• Keine Ergebnisse gefunden

D ATEN DER R ÖNGTENSTRUKTURANALYSE

C9 C10

C71 O2

O1 C7

C61

C8

C1 C11

C6 N1 C13

C12

C3 C2

C5 O3

C4

C31

Absolute Strukturparameter 0.0(13)

Größtes Maximum und Minimum 0.158 and -0.154 e.Å-3

Tabelle 3: Atomkoordinaten (x 104) und äquivalente isotrope Auslenkungsparameter (pm2x 10-1).

U(eq) wird berechnet als ein Drittel der Spur des orthogonalen Uij-Tensors.

x y z U(eq)

O(1) 1294(2) 1342(2) 6465(2) 42(1)

C(1) -70(3) 1877(2) 5073(3) 41(1)

O(2) -49(2) 1945(2) 3743(2) 56(1)

C(2) -1441(3) 2324(2) 5497(3) 43(1)

C(3) -517(3) 2382(2) 7423(3) 40(1)

C(31) -1681(3) 2116(3) 8216(3) 48(1)

C(4) 518(3) 3660(2) 8138(3) 40(1)

C(5) 2228(3) 3221(2) 9576(3) 39(1)

O(3) 3288(2) 3912(2) 10731(2) 50(1)

N(1) 2443(2) 1902(2) 9354(2) 36(1)

C(6) 951(3) 1344(2) 7918(2) 36(1)

C(61) 547(3) -65(2) 8165(3) 49(1)

C(7) 4087(3) 1155(2) 10282(3) 39(1)

C(71) 5659(3) 1947(3) 10477(3) 55(1)

C(8) 4372(3) 605(2) 11964(2) 36(1)

C(9) 5617(3) -387(2) 12729(3) 39(1)

C(10) 5980(3) -930(2) 14277(3) 43(1)

C(11) 5103(3) -483(2) 15110(3) 44(1)

C(12) 3852(3) 498(2) 14360(3) 44(1)

C(13) 3491(3) 1032(2) 12806(3) 39(1)

Tabelle 4: Bindungslängen [pm] und Bindungswinkel [°].

O(1)-C(1) 136.2(3) N(1)-C(6) 144.2(2)

O(1)-C(6) 147.6(2) N(1)-C(7) 148.0(3)

C(1)-O(2) 121.0(3) C(6)-C(61) 150.9(3)

C(1)-C(2) 149.6(3) C(7)-C(8) 151.8(3)

C(2)-C(3) 152.3(3) C(7)-C(71) 153.1(3)

C(3)-C(31) 152.6(3) C(8)-C(13) 138.7(3)

C(3)-C(4) 153.0(3) C(8)-C(9) 139.6(3)

C(3)-C(6) 155.1(3) C(9)-C(10) 138.5(3)

C(4)-C(5) 150.2(3) C(10)-C(11) 138.4(3)

C(5)-O(3) 122.6(3) C(11)-C(12) 138.9(3)

C(5)-N(1) 137.4(3) C(12)-C(13) 138.7(3)

C(1)-O(1)-C(6) 110.62(15) N(1)-C(6)-O(1) 108.18(15)

O(2)-C(1)-O(1) 120.62(19) N(1)-C(6)-C(61) 114.39(17)

O(2)-C(1)-C(2) 129.3(2) O(1)-C(6)-C(61) 106.99(16)

O(1)-C(1)-C(2) 110.08(17) N(1)-C(6)-C(3) 105.27(16)

C(1)-C(2)-C(3) 104.43(17) O(1)-C(6)-C(3) 103.97(15)

C(2)-C(3)-C(31) 114.64(19) C(61)-C(6)-C(3) 117.29(18)

C(2)-C(3)-C(4) 113.30(18) N(1)-C(7)-C(8) 113.49(16)

C(31)-C(3)-C(4) 110.31(18) N(1)-C(7)-C(71) 112.22(18)

