• Keine Ergebnisse gefunden

Dimension 22

Im Dokument Finite symplectic matrix groups (Seite 117-149)

Theorem 4.12.1 The s.i.m.f. subgroups G of Sp22(Q) are

# G |G| |Z(G)| Lmin r.i.m.f.

supergroups [2,1,11] i[C4]111 230·34·52·7·11 3 [1,1,44] B22

1 i[C4]1⊗A11 212·35·52·7·11 10 [32,2,264] A211 [2,2,11] −3[C6]111 219·315·52·7·11 1 [311,2,66] A112

2 −3[C6]1⊗A11 211·36·52·7·11 9 [311,4,396] A11⊗A2 3 −3[±U5(2)◦C3]11 211·36·5·11 4 [22·3,4,49896] S 4 −23[±L2(23)]11 24·3·11·23 3 [2311,12,1012]

[2311,12,506] A(6)22 where S := [±P SU6(2).S3]22 <GL22(Q).

Proof: By explicit calculations, one verifies that the above table is correct and yields s.i.m.f. groups. Further the r.i.m.f. supergroups are easily constructed since all s.i.m.f.

groups are uniform. It remains to show the completeness of the classification.

The group −3[C6]111 is s.i.m.f. by Lemma 2.1.21 and i[C4]111 fixes only three lattices.

One checks that it is s.i.m.f.. So we may now suppose thatG is s.p.i.m.f..

It follows from Corollary 4.1.2 thatE(G) is not trivial. Thus by Table 2.5.1, E(G) is conjugate to Alt12, M11, U5(2) or L2(23). In the latter two cases, E(G) is irreducible and Bo(E(G)) is already s.i.m.f..

If E(G)'Alt12 then G contains a normal subgroup B := Bo(E(G))'A11' ±S12. ClearlyB is not self-centralizing. ThusGcontains an irreducible subgroupi[C4]1⊗A11 or−3[C6]1⊗A11. Both groups are s.i.m.f..

If E(G)'M11 then Out(E(G)) is trivial. Thus G contains an irreducible subgroup conjugate to −3[C6]1⊗M11 or i[C4]1⊗M11. The first group fixes 18 lattices and is only contained in−3[C6]1⊗A11 and−3[C6]111 . The second group fixes 15 lattices and is only contained in i[C4]1⊗A11 and i[C4]111 .

Invariant Forms

For each conjugacy class of s.p.i.m.f. matrix groups in GL2n(Q) where 1≤n≤11 we give a symmetric positive definite form F and a skewsymmetric form S such that

Aut(Z1×2n,{F, S}) = {g ∈GL2n(Z)|gF gtr =F and gSgtr =S}

is a representative of that class.

Further the pairs (F, S) satisfy the following properties:

(a) det(F) = min{det(L, F0)|(L, F0)∈ Z(G)× F>0(G) is integral} where G:= Aut(Z1×2n,{F, S}).

(b) S·F−1 generates the commuting algebra of Aut(Z1×2n,{F, S}) and its minimal polynomial µ(S·F−1, X) is one of

• X2 +d for some squarefree d∈N.

• µ(ζk−ζk−1, X) for some evenk ∈Z≥6.

• µ(ζ26263269 , X).

• µ(√

k·(ζ`−ζ`−1), X) where (k, `)∈ {(2,10), (3,10), (3,16)}.

• µ(i+√

−3 +√

−5, X).

By Algorithm 2.3.3, these pairs (F, S) give an easy way to recover the conjugacy class of any given s.p.i.m.f. subgroup of GL2n(Q) for 1 ≤n ≤11.

In some cases, tensoring such a pair (F, S) with a gram matrix g of some root lattice yields another s.p.i.m.f. automorphism group H. If the pair (F ⊗g, S⊗g) satisfies property (a) from above, then H is omitted in the list below, since these forms can easily be reconstructed from the name of H.

For example, tensoring the forms ofi[C4]1 with any gram matrix ofA2 yields a pair of forms that satisfies the above properties. Thus the s.p.i.m.f. matrix group i[C4]1⊗A2 is omitted in the list below.

Similarly, tensoring the forms of i[C4]1 with any gram matrix of A5 yields a pair of forms whose automorphism group is conjugate to i[C4]1⊗A5. But these forms do not satisfy the above properties. Thus the list below contains some other forms for

i[C4]1⊗A5.

119

Thepairs(F,S)aregivenasasinglematrixM.TheuppertriangularpartofMistheuppertriangularpartofS.Theotherentries ofMarethecorrespondingentriesofF. Forexample,2133 1213 0121 0012describesthepair 0 BB @

2100 1210 0121 0012

1 CC A,

0 BB @

0133 1013 3101 3310

1 CC A

.

