• Keine Ergebnisse gefunden

Cloning  strategies  and  construction  of  plasmids

2.   Materials  and  Methods

2.4   Cloning  strategies  and  construction  of  plasmids

 

Positive  transformants  were  selected  via  colony  PCR  and  the  correct  sequence  of   the  extracted  plasmid  DNA  was  confirmed  by  sequencing.      

2.4.3  General  strategy  for  construction  of  knockout  mutants  of  small   ncRNAs

In  order  to  create  knockout  strains  of  Hfq-­‐dependent  putative  sRNAs  (Hprs)  in   Synechocystis  upstream  and  downstream  genome  regions  were  amplified  using   Synechocystis   genomic   DNA   and   then   fused   together   via   a   third   PCR,   which   resulted  in  omission  of  the  sRNA.  The  following  primer  combinations  were  used:    

Hpr8:   1.PCR   slr1213-­‐fw   slr1213-­‐salI-­‐rev     2.PCR   slr1214-­‐salI-­‐fw      

slr1214-­‐rev       3.PCR   slr1213-­‐fw    

slr1214-­‐rev    

Hpr10:  1.PCR   sll1834-­‐fw   sll1834-­‐BglII-­‐rev     2.PCR   slr1915-­‐BglII-­‐fw    

slr1915-­‐rev     3.PCR   sll1834-­‐fw  

slr1915-­‐rev   (Table  4)  

PCR   products   were   ligated   into   the   pJet   1.2   (in   case   of   Hpr8)   and   pDrive   (for   Hpr10)  cloning  vectors.  Recombinant  vector  was  transferred  into  competent  E.  

coli  DH5α,  positive  transformants  harbouring  the  respective  recombinant  vector   were   selected   on   LB   agar   medium   supplemented   with   Amp   and   checked   via   colony  PCR.  Plasmid  vector  DNA  was  then  extracted  and  digested  with  SalI  and   BglII   restriction   enzymes   (both   Thermo   Fisher   Scientific)   respectively.   The   Km   resistance   gene   cassette   was   obtained   from   the   pUC4K   vector,   restricted   with   SalI   or   BamHI,   respectively.   The   Km   resistance   gene   cassette   was   then   ligated   into   the   digested   pJet   vector.   Competent  E.   coli  DH5α   were   transformed   with   recombinant   vector,   positive   transformants   were   selected   on   LB   agar   medium   supplemented  with  Amp  and  Km  and  checked  via  colony  PCR.  Then  the  plasmid   vector   was   extracted,   sequenced   and   used   to   transform  Synechocystis.  Positive   transformants  were  selected  on  BG11  agar  medium  supplemented  with  Km  and   checked  via  colony  PCR.    

2.4.4  General  strategy  for  construction  of  overexpression  mutants  of  small   ncRNAs

In   order   to   create   overexpression   strains   of   sRNAs   in  Synechocystis   their   ORFs   were   amplified   using   Synechocystis   genomic   DNA   and   primer   combinations   leading   to   the   introduction   of   copper-­‐regulated  petJ   promoter   in   front   of   the   sRNA  followed  by  the  oop-­‐terminator  from  phage  Lambda:  

 

 

Hpr8:   1.PCR   PpetJ-­‐fw  

Hpr8-­‐PpetJ-­‐rev     2.PCR   PpetJ-­‐Hpr8-­‐fw  

Oop-­‐Hpr8-­‐rev     3.PCR   PpetJ-­‐fw  

Oop-­‐Hpr8-­‐rev   Hpr10:  1.PCR   PpetJ-­‐fw  

    Hpf10-­‐PpetJ-­‐rev   2.PCR   PpetJ-­‐Hpr10-­‐fw     Oop-­‐Hpr10-­‐rev     3.PCR   PpetJ-­‐fw  

Oop-­‐Hpr10-­‐rev   (Table  4)  