C(2)-C(3)-C(6) 102.39(17) C(8)-C(7)-C(71) 111.71(17)

C(31)-C(3)-C(6) 113.38(18) C(13)-C(8)-C(9) 117.62(19)

C(4)-C(3)-C(6) 101.93(16) C(13)-C(8)-C(7) 124.37(18)

C(5)-C(4)-C(3) 105.00(16) C(9)-C(8)-C(7) 118.01(18)

O(3)-C(5)-N(1) 125.04(19) C(10)-C(9)-C(8) 121.8(2)

O(3)-C(5)-C(4) 126.81(19) C(11)-C(10)-C(9) 119.9(2)

N(1)-C(5)-C(4) 108.12(16) C(10)-C(11)-C(12) 118.9(2) C(5)-N(1)-C(6) 112.41(16) C(13)-C(12)-C(11) 120.8(2)

C(5)-N(1)-C(7) 125.29(17) C(12)-C(13)-C(8) 120.9(2)

C(6)-N(1)-C(7) 121.67(17)

Tabelle 5: isotrope Auslenkungsparameter (pm2x 10-1).

Der Exponent des isotropen Auslenkungsfaktors ergibt sich aus:

-2π2[ h2 a*2U11 + ... + 2 h k a* b* U12 ]

U11 U22 U33 U23 U13 U12

O(1) 40(1) 51(1) 31(1) 0(1) 15(1) 8(1)

C(1) 41(1) 45(1) 34(1) -2(1) 14(1) 0(1)

O(2) 54(1) 75(1) 37(1) 2(1) 21(1) 6(1)

C(2) 34(1) 50(1) 38(1) -1(1) 12(1) 3(1)

C(3) 34(1) 45(1) 40(1) 2(1) 17(1) 3(1)

C(31) 40(1) 59(1) 50(1) 1(1) 25(1) 2(1)

C(4) 40(1) 38(1) 41(1) 2(1) 20(1) 5(1)

C(5) 42(1) 41(1) 35(1) -3(1) 20(1) -3(1)

O(3) 54(1) 48(1) 41(1) -7(1) 17(1) -8(1)

N(1) 34(1) 37(1) 33(1) 1(1) 13(1) 4(1)

C(6) 37(1) 39(1) 32(1) -1(1) 16(1) 2(1)

C(61) 52(1) 42(1) 47(1) 1(1) 18(1) -3(1)

C(7) 34(1) 48(1) 36(1) 5(1) 16(1) 5(1)

C(71) 40(1) 70(2) 59(1) 24(1) 26(1) 8(1)

C(8) 32(1) 38(1) 34(1) -1(1) 14(1) -2(1)

C(9) 37(1) 40(1) 40(1) 1(1) 18(1) 1(1)

C(10) 37(1) 40(1) 43(1) 5(1) 13(1) 2(1)

C(11) 46(1) 44(1) 37(1) 3(1) 16(1) -5(1)

C(12) 49(1) 46(1) 42(1) -1(1) 26(1) -3(1)

C(13) 41(1) 39(1) 39(1) 2(1) 20(1) 2(1)

Tabelle 6: Wasserstoffatom Koordinaten (x 104) und isotrope Auslenkungsparameter (pm2x 10 -1).

x y z U(eq)

H(2A) -2418 1686 5069 42(3)

H(2B) -1896 3205 5003 42(3)

H(31A) -979 2129 9453 64(3)

H(31B) -2231 1246 7851 64(3)

H(31C) -2580 2801 7855 64(3)

H(4A) 691 4127 7265 42(3)

H(4B) -93 4258 8549 42(3)

H(61A) 1508 -642 8313 64(3)

H(61B) -524 -351 7171 64(3)

H(61C) 396 -117 9173 64(3)

H(7) 3987 372 9561 45(6)

H(71A) 5419 2303 9374 64(3)

H(71B) 6679 1367 10912 64(3)

H(71C) 5886 2678 11272 64(3)

H(9) 6233 -698 12173 53(3)

H(10) 6829 -1608 14766 53(3)

H(11) 5352 -841 16179 53(3)

H(12) 3236 806 14917 53(3)

H(13) 2628 1700 12312 53(3)

Tabelle 7: Torsionswinkel [°].

