• Keine Ergebnisse gefunden

Convex hull of graphs of polynomial functions over a polytope

Convex Hull of Graphs of Polynomial Functions

5.3 Convex hull of graphs of polynomial functions over a polytope

5.3.1 Preliminary definitions

Let๐‘š, ๐‘›โˆˆNand๐‘‹ โŠ‚R๐‘›be a polytope defined by the intersection of finitely many halfspaces, i.e.,๐‘‹ := {x = (๐‘ฅ1, . . . , ๐‘ฅ๐‘›)๐‘‡ โˆˆ R๐‘› | ๐‘Ž๐‘‡๐‘—x โ‰ค ๐‘๐‘—, ๐‘— = 1, . . . , ๐‘š}, where๐‘Ž๐‘— โˆˆ R๐‘›, ๐‘๐‘— โˆˆ R for๐‘— = 1, . . . , ๐‘š. Then, for a given polynomial function๐‘“ : ๐‘‹ โ†’ Rwith ๐‘“ โˆˆ R[x], the image of the function๐น :๐‘‹โ†’R๐‘›+1,xโ†ฆโ†’(x, ๐‘“(x))defines the graph of๐‘“. Note that some of definitions and properties are also suitable for general differentiable functions. But in this chapter we focus on polynomial functions.

In this section, we study the convex hull of the set

๐’ฎ:={(x, ๐‘ง)|๐‘ง=๐‘“(x), xโˆˆ๐‘‹} โŠ‚R๐‘›+1.

Define projection functions๐œ‹x:R๐‘›ร—Rโ†’R๐‘›,(x, ๐‘ง)โ†ฆโ†’xand๐œ‹๐‘ง :R๐‘›ร—Rโ†’R,(x, ๐‘ง)โ†ฆโ†’๐‘ง. For every point(x, ๐‘“(x))โˆˆ ๐’ฎ,x=๐œ‹x((x, ๐‘“(x)))is the corresponding domain point.

Theorem 5.1

Let๐‘†โŠ‚R๐‘›+1be a compact set. Then the convex hull of๐‘†is a compact set which is the intersection of all closed halfspaces containing๐‘†.

Proof. This can be directly derived from Corollary 5.33 and 5.83 of the book [AB06]. 2 Without loss of generality, we assume๐‘‹be to full-dimensional, otherwise we can reduce the dimension by eliminating variables until the new equivalent๐‘‹is full-dimensional inR๐‘‘for ๐‘‘โ‰ค๐‘›. Furthermore, with suitable preprocessing, every hyperplane๐‘Ž๐‘‡๐‘—x=๐‘๐‘— in๐‘‹corresponds to a facet of๐‘‹.

Let๐œ•๐‘‹ :={xโˆˆ ๐‘‹ | โˆƒ๐‘—, ๐‘Ž๐‘‡๐‘—x= ๐‘๐‘—}denote the boundary of๐‘‹and letint๐‘‹ := ๐‘‹โˆ–๐œ•๐‘‹ denote the interior of๐‘‹. For๐‘ŸโˆˆR+, denote the closed ball of radius๐‘Ÿcentered at the pointx0 by๐ต๐‘Ÿ(x0) ={xโˆˆR๐‘›| โ€–xโˆ’x0โ€–2 โ‰ค๐‘Ÿ}. A hyperplane inR๐‘›+1through point(x0, ๐‘ง0)with ๐‘ง0=๐‘“(x0)and normal vectorn0โˆˆR๐‘›,n0ฬธ= 0can be defined as

๐ป(x0,n0) ={(x, ๐‘ง)|๐‘ง=๐‘ง0+n0ยท(xโˆ’x0)}.

The tangent plane to๐‘“ at (x0, ๐‘“(x0))is๐‘‡(x0) := ๐ป(x0,โˆ‡๐‘“(x0)). The downward closed halfspace associated with hyperplane๐ป(x0,n0)is then

๐ป(xห‡ 0,n0) ={(x, ๐‘ง)|๐‘งโ‰ฅ๐‘ง0+n0ยท(xโˆ’x0)}.

