• Keine Ergebnisse gefunden

3.   Results

3.1   Analysis  of  Hfq-­‐dependent  sRNAs

3.1.2   General  characteristics  of  Hpr10

Hpr10   is   another   Hfq-­‐dependent   putative   sRNA   that   was   discovered   in   the   microarray   analysis   of   the   Δhfq   mutant   (Dienst  et   al.,   2008,   2010)   The   coding   sequence   for   Hpr10   is   located   on   the   chromosome   upstream   of  slr1915   in   the   same   orientation   (Figure   18A).   Hpr10   is   not   conserved   among   cyanobacteria   even  in  closely  related  organisms.  Its  secondary  structure  (Figure  18B)  contains   a  vast  double-­‐stranded  region  that  suggests  that  it  might  be  processed  by  RNase   III.  

!"# !"#$$#

%&'()&# %&#'(')$#

%&'()&#

*+#,-./0#

  Figure  18:  Hpr10  and  its  predicted  secondary  structure  

(A) Schematic  representation  of  the  hpr10  locus.  

(B) Predicted   secondary   structure   of   Hpr10   corresponding   to   the   respective   minimum  free  energy  state  using  mfold  web  server.  

3.1.2.1  Characterization  of  Hpr10  knockout,  overexpression  and   complementation  mutants  

In   order   to   investigate   functions   of   the   Hpr10   knockout   (section   2.4.3),   overexpression   (section   2.4.4)   and   complementation   strains   were   generated.  

Complementation   of   Δhpr10   was   achieved   by   transferring   the   Hpr10   overexpression  plasmid  in  the  Δhpr10  strain  via  conjugation.  The  created  mutant   strains   were   verified   by   Northern   blot   analysis   using   radioactively   labelled   Hpr10  probe  (Figure  19).  

 

!"#$%$&'

!"#$%&

!""$()*'

'& (&

 

 

Figure   19:   Northern   blot   verification   of   Hpr10   knockout,   overexpression   and  complementation  mutants  

The   mutants   were   grown   on   BG11   medium   without   copper   for   7   days   to   induce   the   expression  of  Hpr10  in  the  overexpression  and  complementation  strains.  5  µg  RNA  was   separated   on   10%   PAA-­‐urea   gel   and   transferred   to   PVDF   membrane   followed   by   hybridization   with   Hpr10   probe.   Hybridization   with   5S   rRNA   was   made   for   loading   control.  Transcript  sizes  were  estimated  by  overlapping  the  pictures  of  the  membrane   with   the   one   from   the   EtBr-­‐stained   gel   containing   Low   Range   Riboruler   RNA   Ladder.  

The   presented   image   was   combined   of   the   lanes   cut   out   from   the   initial   image   of   the   hybridized  membrane;  the  samples  were  analysed  together  in  one  experiment.    

First   we   decided   to   study   phototaxis   behaviour   of   Hpr10   knockout,   overexpression   and   complementation   strains   under   different   light   conditions.  

However  no  differences  in  motility  of  Hpr10  mutants  in  comparison  to  the  WT   were  observed  (Figure  20).  

 

!"#$%&'' !"#$%&'()&& !"#$%&*'+",&&

-.&#/01&&

2&34&56&&

!"#$%&

'(&&&&&&&&&&&!"#$%&&&&)*+,-&./0&)*+,-&1.2*3&&&&&&&&&&&'(&&&&&&&&&&&!"#$%&&&&)*+,-&./0&)*+,-&1.2*3&&&&&&&&&&&

4!& 5!&

Figure  20:  Phototaxis  behaviour  of  Hpr10  mutants  (previous  page)  

Phototaxis  assay  on  0,5  %  BG11  plates  under  normal  light  (NL)  and  red  light  (RL);  cells   were  grown  in  the  special  chamber  with  unidirectional  illumination  for  7  days.   Hpr10   mutants  behaved  like  the  WT  under  all  tested  light  conditions.  The  presented  image  was   combined  of  the  lanes  cut  out  from  the  initial  image  of  the  phototaxis  plate;  the  samples   were  analysed  together  in  one  experiment.  

Then  we  analysed  the  growth  of  aforementioned  mutants  and  discovered  a  slight   reduction   in   pigment   content   in   Hpr10   overexpression   and   complementation   strains  when  compared  to  the  WT  (Figure  21).  Complementation  strain  of  Hpr10   is   more   similar   to   the   overexpression   one   than   to   the   WT   in   its   phenotype   because  complementation  mutant  was  constructed  via  introduction  of  pVZ321-­‐

hpr10  to  Δhpr10  and  expression  of  Hpr10  integrated  in  this  vector  is  higher  than   the  natural  expression  of  Hpr10.    

  Figure  21:  Phenotypical  analysis  of  Hpr10  mutants    

(A) Absorption  spectra  of  liquid  cultures  of  WT  and  Hpr10  knockout,  overexpression   and  complementation  strains  grown  for  8  days  on  BG11  without  copper  under  normal   light   conditions.   The   spectra   were   normalized   to   chlorophyll  a   absorption   at   685   nm   and  OD750nm.  