C(6)-O(1)-C(1)-O(2) -178.8(2) C(2)-C(3)-C(6)-N(1) 141.57(17) C(6)-O(1)-C(1)-C(2) 1.6(2) C(31)-C(3)-C(6)-N(1) -94.4(2) O(2)-C(1)-C(2)-C(3) -162.6(2) C(4)-C(3)-C(6)-N(1) 24.16(19) O(1)-C(1)-C(2)-C(3) 16.9(2) C(2)-C(3)-C(6)-O(1) 27.9(2) C(1)-C(2)-C(3)-C(31) -150.20(19) C(31)-C(3)-C(6)-O(1) 151.96(18)

C(1)-C(2)-C(3)-C(4) 82.0(2) C(4)-C(3)-C(6)-O(1) -89.50(17) C(1)-C(2)-C(3)-C(6) -27.0(2) C(2)-C(3)-C(6)-C(61) -89.9(2) C(2)-C(3)-C(4)-C(5) -135.47(18) C(31)-C(3)-C(6)-C(61) 34.1(3) C(31)-C(3)-C(4)-C(5) 94.5(2) C(4)-C(3)-C(6)-C(61) 152.65(18)

C(6)-C(3)-C(4)-C(5) -26.2(2) C(5)-N(1)-C(7)-C(8) 86.0(2) C(3)-C(4)-C(5)-O(3) -162.2(2) C(6)-N(1)-C(7)-C(8) -103.8(2) C(3)-C(4)-C(5)-N(1) 19.7(2) C(5)-N(1)-C(7)-C(71) -41.8(3) O(3)-C(5)-N(1)-C(6) 178.0(2) C(6)-N(1)-C(7)-C(71) 128.3(2) C(4)-C(5)-N(1)-C(6) -3.9(2) N(1)-C(7)-C(8)-C(13) -17.1(3) O(3)-C(5)-N(1)-C(7) -11.1(3) C(71)-C(7)-C(8)-C(13) 111.0(2) C(4)-C(5)-N(1)-C(7) 167.08(17) N(1)-C(7)-C(8)-C(9) 163.64(18) C(5)-N(1)-C(6)-O(1) 97.29(18) C(71)-C(7)-C(8)-C(9) -68.3(3) C(7)-N(1)-C(6)-O(1) -74.0(2) C(13)-C(8)-C(9)-C(10) -0.3(3) C(5)-N(1)-C(6)-C(61) -143.59(18) C(7)-C(8)-C(9)-C(10) 179.0(2) C(7)-N(1)-C(6)-C(61) 45.1(2) C(8)-C(9)-C(10)-C(11) -0.4(3)

C(5)-N(1)-C(6)-C(3) -13.4(2) C(9)-C(10)-C(11)-C(12) 0.8(3) C(7)-N(1)-C(6)-C(3) 175.31(16) C(10)-C(11)-C(12)-C(13) -0.5(3) C(1)-O(1)-C(6)-N(1) -130.56(17) C(11)-C(12)-C(13)-C(8) -0.2(3) C(1)-O(1)-C(6)-C(61) 105.7(2) C(9)-C(8)-C(13)-C(12) 0.6(3)

C(1)-O(1)-C(6)-C(3) -19.0(2) C(7)-C(8)-C(13)-C(12) -178.7(2)

6 L ITERATUR

[1] R. Willstätter, Nobel Lectures, Chemistry 1901-1921, Elsevier, Amsterdam.

[2] a) H. Fischer, K. Zeile, Liebigs Ann. Chem. 1929, 468, 98;

b) H. Fischer, Naturwissenschaften 1929, 17, 611.