The upward closed halfspace๐ป(x^ 0,n0)is defined similarly.

Hyperplanes๐ป(x0,n0) are callednonvertical (to space R๐‘›), since๐œ‹x(๐ป(x0,n0)) = R๐‘›. Analogously, averticalhyperplane inR๐‘›+1through point(x0, ๐‘ง0)with๐‘ง0 =๐‘“(x0)and normal vectorn0 โˆˆR๐‘›can be defined as

๐ปโŠฅ(x0,n0) ={(x, ๐‘ง)|n0ยท(xโˆ’x0) = 0}.

Then the left closed halfspace associated to๐ปโŠฅ(x0,n0)is defined by ๐ปยดโŠฅ(x0,n0) ={(x, ๐‘ง)|n0ยท(xโˆ’x0)โ‰ค0}

and the right closed halfspace๐ป`โŠฅ(x0,n0)is defined similarly. For any halfspace๐ปinR๐‘›+1, let๐‘”๐ป denote a map which maps a halfspace to its corresponding hyperplane.

Lemma 5.2

We discuss first halfspaces in๐‘†โ€ฒwith corresponding hyperplanes which are nonvertical. For every๐ปห‡1 there exists an affine function๐‘”1 :R๐‘› โ†’Rsuch that๐ปห‡1 ={(x, ๐‘ง) |๐‘งโ‰ฅ ๐‘”1(x)}.

This is also true for every upward closed halfspaces.

Now we discuss halfspaces in๐‘†โ€ฒwith corresponding hyperplanes which are vertical. Note that for every๐‘— โˆˆ {1, . . . , ๐‘š},{(x, ๐‘ง)|๐‘Ž๐‘‡๐‘—xโ‰ค๐‘๐‘—}has the form of๐ปยดโŠฅwith๐ปยดโŠฅโŠƒ ๐’ฎ. For any

5.3 Convex hull of graphs of polynomial functions over a polytope

Together with the result for all halfspaces in๐‘†โ€ฒ with corresponding hyperplanes which are

nonvertical, it implies that๐‘†โ€ฒ=๐‘†โ€ฒโ€ฒ. 2

In this section, we want to find a set of halfspaces that all contain๐’ฎand the intersection of them is the convex hull of๐’ฎ. Lemma 5.2 shows that we can restrict attention to nonvertical halfspaces whose corresponding hyperplane intersects the graph.

Remark 5.3

Obviously,๐’ฎ is bounded because of Theorem 5.1. Due to symmetry, we only need to consider the downward closed part of the convex hull since the upward closed part is equivalent to the downward closed part of functionโˆ’๐‘“.

5.3.2 Locally and globally convex points Definition 5.4 (Locally convex points)

A point(x0, ๐‘“(x0))โˆˆ ๐’ฎ is alocally convex pointif there exists๐œ€ >0,n0 โˆˆR๐‘›such that {(x, ๐‘ง)|xโˆˆ๐‘‹โˆฉ๐ต๐œ€(x0), ๐‘ง=๐‘“(x)}

โŸ โž

local graph

โŠ‚๐ป(xห‡ 0,n0). (5.1) In this case, the domain pointx0is the corresponding locally convex domain point.

Let๐’ฎห‡๐‘™ โˆˆ ๐’ฎ denote the set of all locally convex points and๐‘‹ห‡๐‘™=๐œ‹x( ห‡๐’ฎ๐‘™)the corresponding domain points.

Lemma 5.5

Letx0 โˆˆint๐‘‹. Ifx0is a locally convex domain point, then the gradient vectorโˆ‡๐‘“(x0)is the unique normal vectorn0tox0fulfilling (5.1).