A.1 Dimension 2

1:i[C4]1 11 01

2: 3[C6]1 23 12

A.2 Dimension 4

1:i[(D8⊗C4).S3]2 2102 1211 0120 0102

3: 2[GL2(3)]2 2022 1202 0120 0102

4:,2[SL2(3)]1◦C3 2122 1211 0122 0102

5:ζ10[C10]1 2133 1213 0121 0012

A.3 Dimension 6

1: 3[±31+2 +:SL2(3)]3 232000 121000 012121 001230 000120 001002

2: 7[±L2(7)]3 470770 147077 214707 121470 112147 211214

A.4 Dimension 8

1:i[(21+4 +⊗C4).S6]4 20000120 12000011 01201002 00120101 00012100 00001200 00000120 00001002

3: 2[,2[21+4 .Alt5]2:2]4 20022010 12010002 01200010 00120101 00012010 00001220 00000120 00001002

4: 2[F4:2]4 20000022 12000220 01202200 01022000 00002000 00001200 00000120 00000102

5: 3[Sp4(3)◦C3]4 23200000 12100000 01210002 00121000 00012121 00001230 00000120 00001002 7:,2[SL2(5):2]2◦C3 42331022 24101131 11413620 10141121 11114332 21211420 01221243 21012014

9: 5[ 5,[SL2(5)]12 C4]4 20003213 12001131 01200313 00121121 00012100 00001200 00000120 00001002

10: 5[ 5,[SL2(5)]12+ C4]4 45000005 24005500 11400050 10140550 11114000 21211400 01221240 21012014

11: 5[C20:C4]4 20004111 12001141 01201111 00121411 00002000 00001200 00000120 00000012 12: 6[ 2,[˜S4]12 C3]4 23101000 12012212 01211233 00121202 00012111 00001221 00000122 00001002

13: 6[ 2,[˜S4]12+ C3]4 20000222 12002002 01202004 01022240 00002000 00001200 00000120 00000102

14: 6[D16

2 3[C6]1]4 20000330 12003003 00203003 00120330 00002000 00001200 00000020 00000012

15: 7[2.Alt7]4 21020004 12302000 01210202 00123400 00012301 00001212 00000120 00001002 16: 15[ 5,[SL2(5)]12 C3]4 21002060 12540240 01230000 00123006 00012125 00001230 00000120 00001002

17: 15[ 5,[SL2(5)]12+ C3]4 4055510100 24505555 11455000 10145505 11114550 21211400 01221245 21012014

18: 15[C30:C4]4 40006966 24009696 02406969 00246696 21004000 12102400 01210240 00120024

19: 5,[SL2(5)]1◦C5 22100000 12210000 01210000 00120112 00012212 00001221 00000121 00001002

21:ζ16ζ1 16[QD32]2 10010100 01001010 00100101 00010010 00001001 00000100 00000010 00000001

A.5 Dimension 10

1:i[C4]1⊗A5 2000001111 1200002110 1020010011 1012000010 1011210100 0000020011 0000002011 0000011211 1111011132 1111010113

2: 3[±S4(3)◦C3]5 4000303300 2400300330 2240300303 2224030300 1110400003 2021243003 1202014030 1111222403 2120021240 2210110124

3: 11[L2(11)]5 600011110000 26111101111000 236001100011 212600011011 322260011110 31102611000 232201611110 2221121600 22001212611 0211202016

A.6 Dimension 12

2:,3[±U3(3)]3◦C4 412200000001 040001100110 104110000101 221400000121 012141002210 212124000011 020201411221 122122241011 200202214221 100022012410 021211200240 202022012214

4:i[ 3[±31+2 +:SL2(3)]3

2(2) @×⊃i[C4]1]6 401121112100 241022101110 114022401010 100411010101 000141011010 102114212111 110022401010 100111041121 211010114011 110101010400 011211121241 000101011214

5:i[L2(7)2(2)i[C4]1]6 410012101211 141001101020 214104110001 021401001001 120240220011 010104110021 111201421101 001001041201 110100114010 200020100410 102210201141 101111112214

6:i[C4]1⊗A(2) 6 400000412112 140000141211 214000214121 121400121412 112140112141 211214211214 000000400000 000000140000 000000214000 000000121400 000000112140 000000211214

7:i[ 7[±L2(7)]3

2(2) @×⊃i[C4]1]6 800421134440 280234141213 448111130144 421802124801 231283022201 343018043012 133342813312 343004380021 410001148000 421002124843 414421100084 414312230148

8: 2[±L2(7)·2]6 200000021011 120000101110 012000210111 001200201011 000120102101 000012112010 000000200000 000000120000 000000012000 000000001200 000000000120 000000000012 9: 2[,2[SL2(5)]3:2]6 312021112100 131003011211 113121220021 010322110121 111130001111 111114301111 111111411211 011001031111 110001103001 101111110301 011102200131 101111211013

10: 3[6.U4(3).2]6 403000030300 040033000000 104300000030 221433030000 012140000030 212124300030 020201400000 122122243303 200202214000 100022012400 021211200243 202022012214

11:i[ 3[±31+2 +:SL2(3)]3,2[SL2(3)]1]6 403121116122 243222123112 114222423212 100411232303 000143011214 102114612111 110022421212 100111041363 211010114211 110101010400 011211121243 000101011214 12: 3[±3.M10]6 830003036030 1803633363012 208360363000 411800330030 022280360000 314048060033 433334833633 332122183336 223442118036 214224212860 344101311286 240241302228

13: 3[C6]1⊗M6,2 10000001566666 41000006156666 44100006615666 44410006661566 44441006666156 44444106666615 5222221000000 2522224100000 2252224410000 2225224441000 2222524444100 2222254444410