[3] a) J. C. Kendrew, M. F. Perutz, Nobel Prize Lectures Chemistry 1942-1962 1962, 653-675, Elsevier, Amsterdam;

b) J. C. Kendrew, M. F. Perutz, Science 1962, 138, 667-669.

[4] D. Crowfoot-Hogkin, Nature, 1929, 17, 611.

[5] a) R. B. Woodward, Angew. Chem. 1960, 72, 651;

b) R. B. Woodward, W. A. Ayer, J. M. Beaton, F. Bickelhaupt, R. Bonnett, B. Buchschacher, G. L. Closs, H. Dutler, J. Hannah, F. P. Hauch, S. Iro, A.

Langemann, E. LeGoff, W. Leimgruber, W. Luwowski, J. Sauer, Z. Valenta, H. Volz, J. Am. Chem. Soc. 1960, 82, 3800;

c) R. B. Woodward, Pure Appl. Chem. 1961, 2, 383;

d) R. B. Woodward, W. A. Ayer, J. M. Beaton, F. Bickelhaupt, R. Bonnett, B. Buchschacher, G. L. Closs, H. Dutler, J. Hannah, F. P. Hauch, S. Iro, A.

Langemann, E. LeGroff, W. Leimgruber, W. Luwowski, J. Sauer, Z. Valenta, H. Volz, Tetrahedron 1990, 46, 7599.

[6] a) J. Deisenhofer, O. Epp, K. Miki, R. Huber, H. Michel, Nature 1985, 318, 618-624;

b) R. Huber, Angew. Chem. 1989, 101, 872-892;

c) J. Deisenhofer, H. Michel, Angew. Chem. 1989, 101, 872-892.

[7] a) R. B. Woodward, Pure Appl. Chem. 1968, 17, 519-547;

b) R. B. Woodward, Pure Appl. Chem. 1971, 25, 283-304;

c) R. B. Woodward, Pure Appl. Chem. 1973, 33, 145-177;

d) A. Eschenmoser, Naturwissenschaften 1974, 97, 767-768.

[8] A. Eschenmoser, Naturwissenschaften 1974, 61, 513-525.

[9] M. Roth, P. Dubs, E. Götschi, A. Eschenmoser, Helv. Chim. Acta 1971, 54, 710-734.

[10] R. B. Woodward, R. Hoffmann, Angew. Chem. 1969, 81, 797.

[11] a) M. R. Prinsep, F. R. Caplan, R. E. Moore, G. M. L. Patterson, C. D. Smith, J. Am. Chem. Soc. 1992, 114, 385-387;

b) P. Bradley, M. Naik, V. Ling, Cancer Res. 1989, 49, 2790-2796.

[12] a) T. G. Minehan, Y. Kishi, Angew. Chem. 1999, 111, 972-975;

b) T. G. Minehan, L. Cook-Blumberg, Y. Kishi, M. R. Prinsep, R. E. Moore, Angew. Chem. 1999, 111, 975-977;

c) T. G. Minehan, Y. Kishi, Tetrahedron Lett. 1997, 38, 6811-6814;

d) T. G. Minehan, Y. Kishi, Tetrahedron Lett. 1997, 38, 6815-6818.

[13] T. G. Minehan, Y. Kishi, Tetrahedron Lett. 1999, 40, 1129-1132.

[14] a) M. R. Prinsep, G. M. L. Patterson, L. K. Larsen, C. D. Smith, Tetrahedron 1995, 51, 10523-10530;

b) M. R. Prinsep, G. M. L. Patterson, L. K. Larsen, C. D. Smith, J. Nat. Prod.

1998, 61, 1133-1136.

[15] a) M. M. Gottesman, I. Pastan, Ann. Rev. Biochemie 1993, 62, 385-427;

b) S. M. Simon, M. Schindler, Proc. Natl. Acad. Sci. 1994, 91, 3497-3504;

c) T. Efferth, M. Volm, Biol. i. u. Zeit 1990, 20, 149-153.