Proof. Consider the function๐‘”n0(x) = ๐‘“(x)โˆ’(n0 ยท(xโˆ’x0) +๐‘“(x0))forn0 โˆˆ R๐‘›and defined on๐‘‹. The point(x0, ๐‘“(x0))is locally convex if and only if there exists๐œ€ >0such that ๐‘”n0(x)โ‰ฅ0over๐‘‹โˆฉ๐ต๐œ€(x0). Using โ€œTaylorโ€™s Formula in Several Variablesโ€ for๐‘”n0(x)atx0 (see the book [Edw94]),๐‘”n0(x)may attain a local minimum0atx0if and only ifn0 =โˆ‡๐‘“(x0).

This implies the result. 2

Definition 5.6 (Globally convex points and valid halfspaces)

A point(x0, ๐‘“(x0))โˆˆ ๐’ฎ is aglobally convex pointif there exist ann0 โˆˆR๐‘›such that ๐’ฎ ={(x, ๐‘ง)|xโˆˆ๐‘‹, ๐‘ง=๐‘“(x)}

โŸ โž

total graph

โŠ‚๐ป(xห‡ 0,n0). (5.2) Furthermore, we call๐ป(xห‡ 0,n0)avalidhalfspace,๐ป(x0,n0)andn0the corresponding valid hyperplane and valid normal vector, respectively. The pointx0is the corresponding globally convex domain point.

Further we define๐’ฎห‡๐‘” as the set of all globally convex points and๐‘‹ห‡๐‘” =๐œ‹x( ห‡๐’ฎ๐‘”)the set of corresponding domain points.

Remark 5.7

The definition of globally convex points is actually equivalent to the definition of generating sets, which can be found in Chapter4of the book [LS13]. Due to the different point of view, we keep on using the name defined above in this thesis.

Theorem 5.8

Letx0โˆˆint๐‘‹. Thenx0is a globally convex domain point if and only if the tangent hyperplane ๐‘‡(x0)is valid.

Proof. It is clear that a globally convex domain pointx0must also be a locally convex domain point. The result is then followed from Lemma 5.5, sincen0 is the unique candidate normal

vector to satisfy (5.2). 2

For anyx0 โˆˆ ๐‘‹ we seek a way to determine if it is a globally convex domain point. For x0 โˆˆint๐‘‹, we need only to check if๐‘‡(x0)is valid due to Theorem 5.8. On the other hand, for a boundary domain pointx0 โˆˆ ๐œ•๐‘‹, the situation is more complex. We require several additional concepts in this case.

5.3.3 Globally convex boundary points Remark 5.9

For polytope๐‘‹, every face๐น possesses a maximal subset๐ผ๐น โŠ‚ {1, . . . , ๐‘š}such that ๐น ={๏ธxโˆˆ๐‘‹ |๐‘Ž๐‘‡๐‘—x=๐‘๐‘—, ๐‘—โˆˆ๐ผ๐น}๏ธ.

In this section, we assume that the vertices of๐‘‹are nondegenerate which means there is no pointxโˆˆR๐‘›which satisfies๐‘›+ 1of the given๐‘šinequalities with equality. This implies two properties:

โ€ข For any face๐น it holds thatdim๐น =๐‘›โˆ’ |๐ผ๐น|

โ€ข For any face๐น with|๐ผ๐น|= ๐‘‘ โ‰ฅ 2and๐ผ๐น = {1, . . . , ๐‘‘}without loss of generality, it implies that

๐นโˆ’๐‘– ={๏ธxโˆˆ๐‘‹|๐‘Ž๐‘‡๐‘—x=๐‘๐‘—, ๐‘— โˆˆ๐ผ๐น โˆ– {๐‘–}}๏ธ

is also a face of๐‘‹with๐น (๐นโˆ’๐‘–anddim๐น = dim๐นโˆ’๐‘–โˆ’1for any๐‘–โˆˆ๐ผ๐น.

Note that the assumption that๐‘‹is vertex-nondegenerate is not a necessary condition for this section. However, this assumption makes the notation and description easier. For a vertex-degenerate๐‘‹, the dimension of any face can be determined by calculating the rank of an auxiliary matrix. Since there are finitely many faces, for any given face๐น withdim๐น โ‰ค๐‘›โˆ’2, all faces that contain๐น of dimension(dim๐น+ 1)can be determined as well.