14:,2[SL2(5)]3◦C3 410103322131 141223212132 214111113141 121414310233 221143212123 111014313311 101101411111 011111141110 001201114031 111211112410 110101111141 101111101214

15: 5[i[C4]1

2 Alt5]6 101010101001 010010101011 001101010100 000110101010 000010010100 000001101011 000000100100 000000011011 000000001000 000000000111 000000000010 000000000001

16: 5[i[C4]1

2+ Alt5]6 500000005000 250000000500 225000000050 222500500000 222250000005 222225050000 000000500000 000000250000 000000225000 000000222500 000000222250 000000222225

17: 7[±L2(7)]3 7,3[˜S3]1 423000214140 040251202000 104300202012 221413014202 012142220032 212124300012 020201400200 122122243105 200202214420 100022012402 021211200245 202022012214 19: 11[SL2(11)]6 111111111111 011111111111 001111111111 000111111111 000011111111 000001111111 000000111111 000000011111 000000001111 000000000111 000000000011 000000000001

20: 15[±3.Alt6·21]6 409600030306 040033600000 104300000030 221433636006 012146000030 212124300030 020201400060 122122243303 200202214000 100022012460 021211200243 202022012214

21: 15[±3.Alt6:21]6 8150001501500150 18015015151501500 208150015015000 411800151500150 0222801500000 31404800001515 4333348151501515 332122181515150 2234421180150 214224212800 344101311280 240241302228 22:ζ10[C10]1 5Alt5 403000001113 241230001233 014313121421 012411111421 201041120012 000214000110 021012401242 201110043101 110020014124 112001122400 101112201240 000010122224

23:ζ26+ζ

3 26+ζ

9 26

[C26:C3]3 211332101332 121233010001 012223123310 001222033100 000122131001 000012010013 000001211133 000000122233 000000012223 000000001222 000000000122 000000000012

A.7 Dimension 14

1:i[C4]1⊗E7 20111001110010 02000000100100 01200000011211 01120000100100 01012000110000 01110200011100 01111120001110 01011002111011 11011111310011 11011111130001 10000000112000 10000000011200 11011111121131 10000000011112

2:i[U3(3)◦C4]7 30001101101000 13010010010001 11301101110111 10130013111001 01013011101101 01011331110010 10100030001101 01000013000110 01000011311001 10001011030001 01100101013001 11010100111310 11011010111030 10000101000113

A.8 Dimension 16

2:i[(21+6 +⊗C4).Sp6(2)]8 4001010211001000 2410101101111001 2140010200111000 1224102200100121 2121420011110000 1212241101011102 2100214000200000 2100212400000011 1200122240100121 1100110024011121 0111120210421101 0110110201240101 1110210201124000 2001212211112400 2000002100000240 2121202111110004

3:i[ 3[Sp4(3)◦C3]4

2(2) @×⊃i[C4]1]8 6011011102013111 0613011120213111 1360011220201202 1126130111132121 0023603111100111 1333260220211112 1330106100001121 3121121631322101 2221120160123033 2223320106101011 2221120131613030 1301030222161111 3312011011116112 3121111300013611 3102112011113360 3121121311010306

5:i[C4]1⊗M8,3 4000000042221221 2400000024012121 2040000020421212 2124000021242120 1212400012124011 2121040021210400 2212104022121041 1120101411201014 0000000040000000 0000000024000000 0000000020400000 0000000021240000 0000000012124000 0000000021210400 0000000022121040 0000000011201014

6:,3[SL2(7)]4◦C4 6102100121110202 1610110102000202 3162012110020211 2316002212110110 0223612112112210 2122062112102011 3120106023101200 1021213620110001 1121221061131010 2230220006312000 1301212100612120 1222231202261103 3303102111226021 2100131131111611 3110203020111160 1213011101101116 7: 2[,2[21+6 .O 6(2)]4:2]8 4000000000000220 2400000000220000 2140000000000200 1224000000022000 2121400000000002 1212240000020000 2100214002000002 2100212420000020 1200122240022000 1100110024200000 0111120210402200 0110110201240020 1110210201124020 2001212211112400 2000002100000240 2121202111110004

8: 2[21+6 +.(Alt8:2)]8 2000000021001111 1200000011111012 0120000002100101 0012000012100120 0001200011111010 0000120011011111 0000012011111012 0000100200112100 0000000020000000 0000000012000000 0000000001200000 0000000000120000 0000000000012000 0000000000001200 0000000000000120 0000000000001002 10: 2[GL2(3)]2 2,5[SL2(5):2]2 4000000013114111 2400000010210011 0040000040111212 1224000010111102 1202400010101003 2212040001132001 2220104021431130 1121101404232121 0000000040000000 0000000024000000 0000000000400000 0000000012240000 0000000012024000 0000000022120400 0000000022201040 0000000011211014

12:,2[21+6 .O 6(2)]4◦C3 4021210011001000 2430101101331001 2142210000131020 1224100000300101 2121420011110002 1212241101213300 2100214220200020 2100212420200013 1200122242100101 1100110024011121 0111120210421321 0110110201242103 1110210201124002 2001212211112422 2000002100000240 2121202111110004

