the ocean.

‡–Š‘†•‹œ›‘Ž‘‰›ǡ‡†ƒ”–‹ȋ…ƒ†‡‹…

”‡••Ȍǡ‘Ž‘Ž—‡ͺ;ͼǡ’’͸͸͹Ǧ͸ͻͷǤ

56. ‡”ƒ„ƒ†‡”‡ǡŠƒ†”—’ǡ‡˜•„‡…ŠǡƬ ‘ƒ†‹

R (2012) A critical assessment of the occurrence and extend of oxygen contamination during anaerobic incubations utilizing commercially available vials.

‘—”ƒŽ‘ˆ‹…”‘„‹‘Ž‘‰‹…ƒŽ‡–Š‘†•;;ȋͷȌǣͷͺͽǦͷͻͺǤ 57. Thamdrup B & Dalsgaard T (2002) Production of

N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and

‡˜‹”‘‡–ƒŽ‹…”‘„‹‘Ž‘‰›ͼ;ȋ͹Ȍǣͷ͹ͷ͸Ǧͷ͹ͷ;Ǥ 58. Brunner B, et al. (2013) Nitrogen isotope effects

induced by anammox bacteria. Proceedings of the

ƒ–‹‘ƒŽ…ƒ†‡›‘ˆ…‹‡…‡•ͷͷͶȋͺͽȌǣͷ;ͿͿͺǦͷ;ͿͿͿǤ 59. ‡”ƒ„ƒ†‡”‡ǡ‡–ƒŽǤȋ͸ͶͷͺȌ‡”–‹…ƒŽ’ƒ”–‹–‹‘‹‰‘ˆ

CHAPTER 3

nitrogen-loss processes across the oxic-anoxic interface

‘ˆƒ‘…‡ƒ‹…‘š›‰‡‹‹—œ‘‡Ǥ˜‹”‘‡–ƒŽ

microbiology 16(10):3041-3054.

Supporting information

6)LJ'HSWKSUR¿OHVRIDQDPPR[DFWLYLW\QXWULHQWDQGR[\JHQFRQFHQWUDWLRQVDWVWDWLRQVVDPSOHGZLWKLQHGGLHV A, B and C, and two offshore stations.7KHORFDWLRQRIVWDWLRQVLVLQGLFDWHGLQ)LJ$DQG67DEOH$QDPPR[DFWLYLW\

IRU11+DQG112H[SHULPHQWVDUHLQGLFDWHGLQVHSDUDWHSDQHOV)RUVWDWLRQV%DQG%HGG\%DQDPPR[

UDWHVIURP112H[SHULPHQWVZHUHQRWGHWHUPLQHG(UURUEDUVIRUDQDPPR[UDWHVUHSUHVHQWWKHVWDQGDUGHUURU7KH 1GH¿FLWZDVFDOFXODWHGDFFRUGLQJWR6WUDPPDHWDO>@VHHPDWHULDODQGPHWKRGVVHFWLRQ

59

S2 Fig. Distribution of oxygen, N*, and nutrients across eddies A, B and C in the ETSP region. The cross eddy transects are shown in Fig 2A. 1RWHWKDWERWKR[\JHQ1DQGQXWULHQWVWUDQVHFWVRIHGG\$DUHLQGLFDWHGVHH)LJ$IRU WUDQVHFWVWDWLRQV7DEOXHGRWWHGOLQHVDQG7UHGGRWWHGOLQHV6WDWLRQVQXPEHUHGLQUHG%%&DQG$ZHUH VDPSOHGLQWKHHGG\FHQWHUZKLOHVWDWLRQVZLWKEODFNQXPEHUV&&&DQG$ZHUHVDPSOHGRQWKHHGG\SHULSKHU\

LGHQWL¿HGDFFRUGLQJWRHGG\LQGXFHGKRUL]RQWDOYHORFLWLHVDQGGHQVLW\IURQWVVKRZQLQ)LJ1RWHWKDWGDWDIURPVWDWLRQ&

LVQRWLQFOXGHGLQWKHWUDQVHFWSUR¿OHVVKRZQLQGLFDWHGE\&7KHFRDVWDOXSZHOOLQJVWDWLRQLVLQGLFDWHGE\µ$¶7KH YHUWLFDOEODFNGRWWHGOLQHVLQSDQHOV$'UHSUHVHQWWKHRXWHUSHULSKHU\RIWKHUHVSHFWLYHHGGLHV'DWDVKRZQLVDGDSWHGIURP 6WUDPPDHWDO>@