Based on this remark, we have the following lemma. Example 5.11 following after its proof illustrates the lemma in a graphical way.

5.3 Convex hull of graphs of polynomial functions over a polytope

Lemma 5.10 (Complete Projection based on the smallest face containingx0) Letx0 โˆˆ๐œ•๐‘‹and define the index set

๐ผx0 :={๏ธ๐‘—โˆˆ {1, . . . , ๐‘š} |๐‘Ž๐‘‡๐‘—x0 =๐‘๐‘—}๏ธ

which is nonempty. Let๐‘‘โ€ฒ =|๐ผx0|be the cardinality with1โ‰ค๐‘‘โ€ฒ โ‰ค๐‘›. Then, the set ๐‘ƒx0 :={xโˆˆR๐‘›|๐‘Ž๐‘‡๐‘—x=๐‘๐‘—for all๐‘— โˆˆ๐ผx0}

defines an affine set inR๐‘› of dimension๐‘‘ := ๐‘›โˆ’๐‘‘โ€ฒ. Further, the set๐นx0 := ๐‘ƒx0 โˆฉ๐‘‹is the smallest face of๐‘‹which containsx0and has dimension๐‘‘.

By permuting variables inxif necessary, there exists a bijective linear map ๐‘”๐‘‘:๐‘ƒx0 โ†’R๐‘‘,xโ†ฆโ†’x๐‘‘

wherex๐‘‘= (๐‘ฅ1, . . . , ๐‘ฅ๐‘‘)๐‘‡ such that

โ€ข The set

๐’ฎ๐‘‘:={(x๐‘‘, ๐‘ง)|x๐‘‘=๐‘”๐‘‘(x), ๐‘ง=๐‘“(x),xโˆˆ๐นx0} โŠ‚R๐‘‘+1 is the graph of some polynomial function over a polytope.

โ€ข Either(๐‘”๐‘‘(x0), ๐‘“(x0))is an interior point of๐’ฎ๐‘‘or๐’ฎ๐‘‘={(๐‘”๐‘‘(x0), ๐‘“(x0))}.

Proof. Without loss of generality, we assume๐ผx0 ={1, . . . , ๐‘‘โ€ฒ}. It is clear that๐นx0 is a face of๐‘‹withx0 โˆˆ๐นx0. Assume that there exists another face๐น of๐‘‹withx0 โˆˆ๐น (๐นx0. Then there exists๐‘— โˆˆ {๐‘‘โ€ฒ+ 1, . . . , ๐‘š}such that๐‘Ž๐‘‡๐‘—x0 =๐‘๐‘—. This is a contradiction to the definition of๐ผx0. Hence๐นx0 is the smallest face of๐‘‹containingx0. Similar to the preprocessing of half spaces which form๐‘‹, which shows that๐นx0 has dimension๐‘‘.

Furthermore, we define

๐ดx0 =

โŽ›

โŽœ

โŽ ๐‘Ž๐‘‡1

...

๐‘Ž๐‘‡๐‘‘โ€ฒ

โŽž

โŽŸ

โŽ โˆˆR๐‘‘

โ€ฒร—๐‘›,

and๐‘x0 = (๐‘1, ๐‘2, . . . , ๐‘๐‘‘โ€ฒ)๐‘‡. Then we have

๐‘ƒx0 ={xโˆˆR๐‘›|๐ดx0x=๐‘x0}

and๐‘‘โ€ฒ= rank(๐ดx0) =๐‘›โˆ’๐‘‘. Via permuting variables, we may assume that the last๐‘‘โ€ฒcolumns of๐ดx0 are linearly independent and form an invertible matrix๐ด๐ต. At the same time the first๐‘‘ columns of๐ดx0 form the matrix๐ด๐‘‘. By settingx๐ต= (๐‘ฅ๐‘‘+1, . . . , ๐‘ฅ๐‘›)๐‘‡, we have