[16] C. D. Smith, M. R. Prinsep, F. R. Caplan, R. E. Moore, G. M. L. Patterson, Oncology Reasearch 1994, 6, 211-218.

[17] P. Morlière, J.-C. Mazière, R. Santus, C. D. Smith, M. R. Prinsep, C. C.

Stobbe, M. C. Fenning, J. L. Golberg, J. D. Chapmann, Cancer Research 1998, 58, 3571-3578.

[18] a) A. R. Battersby, S. P. D. Tuner, M. H. Block, Z.-C. Sheng, S. C.

Zimmermann, J. Chem. Soc. Perkin Trans. 1 1988, 1577-1586;

b) A. R. Battersby, C. J. Dutton, C. J. R. Fookes, J. Chem. Soc. Perkin Trans.

1 1988, 1569-1576.

[19] a) F.-P. Montforts, Angew. Chem. 1981, 93, 795-796;

b) F.-P. Montforts, U. M. Schwartz, Liebigs Ann. Chem. 1985, 1228-1253;

c) F.-P. Montforts, U. M. Schwartz, Angew. Chem. 1985, 97, 767-768;

d) F.-P. Montforts, U. M. Schwartz, Liebigs Ann. Chem. 1991, 709-725;

e) F.-P. Montforts, B. Gerlach, F. Höper, Chem. Rev. 1994, 94, 327-347.

[20] a) G. Haake, Dissertation, Universität Bremen, 1994;

b) D. Struve, Dissertation, Universität Bremen, 1994;

c) vgl. [8];

d) F.-P. Montforts, G. Haake, D. Struve, Tetrahedron Lett. 1994, 35, 9703.

[21] a) F. Romanowski, G. Mai, D. Kusch, F.-P. Montforts, Helv. Chim. Acta 1996, 79, 1572-1586;

b) D. Kusch, Dissertation, Universität Bremen, 1994.

[22] a) P. A. Jacobi, P. Herradura, Tetrahedron Lett. 1997, 38, 6621-6624;

b) E. Polo, R. M. Bellabarba, G. Prini, O. Traverso, M. L. H. Green, J.

Orgnomet. Chem. 1999, 577, 211-218;

c) Z. Tuba, C. W. Bardin, A. Dancsi, E. Francsics-Czinege, C. Molnár, J.

Csörgei, G. Falkay, S. S. Koide, N. Kumar, K. Sundaram, V. Dukát-Abrók, G. Balogh, Steroids 2000, 65, 266-274;

d) J. C. Acosta, E. Caballero, D. G. Grávalos, M. Medarde, H. Sahagún, R. J.

Stoodley, F. Tomé, Bioorg. Med. Chem. Lett. 1997, 7,2955-2958;

e) A. M. Montana, D. Fernández, R. Pagès, A. C. Filippou, G. Kociok-Köhn, Tetrahedron 2000, 56, 425-439.

[23] M. Breiling, Dissertation, Universität Bremen, 1996.

[24] K. Harke, H. Roeber, R. Matusch, Chem. Ber. 1975, 108, 3256-3261.

[25] R. Manski, Diplomarbeit, Universität Bremen, 2000 und dort zitierte Literatur.

[26] a) A. Eschenmoser, C. E. Wintner, Science 1977, 196, 1411-1420;

b) W. Schilling, Dissertation, ETH Zürich, 1974;

c) W. Fuhrer, Dissertation, ETH Zürich, 1973;

d) R. Wiederkeher, Dissertation, ETH Zürich, 1968;

e) P. Löliger, Dissertation, ETH Zürich, 1968;

f) A. Wick, Dissertation, ETH Zürich, 1964.