13: 3[Sp4(3)◦C3]4 3,2[SL2(3)]1 6633033300039333 0633033300033333 1360033000003000 1126330333330303 0023603333300333 1333260000033330 1330106300003303 3121121633306303 2221120166303033 2223320106303033 2221120131633030 1301030222163333 3312011011116336 3121111300013633 3102112011113360 3121121311010306

14: 3[C6]1⊗[(SL2(5)2 SL2(5)):2]8 80000000126333606 48000000612303333 22800000331233660 20280000303123363 22228000333312336 42422800636331260 02442480036636123 42024028630360312 4211120280000000 2410111148000000 1141122022800000 1014112120280000 1111411222228000 2121142042422800 0122124102442480 2101201442024028 16:(,2[SL2(3)]1◦C3)⊗ 3,5[SL2(5):2]2 126618330600660303 612186033366006066 661212363366666963 66012303366666363 321312661806360666 130261218669363933 233166121269003933 011366012636123333 466246621212603303 466203330126336126 64263120221233363 64266240233126030 46622331333212036 363303333610612612 42220333402312126 30330333121000612

17:,5[SL2(5)2 5D10]4◦C3 4222222201113011 2422000010002201 2242222210200132 2224002211002001 2020422211120112 2020242221020010 2022224220111121 2022222411101101 0111102141023131 1221110114202011 1200101120400222 1200001022242130 1222001110004320 2212101112011411 1212110011012141 1101221111000114 18:,2[SL2(5)2(2) @×⊃D8]4◦C3 8110044104414444 1804102542301323 3480532443352223 4428403543303033 4314834043040300 4212383434404444 2441438011043100 3141242841260110 4244413480353333 4233141328414444 4313242214844448 3212444213484112 4123243214428440 4122143334434844 4443244314434484 4131242434020448

19: 3[C60.(C4×C2)]8 8000666303336033 0800606303336033 2280303066000036 2248300060660330 2213800033030633 20442830126660306 2212018333306636 3142221833000036 4022141186333033 1120121128333303 1100201031800030 1300102031080000 2202422013448000 4443212421000836 1333121112142180 1322300233000248

20: 5[((SL2(5)◦SL2(5)):2)

2 i[C4]1]8 2000000031020112 1200000001111012 0120000020011230 0012000010121100 0001200013200111 0000120001200212 0000012021212003 0000100213123201 0000000020000000 0000000012000000 0000000001200000 0000000000120000 0000000000012000 0000000000001200 0000000000000120 0000000000001002

21: 5[((SL2(5)◦SL2(5)):2)

2+ i[C4]1]8 4000000000000505 2400000050005500 1140000005000000 1014000000000550 1111400000000050 2121140000050050 0122124000500000 2101201400055500 0000000040000000 0000000024000000 0000000011400000 0000000010140000 0000000011114000 0000000021211400 0000000001221240 0000000021012014 22: 5[i[(D8⊗C4).S3]22+ i 5,[SL2(5)]1]8 4221212231043222 2412321323353001 2140614404333402 1224522204344321 2121422213150202 1212241125231122 2100214220222204 2100212402040033 1200122240122121 1100110024011323 0111120210421321 0110110201242103 1110210201124200 2001212211112402 2000002100000244 2121202111110004

23: 5[i[(D8⊗C4).S3]2

2 i 5,[SL2(5)]1]8 8550000500050000 18005101050051055105 34805510005551010105 4428005505505055 4314850005000500 4212385050000000 2441438055005500 31412428050010550 4244413480555555 4233141328050000 4313242214800000 3212444213480550 4123243214428000 4122143334434800 4443244314434480 4131242434020448 24: 5[,5[SL2(5)2 5D10]4:2]8 4400402031443022 2420240011112002 2240240212213033 2224022400022011 2020444001312011 2020240201304144 2022224202202132 2022222410211300 0111102142102013 1221110114200021 1200101120413002 1200001022240120 1222001110004104 2212101112011432 1212110011012141 1101221111000114

25: 5[i[(D8⊗C4).S3]2

2 D10]8 4204030602040204 2422303320222022 0240030002000200 0204630042004200 2100420403060204 1211242230332022 0120024003000200 0102020463004200 0000210042040306 0000121124223033 0000012002400300 0000010202046300 0000000021004204 0000000012112422 0000000001200240 0000000001020204

26: 6[,2[21+4 .Alt5]2

2(3) @×⊃A2]8 2000000043201010 1200000014301101 0120000021431000 0012000000142011 0001200011124311 0000120001001412 0000012010011342 0000100201013224 0000000020000000 0000000012000000 0000000001200000 0000000000120000 0000000000012000 0000000000001200 0000000000000120 0000000000001002

27: 6[,2[21+4 .Alt5]2

2(3) @×⊃ i,3[˜S3]1]8 4222220202222220 2420204204022400 2144220222222220 1224202202022200 2121420420440000 1212242002200402 2100214000224422 2100212444024420 1200122240444404 1100110024442224 0111120210420422 0110110201242022 1110210201124002 2001212211112422 2000002100000240 2121202111110004 28: 6[,2[SL2(3)]1