๐ดx0x= (๐ด๐‘‘๐ด๐ต)(x๐‘‡๐‘‘ x๐‘‡๐ต)๐‘‡ =๐ด๐‘‘x๐‘‘+๐ด๐ตx๐ต =๐‘x0,

and so

x๐ต =๐ดโˆ’1๐ต (๐‘x0โˆ’๐ด๐‘‘x๐‘‘) =๐ดโˆ’1๐ต ๐‘x0 โˆ’๐ดโˆ’1๐ต ๐ด๐‘‘x๐‘‘=:๐‘โ€ฒโˆ’๐ดโ€ฒx๐‘‘ for allxโˆˆ๐‘ƒx0 with

๐‘ฅ๐‘‘+๐‘– =๐‘โ€ฒ๐‘–โˆ’๐ดโ€ฒ๐‘–x๐‘‘=๐‘โ€ฒ๐‘–+

๐‘‘

โˆ‘๏ธ

๐‘—=1

๐‘๐‘‘+๐‘–,๐‘—๐‘ฅ๐‘— (5.3)

for all๐‘–= 1, . . . , ๐‘›โˆ’๐‘‘where๐‘โ€ฒ =๐ดโˆ’1๐ต ๐‘x0,๐ดโ€ฒ =๐ดโˆ’1๐ต ๐ด๐‘‘and๐ดโ€ฒ๐‘– is the๐‘–-th row of๐ดโ€ฒ,๐‘๐‘‘+๐‘—,๐‘— are constants for๐‘–= 1, . . . , ๐‘›โˆ’๐‘‘and๐‘— = 1, . . . , ๐‘‘. Note that the๐‘‘-dimensional affine set๐‘ƒx0

andR๐‘‘are isomorphic. Consider the linear map

๐‘”๐‘‘:๐‘ƒx0 โ†’R๐‘‘,xโ†ฆโ†’x๐‘‘, which is bijective since the inverse exists:

๐‘”๐‘‘โˆ’1:R๐‘‘โ†’๐‘ƒx0,x๐‘‘โ†ฆโ†’

(๏ธƒ x๐‘‘ ๐‘โ€ฒโˆ’๐ดโ€ฒx๐‘‘

)๏ธƒ

.

In the following we investigate the graph of function๐‘“ under the restrictionxโˆˆ๐นx0. The set๐นx0, function๐‘“ and pointx0can becompletely projected to๐น๐‘‘ =๐‘”๐‘‘(๐นx0),x0๐‘‘ = ๐‘”๐‘‘(x0) and๐‘“๐‘‘ = ๐‘“(x๐‘‘, ๐‘โ€ฒ1 โˆ’๐ดโ€ฒ1x๐‘‘, . . . , ๐‘โ€ฒ๐‘ฅโˆ’๐‘‘ โˆ’๐ดโ€ฒ๐‘ฅโˆ’๐‘‘x๐‘‘) respectively. It is clear that ๐‘“๐‘‘ โˆˆ R[x๐‘‘] is a polynomial function and๐น๐‘‘ is a polytope of dimension๐‘‘. By comparing coefficients, for everyx โˆˆ ๐นx0 it implies that๐‘“(x) = ๐‘“๐‘‘(๐‘”๐‘‘(x))and for everyx๐‘‘ โˆˆ ๐น๐‘‘it implies that ๐‘“๐‘‘(x๐‘‘) =๐‘“(๐‘”โˆ’1๐‘‘ (x๐‘‘)). The graph of๐‘“๐‘‘is thus

{(x๐‘‘, ๐‘ง)|๐‘ง=๐‘“๐‘‘(x๐‘‘), x๐‘‘โˆˆ๐น๐‘‘}={(x๐‘‘, ๐‘ง)|x๐‘‘=๐‘”๐‘‘(x), ๐‘ง=๐‘“(x),xโˆˆ๐นx0}=๐’ฎ๐‘‘, which is the graph of the polynomial function๐‘“๐‘‘over polytope๐น๐‘‘.