[27] a) M. P. Cava, M. I. Levinson, Tetrahedron 1985, 22, 5061;

b) R. S. Varma, D. Kumar, Org. Lett. 1999, 1, 697-700;

b) K. Hartke, H.-D. Gerber, J. prakt. Chem. 1996, 338, 763-765.

[28] F.-P. Montforts, Habilitationsschrift, Universität Frankfurt am Main, 1981.

[29] G. Adupko, geplante Dissertation, Universität Bremen.

[30] a) G. Consiglio, L. Kollar, R. Kölliker, Organomet. Chem. 1990, 396, 375-383;

b) C. Copéret, S. Ma, T. Sugihara, E. Negishi, Tetrahedron, 1996, 52, 11529-11544;

c) B. Gabriele, G. Salerno, M. Costa, G. P. Chiusoli, Tetrahedron Lett. 1990, 40, 989-990.

[31] a) H. Plieninger, H. Lichtenwald, Hoope-Seyler´s Z. Physiol. Chem. 1942, 273, 206-225;

b) Gardini, Bocchi, Gazz. Chim. Ital. 1972, 102, 91-99.

[32] a) F.-P. Montforts, U. M. Schwartz, Liebigs Ann. Chem. 1991, 701-725;

b) vgl. [17e]

[33] a) J. F. Lane, J. D. Roberts, W. G. Young, J. Amer. Chem. Soc. 1944, 66, 543-545;

c) S. Röhrig, L. Henning, M. Findeisen, P. Wetzel, D. Müller, Tetrahedron 1998, 54, 3439-3456.

[34] a) Mazza, Cremona, Gazz. Chim. Ital. 1927, 27,322;

b) G. T. Crisp, A. G. Meyer, Tetrahedron 1995, 51, 5585-5596 [35] a) G. Rajendra, M. J. Miller, J. Org. Chem. 1987, 52, 4471-4477;

b) G. Karig, A. Fuchs, A. Büsing, T. Brandstetter, S. Scherer, J. W. Bats, A.

Eschenmoser, G. Quinkert, Helv. Chim. Acta 2000, 83, 1049-1078.

[36] a) A. Zumbrunn, P. Uebelhart, C. H. Eugster, Helv. Chim. Acta 1985, 68, 1519-1539,

b) A. S. Kende, P. Fludzinski, Org. Synth. 1986, 64, 104-107;

c) A. Löffler, R. J. Pratt, H. P. Rüech, A. S. Dreiling, Helv. Chim. Acta 1970, 53, 383-403;

d) D. S. Lethan, H. Young, Phytochemistry 1971, 2077-2081;

e) G. Desvages, M. Olomuckig, Bull. Chim. Fr. 1969, 3229-3232;

f) G. Pattenden, B. C. L. Weedon, J. Chem. Soc. (C) 1984, 1968-1997;

g) D. W. Cameron, C.-Y. Gan, P. G. Griffeths, Aust. J. Chem. 1998, 51, 421-432:

h) H. H. Inhoffen, S. Bork, U. Schwieter, Liebigs Ann. Chem. 1953, 580, 1-6;

i) H. H. Inhoffen, O. Isler, G. v. d. Bey, G. Raspé, P. Zeller, R. Ahrens, Liebigs Ann. Chem. 1953, 580, 7-19;

j) O. S. Bhanot, P. C. Dutta, J. Chem. Soc. (C) 1968, 2583-2588;

k) G. D. James, S. D. Mills, G. Patternden, J. Chem. Soc. Perkin Trans. 1 1993, 2581-2584.

[37] a) M. Vaultier, N. Knouzi, R. Carrié, Tetrahedron Lett. 1983, 24, 763-764;

b) M. Khoukhi, M. Vaultier, R. Carrié, Tetrahedron Lett. 1986, 27, 1031-1034;

c) F.-P. Montforts, U. M. Schwartz, P. Maib, G. Mai, Liebigs. Ann. Chem.