(B) Phycocyanin   determination   in   liquid   cultures   of   WT   and   Hpr10   overexpression   and  complementation  strains  grown  for  8  days  on  BG11  without  copper  under  normal   light  conditions.  

(C) Allophycocyanin   determination   in   liquid   cultures   of   WT   and   Hpr10   overexpression  and  complementation  strains  grown  for  8  days  on  BG11  without  copper   under  normal  light  conditions.  

In   order   to   identify   targets   for   Hpr10   we   decided   to   monitor   change   in   abundance   of   the   target   mRNA   by   performing   microarray   analysis.   For   the  

!" #"

$"

%&'()(*+,-."*/"

0()&,1'("&23405,14*."&676" 8+"9$:/+"504,(1*"8+"!9$:/+"504,(1*"

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

(#'"

%!!" %)!" %&!" %*!" +$!" ++!" +'!" &(!" &%!" &,!" ,!!" ,)!"

!"# $%&'()# *&'()#+,-## *&'()#.+/&0#

!"

(!"

$!"

)!"

%!"

+!"

&!"

;<" =50>?"4:(" =50>?"@4/5)"

!"

$"

%"

&"

'"

(!"

($"

(%"

(&"

;<" =50>?"4:(" =50>?"@4/5)"

!"#$%&'

 

microarray   experiment   whole   RNA   from   Δhpr10   mutant   cultivated   till   logarithmic  growth  phase  (OD750nm  0,6)  in  BG11  medium  (each  time  2  biological   replicates)  was  extracted.  WT  was  taken  as  an  equivalent.  Transcripts  with  a  log2   FC   ≥1,8   (for   upregulated)   and   FC   ≤   -­‐1,8   (for   downregulated)   were   taken   as   significantly  differentially  expressed.  

Table  9:  Microarray  results  of  downregulated  and  upregulated  transcripts   responsive  to  knockout  of  Hpr10.  Compared  to  the  WT.    

Gene  name   Synonym   Gene  product  /  description   FC   Downregulated  

slr1727-­‐as1     asRNA     -­‐3.41  

sll0022     unknown  protein   -­‐2.53  

 

slr1478     hypothetical  protein   -­‐2.04    

sll0019  

  dxr   1-­‐deoxy-­‐d-­‐xylulose  5-­‐phosphate  

reductoisomerase   -­‐2.02  

 

sll1639   ureD   urease  accessory  protein  D   -­‐1.96  

 

sll1446   rfrL   hypothetical  protein   -­‐1.95  

 

sll0931     hypothetical  protein   -­‐1.93  

 

slr1980     unknown  protein   -­‐1.84  

 

sll0915   pqqE   periplasmic  protease   -­‐1.82  

  Upregulated  

NC-­‐232/NC247     Hpr11   3.35  

NC-­‐65     located  upstream  from  sll0306  

(sigB)  

2.11  

sll1773   pirA   hypothetical  protein   2.07  

slr0444-­‐5’UTR   aroA   3-­‐phosphoshikimate  1-­‐

carboxyvinyltransferase   2.03  

sll1006     unknown  protein   1.98  

sll1851     unknown  protein   1.91  

sll1666-­‐5’UTR   dnaJ,  dnaJ2,  dnaJ3   DnaJ-­‐like  protein   1.91   slr2135   hupE,  ureJ   hydrogenase  accessory  protein  

HupE   1.9  

slr0449   dnr   probable  transcriptional  

regulator   1.87  

sll0609     hypothetical  protein   1.86  

ssl0331     hypothetical  protein   1.83  

sll1586-­‐as1     asRNA   1.83  

slr1789     unknown  protein   1.81  

slr1529   ntrX   nitrogen  assimilation  regulatory  

protein   1.81  

sll0833   appC   probable  oligopeptides  ABC  

transporter  permease  protein   1.8  

Microarray   results   showed   that   in   Hpr10   knockout   mutant   9   RNA   features   presented   reduction   in   transcript   quantity   and   15   RNA   features   illustrated   increase   in   accumulation.     The   most   downregulated   in  Δhpr10   is   the   asRNA   slr1727-­‐as1.   However,   a   significant   difference   in   transcript   accumulation   of   the   complementary   (potentially   target)   mRNA   was   not   detected.   The   same   can   be   said   about  sll1586-­‐as1   that   showed   slight   upregulation   in   the   mutant,   as   its   complementary  mRNA  was  also  not  affected.  Interestingly  the  most  upregulated   RNA   feature   was   another   Hfq-­‐dependent   sRNA   Hpr11.   It   is   located   on   the   chromosome  between  slr1822  and  slr1732  in  the  antisense  orientation;  in  the  hfq   knockout  strain  Hpr11  transcript  could  not  be  detected  (Schürgers,  2014).  Most   of  the  features  with  different  transcript  accumulation  in  Δhpr10  in  comparison  to   the   WT   corresponded   to   unknown   or   hypothetical   proteins   and   could   not   be   linked  to  the  hfq  mutant  phenotype;  therefore  it  has  been  decided  not  to  proceed   with   the   analysis   of   the   microarray   results   and   focus   on   the   direct   search   for   RNase  targets.