The domain pointx0 is an extreme point of๐‘‹ if๐‘‘โ€ฒ = |๐ผx0|= ๐‘›. In this case๐‘‘ = 0and ๐น๐‘‘ ={x0๐‘‘}which contains a single point. It implies thatx0๐‘‘is also an extreme point of ๐น๐‘‘. Otherwise, we are in case of๐‘‘โ€ฒ < ๐‘›. Note that every๐น๐‘‘is isomorphic to a face of๐‘‹. Assume x0๐‘‘is not an interior point of๐น๐‘‘. Then there exists a face of๐น๐‘‘which containsx0๐‘‘. It implies there exists a face of๐‘‹which containsx0. This is a contradiction to the definition of๐ผx0. Thus

x0๐‘‘is an interior point in๐น๐‘‘. 2

Example 5.11

We look at an example with๐‘›= 2, i.e.,x= (๐‘ฅ, ๐‘ฆ). Consider the polynomial function ๐‘“(๐‘ฅ, ๐‘ฆ) =โˆ’๐‘ฅ4+ 3๐‘ฅ3+ 10๐‘ฅ2๐‘ฆโˆ’5๐‘ฅ2+ 3๐‘ฅโˆ’2๐‘ฆ4โˆ’4๐‘ฆ2 : [โˆ’4,4]ร—[โˆ’4,4]โ†’R. For boundary pointx0 = (1,4)we get๐นx0 ={(๐‘ฅ, ๐‘ฆ) | โˆ’4โ‰ค๐‘ฅโ‰ค4, ๐‘ฆ = 4},๐‘”๐‘‘ : (๐‘ฅ, ๐‘ฆ)โ†ฆโ†’๐‘ฅ and๐‘”๐‘‘โˆ’1:๐‘ฅโ†ฆโ†’(๐‘ฅ,4)and๐‘“๐‘‘(๐‘ฅ) =โˆ’๐‘ฅ4+ 3๐‘ฅ3+ 35๐‘ฅ2+ 3๐‘ฅโˆ’576as defined in Lemma 5.10.

Point(x0, ๐‘“(x0)), set๐’ฎand a valid hyperplane{(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ง= 78๐‘ฅ+134๐‘ฆโˆ’1150}are shown as the red point, the blue surface and the yellow plane in Figure 5.4a and the corresponding (x0๐‘‘, ๐‘“๐‘‘(x0๐‘‘))and๐’ฎ๐‘‘are shown as the red point and the blue curve in Figure 5.4b, respectively.โ™ข

5.3 Convex hull of graphs of polynomial functions over a polytope

(a) In spaceR๐‘›+1 (b) In spaceR๐‘‘+1

Figure 5.4:Graph and hyperplane restricted on a face in Example 5.11 and the complete projections

Theorem 5.12 (Globally convex boundary points )

Letx0 โˆˆ๐œ•๐‘‹. Thenx0is a globally convex domain point of๐’ฎ if and only ifx0๐‘‘=๐‘”๐‘‘(x0)is also a globally convex domain point of๐’ฎ๐‘‘with

๐’ฎ๐‘‘={(x๐‘‘, ๐‘ง)|x๐‘‘=๐‘”๐‘‘(x), ๐‘ง=๐‘“(x),xโˆˆ๐นx0} โŠ‚R๐‘‘+1.

We go back to Example 5.11. Pointx๐‘‘0= 1is a globally convex domain point of๐’ฎ๐‘‘since the tangent plane{(๐‘ฅ, ๐‘ง)|๐‘ง=๐‘“๐‘‘(๐‘ฅ) = 78๐‘ฅโˆ’614}(shown as green line in Figure 5.4b) can be verified to be valid. Using the theorem above it implies that(1,4)is also globally convex. This is verified by the valid hyperplane{(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ง= 78๐‘ฅ+ 134๐‘ฆโˆ’1150}.