1990, 1037-1043;

d) A. Ashimori, B. Bachand, L. E. Overmann, D. J. Poon, J. Am. Chem. Soc.

1998, 120, 6477-6487;

[38] a) C. D. Gutsche, I. Y. C. Tao, J. Org. Chem. 1967, 1778-1781;

b) G. P. Pollini, A. Barco, G. De Giuli, Synthesis1972, 44-45;

c) N. J. Leonard, D. L. J. Amer. Chem. Soc. 1949, 71, 1758-1759;

d) N. J. Leonard, G. L. Shoemaker, J. Amer. Chem. Soc. 1949, 71, 1760-1762.

[39] Übersichtsartikel: a) G. Rosini, R. Ballini, Synthesis 1988, 833-847;

b) M. T. Shipchandler, Synthesis 1979, 666-685.

[40] a) L. C. Leitch, Can. J. Chem. 1954, 33, 400-404;

b) J. E. McMurry, J. Org. Chem. 1973, 38, 4367-4373.

c) W. E. Noland, Chem. Rev. 1955, 37, 137-155;

d) O. W. Lever Jr., Tetrahedron 1976, 32, 1943-1971;

e) vgl. [16b]

f) K. Johnson, E. F. Degering, J. Org. Chem. 1943, 8, 10-11.

[41] a) vgl. [17d]

b) A. Gossauer, G. Kühne, Liebigs Ann. Chem. 1977, 664-686.

[42] Hue, unveröffentlichte Ergebnisse.

[43] R. Saez, geplante Dissertation, Universität Bremen.

[44] a) P. S. Clezy, A. W. Nichol, Aust. J. Chem. 1965, 18, 1977-1987;

b) M. Xie, D. A. Lightner, Tetrahedron 1993, 49, 2185-2200.

[45] a) H. Budzikiewicz, C. Djerassi, A. H. Jackson, G. W. Kenner, D. J.

Newman, J. M. Wilson, J. Chem. Soc. 1964, 1949-1960;

b) P. S. Clezy, A. J. Liepa, A. W. Nichol, G. A. Smythe, Aust. J. Chem. 1970, 23, 589-602;

c) P. S. Clezy, C. J. R. Fookes, D. Y. K. Lau, A. W. Nichol, G. A. Smythe, Aust. J. Chem. 1974, 27, 357-369;

d) P. S. Clezy, A. W. Nichol, Aust. J. Chem. 1965, 18, 1977-1987.

[46] T. Thyrann, D. A. Lightner, Tetrahedron Lett. 1996, 37, 315-318.

[47] a) H. Fischer, H. Beller, A. Stern, Chem. Ber. 1928, 61, 1074-1083;

b) H. Fischer, G. Fink, Hoppe-Seyler´s Z. Physiol. Chem. 1948, 283, 150-161;

c) J. B. Hendrickson, J. G. de Vreis, J. Org. Chem. 1985, 50, 1688-1695.

[48] a) G. Kinast, Liebigs Ann. Chem. 1981, 1561-1567;

b) J.-C. Rozé, J.-P. Pradere, G. Daguary, A. Guerel, H. Quiniou, S. Poinant, Can. J. Chem. 1983, 61, 1169-1175.

[49] a) L. Cheng, D. A. Lightner, Synthesis 1999, 46-48;

b) F. Löwer, Dissertation, Universität Bremen, 1998.

[50] U. M. Schwartz, Dissertation, Universität Frankfurt am Main, 1987.

[51] a) K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 50, 4467-4470;

b) S. Takahashi, Y. Kuroyama, K. Sonogashira, N. Hagihara, Synthesis 1980, 627-629.

[52] a) R. Gauler, N. Risch, Eur. J. Org. Chem. 1998, 1193-1200;

b) T. Sakamato, Y. Kondo, A. Yoshinori, A. Yasuhara, H. Yamanaka, Tetrahedron, 1991, 47, 1877-1886;

c) O. M. Minnetian, I. K. Morris, K. M. Kevin, K. M. Smith, J. Org. Chem.