Final   PCR   products   were   ligated   into   the   pDrive   cloning   vector.   Recombinant   vector   was   transformed   into   competent   E.   coli   DH5α   cells,   positive   transformants  harbouring  recombinant  vector  were  selected  on  LB  agar  medium   supplemented  with  Amp  and  checked  via  colony  PCR.  Plasmid  vector  was  then   extracted   and   digested   with   PstI   and   SalI   restriction   enzymes   (both   Thermo   Fisher   Scientific)   and   inserted   into   the   conjugative,   self-­‐replicating   vector   pVZ321-­‐Strep   digested   with   the   same   restriction   enzymes.   It   was   then   transformed   into   competent  E.   coli  DH5α   cells,   positive   transformants   were   selected  on  LB  agar  medium  supplemented  with  Km  and  Strep  and  checked  via   colony  PCR  and  sequencing.  Then  the  extracted  plasmid  vector  was  transferred   into  Synechocystis  WT  and  Δhfq  mutant  by  conjugation.  Positive  conjugants  were   selected   on   BG11   agar   medium   supplemented   with   Km   and   Strep   and   checked   via  colony  PCR.    

2.4.5  Construction  of  slr1214-­‐rescue  and  hpr8-­‐rescue  mutants  in   Synechocystis  

Hpr8-­‐rescue  and  slr1214-­‐rescue  strains  on  the  basis  of  the  Δhpr8  mutant  were   constructed   by   Jasper   Matthiessen  (AG   Hess,   Institute   of   Biology   III,  Albert-­‐

Ludwigs   University   Freiburg)   by   introducing   the   self-­‐replicating   plasmid   pVZ322,  modified  to  carry  the  native  hpr8  locus  containing  native  hpr8  promoter   in   front   of  hpr8  (PHpr8>Hpr8).  hpr8   locus   was   amplified   by   PCR   using   the   primers   P-­‐Hpr8-­‐MluI-­‐fw   and   SyR14-­‐MluI-­‐rev   (Table   4)   that   introduce   MluI   restriction  sites  on  both  ends  of  the  PCR  product.  The  PCR  product  and  pVZ322   were   then   digested   with   MluI,   thus   removing   the   Km   resistance   gene   cassette   from  pVZ322.  Following  that,  the  fragments  were  ligated  and  transformed  into  E.  

coli  TOP10F’.  Positive  clones  were  selected  with  Gent  and  verified  by  colony  PCR   and  sequencing.  Recombinant  plasmid  was  then  transferred  via  conjugation  into   Δhpr8  and  positive  clones  were  selected  using  Km  and  Gent.    

In  order  to  create  slr1214-­‐rescue  strain  hpr8  promoter  was  fused  directly  to  the   coding   sequence   of  slr1214   (PHpr8>slr1214),   omitting   the  hpr8   sequence   in   between  the  two.  This  was  executed  by  introducing  the  self-­‐replicating  plasmid   pVZ322  carrying  the  PHpr8>slr1214  construct  into  the  Δhpr8  knockout  mutant.  

The   promoter   of  hpr8   was   amplified   using   the   primers   PHpr8-­‐MluI-­‐fw   and   PHpr8-­‐Fus-­‐rev  (Table  4),  introducing  a  MluI  restriction  site  on  the  5’-­‐end  and  a  

complementary   region   for   fusion-­‐PCR   on   the   3’-­‐end   of   the   PCR   product.   The   coding   region   of  slr1214  was   amplified   using   the   primers  slr1214-­‐Fus-­‐fw   and   slr1214-­‐MluI-­‐rev,   thus   introducing   MluI   restriction   site   on   the   3’-­‐end   and   a   complementary  region  for  fusion-­‐PCR  on  the  5’-­‐end  of  the  PCR  product.  The  two   products  were  fused  together  by  PCR.  This  final  product  and  pVZ322  vector  were   then   digested   with   MluI,   ligated   and   transformed   into  E.  coli  TOP10F’.   Positive   clones   were   selected   with   gentamycin   and   verified   by   colony   PCR   and   sequencing.   Finally   the   correct,   recombinant   plasmid   was   conjugated   into   the   Δhpr8   knockout   mutant   and   positive   clones   selected   using   kanamycin   and   gentamycin.    