CHAPTER 3

S3 Fig. Distribution of chlorophyll across eddies A, B and C in the ETSP region. The cross eddy transects are shown in Fig. 2A.1RWHWKDWERWKFKORURSK\OOWUDQVHFWVRIHGG\$DUHLQGLFDWHGVHH)LJ$IRUWUDQVHFWVWDWLRQV7DEOXH GRWWHGOLQHVDQG7UHGGRWWHGOLQHV6WDWLRQVQXPEHUHGLQUHG%%&DQG$ZHUHVDPSOHGLQWKHHGG\FHQWHU ZKLOHVWDWLRQVZLWKEODFNQXPEHUV&&&DQG$ZHUHVDPSOHGRQWKHHGG\SHULSKHU\LGHQWL¿HGDFFRUGLQJWRHGG\

LQGXFHGKRUL]RQWDOYHORFLWLHVDQGGHQVLW\IURQWVVKRZQLQ)LJ1RWHWKDWGDWDIURPVWDWLRQ&LVQRWLQFOXGHGLQWKHWUDQVHFW SUR¿OHVVKRZQLQGLFDWHGE\&7KHFRDVWDOXSZHOOLQJVWDWLRQLVLQGLFDWHGE\µ$¶7KHYHUWLFDOEODFNGRWWHGOLQHVLQHDFK SDQHOUHSUHVHQWWKHRXWHUSHULSKHU\RIWKHUHVSHFWLYHHGGLHV'DWDVKRZQLVDGDSWHGIURP6WUDPPDHWDO>@

S4 Fig. Distribution of depth-integrated chlorophyll across eddies A, B and C in the ETSP region based on satellite sea surface height altimetry (SSHA). $$HULDO66+$VQDSVKRWRIHGGLHV$%DQG&7KHHGG\FHQWHU LVPDUNHGE\WKHUHGFURVVGHWHUPLQHGEDVHGRQ66+$DQGWKHVWDWLRQVLQGLFDWHGDUHWKHVDPHVWDWLRQVDVWKRVH XVHGLQ)LJRIIVKRUHVWDWLRQVDUHQRWLQFOXGHG1RWHWKDWHGG\$LVVXEGLYLGHGLQWRWKUHHGLVWLQFWWUDQVHFWV7DE DQG7ZLWKWUDQVHFWVDQGKDYLQJDGLIIHUHQWHGG\FHQWHUUHGFURVVDVWKHWUDQVHFWVZHUHVDPSOHGDSSUR[L-PDWHO\GD\VDSDUWDQGWKHHGG\KDGSURSDJDWHGZHVWZDUGGXULQJWKLVWLPH%'HSWKLQWHJUDWHGFKORURSK\OO SORWWHGDVDIXQFWLRQRIGLVWDQFHIURPWKHHGG\FHQWHU'HSWKLQWHJUDWHGFKORURSK\OORIVWDWLRQVORFDWHGDVLPLODU GLVWDQFHIURPWKHFHQWHU“NPZHUHDYHUDJHGDVLQGLFDWHGE\WKHHUURUEDUVWKHVWDQGDUGHUURULVVKRZQ7KH RYHUODLGGRWWHGOLQHVLQGLFDWHWKHDYHUDJHGHSWKLQWHJUDWHGFKORURSK\OOIRUWKHHGG\FHQWHUSHULSKHU\DQGRXWVLGH WKHHGG\&KORURSK\OODWDOOVWDWLRQVZDVGHSWKLQWHJUDWHGGRZQWRPGHSWKH[FHSWIRUFRDVWDOVWDWLRQVZKLFK were depth-integrated down to 200 m. Plotting depth-integrated chlorophyll in panel B as a function of distance

IURPWKHHGG\FHQWHUIRUDOOHGG\VWDWLRQVH[FOXGLQJWKHRXWVLGHHGG\VWDWLRQVLQGLFDWHVDVLJQL¿FDQWSRVLWLYHFRU-61 Abbreviatedstation

name(usedintext)

M90station name

Latitude(°N) Longitude(°E) B0 1639 Ͳ16.75 Ͳ84.00

B1 1646 Ͳ17.17 Ͳ83.58 C0 1659 Ͳ16.33 Ͳ80.50 C1 1660 Ͳ16.92 Ͳ80.00 C2 1652 Ͳ16.75 Ͳ81.00 C3 1661 Ͳ17.50 Ͳ79.50 A0 1672 Ͳ16.23 Ͳ75.67 A1 1668 Ͳ16.74 Ͳ76.00 A2 1679 Ͳ15.33 Ͳ75.35 O1 1581 Ͳ6.00 Ͳ85.83 O2 1604 Ͳ12.00 Ͳ85.83

S1 Table. /LVWRIVWDWLRQVVDPSOHGIRUDQDPPR[UDWHVGXULQJWKH0UHVHDUFKFUXLVH1RYHPEHU

CHAPTER 3

Ͷ