1989, 54, 5567-5574;

d) I. G. Stara, I. Stary, A. Kollarovic, F. Teply, D. Saman, P. Fiedler, Tetrahedron 1998, 54, 11209-11234;

e) D. L. Boger, D. R. Soenen, C. W. Boyce, M. R. Hedrick, Q. Jin, J. Org.

Chem. 2000, 65, 2479-2483;

f) J.-P. Lère-Porte, J. J. E. Moreau, F. Serein-Spirau, S. Wakim, Tetrahedron Lett. 2001, 42, 3073-3076;

g) M. Eerélyi, A. Gogoll, J. Org. Chem. 2001, 66, 4165-4169;

h) T. Sakamoto, Y. Kondo, A. Yasuhara, H. Yamanaka, Tetrahedron 1991, 47, 1877-1886;

i) J. Suffert, R. Ziessel, Tetrahedron Lett. 1991, 32, 757-760;

j) W. K. Chan, F.-C. Huang, M. M. Morrissette, J. D. Warus, K. J. Moriarty, R. A. Galemmo, W. D. Dankulich, G. Poli, C. A. Sutherland, J. Med. Chem.

1996, 39, 3756-3768;

k) P. A. Wender, M. Harmata, D. Jeffrey, C. Mukai, J. Suffert, Tetrahedron Lett. 1988, 29, 909-912.

[53] R. Diercks, K. P. C. Vollhardt, Angew. Chem. 1986, 98, 268-270.

[54] T. Sakamoto, T. Nagano, Y. Kondo, H. Yamanaka, Chem. Pharm. Bull.

1988, 36, 2248-2252.

[55] a) L. Xu, I. R. Lewis, S. K. Davidsen, J. B. Summers, Tetrahedron Lett.

1998, 39, 5159-5162;

b) J. Y. Chang, J. H. Baik, C. B. Lee, M. J. Han, J. Am. Chem. Soc. 1997, 119, 3197-3198;

c) E. V. Treyakov, D. W. Knight, S. F. Vasilevsky, J. Chem. Soc. Perkin Trans. 1 1999, 3713-3720;

d) S. Chang, S. H. Yang, P. H. Lee, Tetrahedron Lett. 2001, 42, 4833-4855;

e) J. Dijkink, J.-C. Cintrat, W. N. Speckamp, H. Hiemstra, Tetrahedron Lett.

1999, 40, 5919-5922;

f) C. Shih, L. S. Gossett, Heterocycles 1993, 35, 825-841;

g) E. C. Taylor, R. P. Chaudhuri, S. E. Watson, Tetrahedron 1999, 55, 1631-1638;

h) H. Miyaji, W. Sato, L. J. Sessler, V. M. Lynch, Tetrahedron Lett. 2000, 41, 1369-1374;

i) J.-H. Liu, Q.-C. Yang, T. C. W. Thomas, H. N. C. Wong, J. Org. Chem.

2000, 65, 3587-3595;

j) D. L. Andersen, T. G. Back, L. Janzen, K. Michalak, R. P. Pharis, G.

C. Y. Sung, J. Org. Chem. 2001, 66, 7129-7141;

k) G.-X. He, F. Wada, K. Kikukawa, S. Shinkia, T. Matsuda, J. Org. Chem.

1990, 55, 541-548.

l) E. V. Tretyakov, D. W. Knight, S. F. Vasilevsky, J. Chem. Soc. Perkin Trans. 1 1999, 3713-3720;

[56] T. Gan, S. G. Van Ornum, J. M. Cook, Tetrahedron Lett. 1997, 38, 8453-8456.

[57] P. S. Clezy, A. J. Liepa, Aust. J. Chem. 1970, 23, 2443-2459.

[58] BRN :471521; CAS-NR: 24014-22-0.