2 i,3[SL2(9)]2]8 4003300330033660 1403300300033033 2243300003030330 1104330000030333 1111403030000000 2121143303600030 1221114000033033 1112111430063333 1110120143303033 1112012214060033 2121022212460033 1011021222240033 1102101111014000 2011220120001400 2111211110111240 1120221011111114

29: 6[F4

2 ,3[˜S3]1]8 4000000003303030 0400000030000006 2040000030000000 0224000000000360 0002400030000066 0000240000030603 0000024030066000 0000002406006300 2010000040000000 0201000004000000 1021000020400000 0112100002240000 0001210000024000 0000121000002400 0000012100000240 0000001200000024 30: 6[(F4⊗A2):2]8 4000000000000060 2400000000000006 2140000000006000 1224000000000600 0021400060006000 0012240006000600 0021004000600060 0012002400060006 0000000040000000 0000000024000000 0000000021400000 0000000012240000 0000000000214000 0000000000122400 0000000000210040 0000000000120024

32: 7[2.Alt7]4 7,3[˜S3]1 12700077700777000 5127211407700770707 231214770071401401407 634120014140147147000 621612771400777070 341411200077071470 13641412077001414714 3364440127701407714 60560215127777000 66402115312147714014 1563110634121414070 1342126215212014014 52031522316012070 61660241620261270 64443313221211127 61566226622246112

33: 10[ 2[GL2(3)]2

2+ 2 5,[SL2(5)]1]8 2000000043221133 1200000035313210 0120000002520103 0012000030322342 0001200011113232 0000120031213313 0000012031113214 0000100200132302 0000000020000000 0000000012000000 0000000001200000 0000000000120000 0000000000012000 0000000000001200 0000000000000120 0000000000001002

34: 10[ 2[GL2(3)]2

2 2 5,[SL2(5)]1]8 40000000505100055 24000000510055005 114000001055051005 1014000055050555 11114000051005550 2121140050000500 012212405555010100 21012014505555510 0000000040000000 0000000024000000 0000000011400000 0000000010140000 0000000011114000 0000000021211400 0000000001221240 0000000021012014 35: 10[ 2[GL2(3)]2

2 D10]8 4004000200080004 2440002000800040 0244020208080404 0204202080804040 2100400400060008 1211244000600080 0120024406060808 0102020460608080 0000210040040002 0000121124400020 0000012002440202 0000010202042020 0000000021004004 0000000012112440 0000000001200244 0000000001020204

36: 15[((SL2(5)◦SL2(5)):2)

2 3[C6]1]8 4000000063606666 2400000036300066 0240000063630066 0024000000363006 0002400060036963 0000240060009636 0000024066606366 0000200466663666 2100000040000000 1210000024000000 0121000002400000 0012100000240000 0001210100024000 0000121000002400 0000012000000240 0000100200002004 37: 15[((SL2(5)◦SL2(5)):2)

2+ 3[C6]1]8 8000000000151515000 480000000015015151515 22800000151501515000 202800001501501515015 2222800015151515015150 4242280001501515000 0244248001500150015 4202402801501500150 4211120280000000 2410111148000000 1141122022800000 1014112120280000 1111411222228000 2121142042422800 0122124102442480 2101201442024028

38: 15[( 5,[SL2(5)]1◦C3)2 5D10]8 4262226263153411 2422404412420443 2246626212202714 2224442231004043 2020462213324310 2020246243026234 2022224242117147 2022222411345121 0111102145441117 1221110114222251 1200101120420062 1200001022242550 1222001110004304 2212101112011431 1212110011012143 1101221111000114

39:ζ10[C10]1 5((SL2(5)◦SL2(5)):2) 4000000002211322 2400000013000301 2240000010333210 2224000022100402 2020400012133110 2020240031323020 2022224010212202 2022222411231202 0111102142112212 1221110114330022 1200101120400010 1200001022240110 1222001110004203 2212101112011421 1212110011012142 1101221111000114

40:ζ10[C10]1 50,2[21+4 .Alt5]2 4102212100000011 2420103000100010 2142241122220111 1224021122000102 2121411220002122 1212242100102112 2100214232310101 2100212412101011 1200122242000102 1100110024020011 0111120210422111 0110110201242100 1110210201124202 2001212211112421 2000002100000240 2121202111110004 42:ζ10[C10]1 50,3[SL2(9)]2 4013130222321110 1411013122011002 2243031111110211 1104110301221111 1111421213110113 2121141011112321 1221114001111123 1112111401111021 1110120141012102 1112012214130130 2121022212410001 1011021222241211 1102101111014021 2011220120001411 2111211110111241 1120221011111114

44:ζ10[C10]1 50,3[SL2(3)2 C3]2 6041011300010606 0601033300030220 1362200111002020 1126302020332031 0023601120303112 1333263011331331 1330106200001101 3121121622113300 2221120164003203 2223320106203203 2221120131610301 1301030222162330 3312011011116033 3121111300013630 3102112011113360 3121121311010306 45:ζ10[C60.(C2×C2)]4 8033040480050075 0853000000430033 2280104400000804 2248604500333531 2213830302340050 2044284100333313 2212018310310013 3142221845000404 4022141180000340 1120121128555023 1100201031848000 1300102031084000 2202422013448050 4443212421000852 1333121112142180 1322300233000248