2.4.6  General  strategy  for  construction  of  RNaseIII  conditional  knockout   mutants  in  Synechocystis  

First  step  in  creation  of  conditional  knockout  strain  of  RNaseIII  in  Synechocystis   was  to  construct  a  complementation  mutant  of  RNaseIII  in  the  existing  knockout   mutant.  For  that  purpose  FLAG-­‐slr0346  plasmid  was  transferred  to  Synechocystis   Δslr0346(Cmr)   via   conjugation   and   FLAG-­‐slr1646   plasmid   was   transferred   to   Synechocystis  Δslr1646(Cmr)  also  via  conjugation.  Both  mutants  were  grown  on   BG11   medium   without   copper,   thus   inducing   the   expression   of   the   respective   RNasesIII  controlled  by  the  petJ  promoter.  In  the  next  step  knockout  strains  of   RNasesIII   (slr0346   and   slr1646)   were   created   using   the   following   strategy:  

upstream  and  downstream  genome  regions  were  amplified  using  Synechocystis   genomic  DNA  and  then  fused  together  via  a  third  PCR,  thereby  skipping  RNaseIII.  

The  following  primer  combinations  were  used:    

rnc1  (slr0346):     1.PCR   slr0346-­‐k/o-­‐fw               slr0346-­‐rev-­‐StuI  

2.PCR   slr0346-­‐fw-­‐StuI     slr0346-­‐k/o-­‐rev     3.PCR   slr0346-­‐k/o-­‐fw  

slr0346-­‐k/o-­‐fw     rnc2  (slr1646):     1.PCR   slr1646-­‐k/o-­‐fw     slr1646-­‐StuI-­‐rev     2.PCR   slr1646-­‐StuI-­‐fw  

slr1646-­‐k/o-­‐rev           3.PCR   slr1646-­‐k/o-­‐fw  

slr1646-­‐k/o-­‐rev     (Table  4)  

PCR  products  were  ligated  into  the  pJet  1.2  cloning  vector.  Recombinant  vector   was  transformed  into  competent  E.  coli  DH5α,  positive  transformants  harbouring   recombinant  vector  were  selected  on  LB  agar  medium  supplemented  with  Amp   and  checked  via  colony  PCR  and  sequencing.  Plasmid  vector  was  then  extracted   and   digested   with   StuI   restriction   enzyme   (Thermo   Fisher   Scientific).   Gent   resistance   cassette   was   obtained   from   the   pVZ322   vector,   restricted   with   StuI   and  HincII  restriction  enzymes  (both  Thermo  Fisher  Scientific).  Gent  resistance   cassette   was   then   ligated   into   the   digested   pJet.   Recombinant   vector   was   transformed  into  competent  E.  coli  DH5α,  positive  transformants  were  selected  

 

on   LB   agar   medium   supplemented   with   Amp   and   Gent   and   checked   via   colony   PCR  and  sequencing.    

In  the  final  step  Δslr1646(Gentr)  plasmid  was  transformed  in  Synechocystis  FLAG-­‐

slr0346  +  Δslr0346(Cmr),  as  well  as  Δslr0346(Gentr)  plasmid  was  transformed  in   Synechocystis   FLAG-­‐slr1646   +   Δslr1646(Cmr).   Positive   transformants   were   selected   on   BG11   agar   medium   supplemented   with   Gent,   Cm,   Km   and   lacking   copper.  Thus  when  these  mutants  were  transferred  to  the  growth  medium  with   normal  copper  concentration  the  expression  of  RNaseIII  under  the  control  of  petJ   promoter   was   abolished   and   conditional   knockout   of   both   RNasesIII   was   achieved.