46:ζ16ζ1 16[(D8⊗QD32).S3]4 2000000011011120 1200000001012211 0120000012100000 0012000011110100 0001200021101011 0000120010111011 0000012011111111 0000100211111111 0000000020000000 0000000012000000 0000000001200000 0000000000120000 0000000000012000 0000000000001200 0000000000000120 0000000000001002

48: 2·(ζ10ζ1 10)[ 2,[˜S4]1

2 50ζ10[C10]1]4 2000000022131010 1200000022212112 0120000002111232 0012000021111311 0001200000123300 0000120020111212 0000012022321120 0000100212212113 0000000020000000 0000000012000000 0000000001200000 0000000000120000 0000000000012000 0000000000001200 0000000000000120 0000000000001002

49: 2·(ζ10ζ1 10)[ 2,[˜S4]1

2+ 50ζ10[C10]1]4 4020202400442422 2420200200220242 2142464220242420 1224020224222222 2121442244420204 1212240000222244 2100214222440004 2100212402420004 1200122242220044 1100110024222420 0111120210424204 0110110201240044 1110210201124002 2001212211112404 2000002100000242 2121202111110004 50: 2·(ζ10ζ1 10)[D16

2 ζ10[C10]1]4 2000000021121202 1200000023011221 0120000022210211 0012000011022112 0000200013212101 0000120010201120 0000012001221012 0000001220102210 0000000020000000 0000000012000000 0000000001200000 0000000000120000 0000000000002000 0000000000001200 0000000000000120 0000000000000012

51: 3·(ζ10ζ1 10)[C60.(C2×C2)]4,(1,1,1) 2000000043121322 1200000012012540 0120000010321441 0012000010122102 0001200012443101 0000120012223013 0000012000010222 0000100221301121 0000000020000000 0000000012000000 0000000001200000 0000000000120000 0000000000012000 0000000000001200 0000000000000120 0000000000001002 52: 3·(ζ10ζ1 10)[C60.(C2×C2)]4,(i,1,1) 4122213102133111 2412262121562004 2144211100331302 1224023242222135 2121422242042213 1212241163164133 2100214012212211 2100212421322020 1200122240642131 1100110024315213 0111120210411231 0110110201242142 1110210201124431 2001212211112402 2000002100000241 2121202111110004

53: 3·(ζ10ζ1 10)[C60.(C2×C2)]4,(1,1,1) 4000000023430422 2400000012402214 2240000012022231 2224000054431060 2020400023243003 2020240022102610 2022224042112124 2022222433210161 0111102141641504 1221110114400110 1200101120420615 1200001022242320 1222001110004243 2212101112011422 1212110011012142 1101221111000114

54: 3·(ζ10ζ1 10)[C60.(C2×C2)]4,(1,1,1) 4000000063306303 2400000030330063 0240000033666333 0024000003663330 0002400060630000 0000240030330633 0000024006330300 0000200433300300 2100000040000000 1210000024000000 0121000002400000 0012100000240000 0001210100024000 0000121000002400 0000012000000240 0000100200002004

55: 3·(ζ10ζ1 10)[C60.(C2×C2)]4,(i,1,1) 4000424000002120 2400242200001211 0240424400002122 0204024400000122 2100400021200000 1211240012110000 0120024021220000 0102020401220000 0000210040004240 0000121124002422 0000012002404244 0000010202040244 0000000021004000 0000000012112400 0000000001200240 0000000001020204 56: 3·(ζ10ζ1 10)[C60.(C2×C2)]4,(i,1,1) 6000000306603003 0600000360003003 1363633000033003 1126363033000033 0023603300090330 1333260306600330 1330106033033306 3121121633000300 2221120160369930 2223320106363336 2221120131603663 1301030222163630 3312011011116006 3121111300013633 3102112011113363 3121121311010306

57: 3·(ζ10ζ1 10)[C60.(C2×C2)]4,(1,1,1) 4000000006030000 2400000060300000 0240000003060000 0024000030600000 2100400000000603 1210240000006030 0121024000000306 0012002400003060 0000000040000000 0000000024000000 0000000002400000 0000000000240000 0000000021004000 0000000012102400 0000000001210240 0000000000120024 58: 3·(ζ10ζ1 10)[C60.(C2×C2)]4,(i,1,1) 8093000303360066 089901803183360066 2280603000666030 22481500300333609 2213890333930063 2044283300999699 22120186631290063 31422218360612030 4022141180333933 1120121128666306 1100201031800630 13001020310801200 2202422013448030 4443212421000860 1333121112142180 1322300233000248

59: 3·(ζ16ζ1 16)[θ16,[Q32]12 C3]4 2000000041112111 1200000023012211 0120000002201211 0012000011132102 0001200003124113 0000120002213322 0000012021010340 0000100203012102 0000000020000000 0000000012000000 0000000001200000 0000000000120000 0000000000012000 0000000000001200 0000000000000120 0000000000001002

60: 3·(ζ16ζ1 16)[D32

2 3[C6]1]4 2003000000000033 1233000000000030 0020000300000000 0012003000000000 0000203030000000 0000120303000000 0000002000000000 0000001200000000 0000000020003300 0000000012000300 0000000000203030 0000000000120303 0000000000002000 0000000000001200 0000000000000020 0000000000000012

61:Q(i, 3, 5)[C60.C2]2 4113511353212212 1402611221122541 1040632033512453 1004123230202040 1001420604344334 1110041231155103 1101014111023112 1000001431430531 1011211141135113 1112011114252624 0110112210435021 1010210111141110 0002011010114331 0120111110011403 1210121110011041 2112012112101114 62:ζ32ζ1 32[QD64]2 1100000000000001 0110000000000000 0011000000000000 0001100000000000 0000110000000000 0000011000000000 0000001100000000 0000000110000000 0000000011000000 0000000001100000 0000000000110000 0000000000011000 0000000000001100 0000000000000110 0000000000000011 0000000000000001

63:ζ34[C34]1 2001211100000011 1200111010000011 0121010110000011 0012100000000011 0001200000000000 0000120011110000 0000012011110110 0000001200110110 0000000120111100 0000000012010101 0000000001211001 0000000000121100 0000000000012100 0000000000001201 0000000000000121 0000000000000012

A.9 Dimension 18

6: −19[±L2(19)]9

4: i[(D8⊗C4).S3]2⊗A5

8: i[C4]1⊗A(3)10

13: ∞,2[±U5(2)]5◦C3

17: −3[−11[±L2(11)]52(3)@×⊃−3[C6]1]10

21: −7[2.M22: 2]10

25: ζ10[±51+2+ .Sp2(5)]5

3: −3[±U5(2)◦C3]11

LetG < GLm(Q) be a matrix group and let N and H be any groups.

r.i.m.f. rational irreducible maximal finite s.i.m.f. symplectic irreducible maximal finite

s.p.i.m.f. symplectic primitive irreducible maximal finite Π(k) set of all primes dividing the integer k

Π(K, k)˜ set of primes needed for the m-parameter argument cf. Definition 2.2.10 Fq finite field with q elements

QP1,...,Pr quaternion algebra with center Q ramified only at the places P1, . . . , Pr Qα,P1,...,Pr quaternion algebra with centerQ(α) ramified only at the placesP1, . . . , Pr

ZK maximal order of an algebraic number field K Cl(R) ideal class group of a Dedekind ring R

ζn primitive n-th root of unity θn ζnn−1

Im m×m identity matrix

F(G) set ofG-invariant forms cf. Definition 2.1.1 Fsym(G) subset of symmetric G-invariant forms in F(G) Fsym(G) subset of skewsymmetric G-invariant forms in F(G) F>0(G) subset of positive definite forms in Fsym(G)

G enveloping algebra of G cf. Definition 2.1.1

End(G) endomorphism ring or commuting algebra CQm×m(G) of G cf. Defini-tion 2.1.1

Z(Λ) set of Λ-invariant lattices in Q1×m for some Z-order Λ⊂ Qm×m cf. Defi-nition 2.1.4

145

Z(G) set ofG-invariant lattices in Q1×m cf. Definition 2.1.4

det(L, F) determinant of the lattice Lin the Euclidean space (L⊗R, F)

AutK(L,F) group ofK-linear automorphisms of the latticeLwrt. the forms inF cf.

Definition 2.1.4

Bo(G) generalized Bravais group of Gcf. Definition 2.1.22

±G the group hG,−Imi

Op(H) largest normal p-subgroup of H

F(H) Fitting subgroup ofH, i.e. the largest normal nilpotent subgroup of H E(H) layer ofH, i.e. the central product of all components of H

F(H) generalized Fitting subgroup of H (central product ofF(H) and E(H)) An, F4, Ek (automorphism groups of) root lattices

Cn cyclic group of order n

Sn, Altn symmetric and alternating groups onn letters D2n dihedral group of order 2n

QD2n quasidihedral group of order 2n

Q2n (generalized) quaternion group of order 2n 21+2n+ central product of n copies of D8

21+2n central product of Q8 and n−1 copies ofD8

p1+2n+ extraspecialp-group of order p1+2n and exponent p (podd prime) p1+2n extraspecialp-group of order p1+2n and exponent p2 (podd prime) G1⊗G2 tensor product of the two matrix groups G1 and G2. See Section 2.4 for

an explanation of the symbols G1⊗ G2, G1

Q

G2 and G1◦G2

G12(p)⊗G2 extension of G1⊗G2 by C2. See Section 2.4 for an explanation of the symbolsG12(p)⊗G2,G12(p)

Q

G2,G1

2(p)

G2,G1

2(p)

QG2,G12(p)@×⊃G2,G12(p)@×⊃

Q

G2,G12(p)◦G2, G12(p)G2 and G12(p)@⊃G2

N:H semidirect product, i.e. a split extension ofN byH N·H nonsplit extension of N byH

N.H any extension of N by H HoSk wreath product ofH and Sk

[Art57] Emil Artin. Geometric Algebra, volume 3 ofInterscience tracts in pure and applied mathematics. Interscience Publishers, Inc., 1957.

[Asc00] Michael Aschbacher. Finite Group Theory. Cambridge University Press, 2000.

[BBNZ77] Harold Brown, Rolf B¨ulow, Joachim Neub¨user, and Hans Zassenhaus. Crys-tallographic Groups of Four-Dimensional Space. Wiley, 1977.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.

[Bli17] Hans F. Blichfeldt. Finite Collineation Groups. The University of Chicago Press, 1917.

[CCN+85] John H. Conway, Robert T. Curtis, Simon P. Norton, Richard A. Parker, and Robert A. Wilson. Atlas of finite groups. Clarendon Press, Oxford, 1985.

[Dor71] Larry L. Dornhoff. Group Representation Theory. Pure and Applied Math-ematics: A Series of Monographs and Textbooks. Marcel Dekker Inc., 1971.

[Fei76] Walter Feit. On finite linear groups in dimension at most 10. InProceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975), pages 397–407, 1976.

[Fei82] Walter Feit. The representation theory of finite groups. North-Holland Publishing Co., 1982.

[GTT07] Meinolf Geck, Donna Testerman, and Jacques Th´evenaz, editors. Group Representation Theory, chapter 6: Bounds of the Orders of Finite Sub-groups of G(k). EPFL Press, 2007.

[HM01] Gerhard Hiss and Gunter Malle. Low-dimensional representations of quasi-simple groups. LMS J. Comput. Math., 4:22–63, 2001. Corrigenda, same J., 5:95–126, 2002.

[Hup67] Bertram Huppert. Endliche Gruppen I. Springer, 1967.

[Isa94] I. Martin Isaacs. Character Theory of Finite Groups. Dover Publications, 1994.

147

[Kne02] Martin Kneser. Quadratische Formen. Springer, 2002.

[KV] Markus Kirschmer and John Voight. Algorithmic enumeration of ideal classes for quaternion orders. submitted, arXiv:0808.3833 [math.NT].

[Lor71] Falko Lorenz. ¨Uber die Berechnung der Schurschen Indizes von Charakteren endlicher Gruppen. J. Number Theory, 3:60–103, 1971.

[Min87] Hermann Minkowski. Zur Theorie der Positiven Quadratischen Formen.

Journal f. d. reine und angewande Mathematik, 101:196–202, 1887.

[Neb95] Gabriele Nebe.Endliche rationale Matrixgruppen vom Grad 24. PhD thesis, RWTH Aachen University, 1995.

[Neb96] Gabriele Nebe. Finite subgroups of GLn(Q) for 25≤n ≤31. Communica-tions in Algebra, 24(7):2341–2397, 1996.

[Neb98a] Gabriele Nebe. Finite quaternionic matrix groups. Representation Theory, 2:106–223, 1998.

[Neb98b] Gabriele Nebe. The structure of maximal finite primitive matrix groups.

In Bernd H. Matzat, Gerd-Martin Greuel, and Gerhard Hiss, editors, Al-gorithmic Algebra and Number Theory, pages 417–422. Springer, Berlin, 1998.

[Nic06] Simon J. Nickerson. An Atlas of Characteristic Zero Representations. PhD thesis, University of Birmingham, 2006.

[NP95] Gabriele Nebe and Wilhelm Plesken. Finite rational matrix groups. In Memoirs of the American Mathematical Society, volume 116. AMS, 1995.

[NRS01] Gabriele Nebe, Eric M. Rains, and Neil J. A. Sloane. The invariants of the clifford groups. Designs, Codes and Cryptography, 24(1):99–122, 2001.

[Par84] Richard A. Parker. The computer calculation of modular characters (the meat-axe). InComputational group theory (Durham, 1982), pages 267–274.

Academic Press, 1984.

[PH84] Wilhelm Plesken and Wilhelm Hanrath. The lattices of six-dimensional euclidean space. Mathematics of Computation, 43(168):573–587, 1984.

[Ple78] Wilhelm Plesken. On reducible and decomposable representations of orders.

Journal f¨ur die reine und angewandte Mathematik, 297:188–210, 1978.

[Ple91] Wilhelm Plesken. Some applications of representation theory. Progress in Mathematics, 95:477–496, 1991.

[PS97] Wilhelm Plesken and Bernd Souvignier. Computing isometries of lattices.

Journal of Symbolic Computation, 24:327–334, 1997.

[Rei03] Irving Reiner. Maximal Orders. Oxford Science Publications, 2003.

[Sch05] Isaac Schur. ¨Uber eine Klasse von endlichen Gruppen linearer Substitu-tionen. Sitz. Preuss. Akad. Wiss., Berlin, pages 77–91, 1905. (Ges. Abh., Band I, nr. 6).

[Ste89] Leonid Stern. On the norm groups of global fields. Journal of Number Theory, 32(2):203–219, 1989.

[Wal62] Gordon E. Wall. On the Clifford Collineation, Transform and Similarity Groups (IV). Nagoya Mathematical Journal, 21:199–122, 1962.

[Was96] Lawrence C. Washington. Introduction to Cyclotomic Fields. Graduate Texts in Mathematics. Springer, 2nd edition, 1996.

[Win72] David L. Winter. The automorphism group of an extraspecial p-group.

Rocky Mountain Journal of Mathematics, 2(2):159–168, 1972.

Im Dokument Finite symplectic matrix groups (Seite 117-149)