We prove first the direction โ€œโ‡’โ€ and postpone the direction โ€œโ‡โ€ after introducing a few further definitions and auxiliary lemmas.

Proof (of โ€œโ‡’โ€). Consider the case thatx0๐‘‘andx0are both an extreme point in ๐น๐‘‘and๐‘‹, respectively. Then the single pointx0๐‘‘โˆˆ๐น๐‘‘is surely a globally convex domain point since the single point is a valid hyperplane in that space.

Otherwisex0๐‘‘is an interior point in๐น๐‘‘. Letv= (๐‘ฃ1, . . . , ๐‘ฃ๐‘›)๐‘‡ โˆˆR๐‘›be an arbitrary vector.

Define a function๐‘”๐‘:R๐‘›โ†’R๐‘‘,

where all๐‘๐‘–๐‘— are defined as in (5.3). We first give and prove the following claim.

Claim LetnโˆˆR๐‘›. The following two sets are affinely isomorphic

{(x, ๐‘ง)|๐‘ง=๐‘ง0+nยท(xโˆ’x0),xโˆˆ๐‘ƒx0}โˆผ={(x๐‘‘, ๐‘ง)|๐‘ง=๐‘ง0+๐‘”๐‘(n)ยท(x๐‘‘โˆ’x0๐‘‘),x๐‘‘โˆˆR๐‘‘}. (5.4)

This implies

{(x, ๐‘ง)|๐‘งโ‰ฅ๐‘ง0+nยท(xโˆ’x0),xโˆˆ๐‘ƒx0}โˆผ={(x๐‘‘, ๐‘ง)|๐‘งโ‰ฅ๐‘ง0+๐‘”๐‘(n)ยท(x๐‘‘โˆ’x0๐‘‘),x๐‘‘โˆˆR๐‘‘}. (5.5)

Moreover, the tangent plane onx๐‘‘0defined as

๐‘‡๐‘‘(x0๐‘‘) ={(x๐‘‘, ๐‘ง)|๐‘ง=โˆ‡๐‘“๐‘‘(x0๐‘‘)ยท(x๐‘‘โˆ’x0๐‘‘) +๐‘ง0,x๐‘‘โˆˆR๐‘‘}

satisfies

๐‘‡๐‘‘(x๐‘‘0)โˆผ=๐‘‡|๐‘ƒ

x0(x0) ={(x, ๐‘ง)โˆˆ๐‘‡(x0)|xโˆˆ๐‘ƒx0}. (5.6)

5.3 Convex hull of graphs of polynomial functions over a polytope

To prove (5.6), it suffices to show

๐‘”๐‘(โˆ‡๐‘“(x0)) =โˆ‡๐‘“๐‘‘(x0๐‘‘),

Equation (5.4) says that for a given hyperplane๐ป(x0,n), the graph with restrictionxโˆˆ๐‘ƒx0 inR๐‘›+1which is{(x, ๐‘ง)|๐‘ง=n(xโˆ’x0)โˆ’๐‘ง0,xโˆˆ๐‘ƒx0}is affinely isomorphic to the hyperplane

๐ป(x0๐‘‘, ๐‘”๐‘(n))inR๐‘‘+1. Equation (5.5) translates (5.4) to halfspaces, and (5.6) similarly for tangent hyperplanes.

Now we are ready to prove the remaining part of โ€œโ‡’โ€. Let๐ป ={(x, ๐‘ง)|๐‘ง=๐‘ง0+n0ยท(xโˆ’ x0)}be the hypothesized hyperplane for showing globally convexity. Similar to the proof of the claim above, it implies that

Proof. We use all definitions and results from the proof of โ€œโ‡’โ€ of Theorem 5.12.

Ifx0๐‘‘andx0are both an extreme point in๐น๐‘‘and๐‘‹respectively, then we have ๐‘‡๐ผ

x0(x0) ={(x0, ๐‘“(x0))} โŠ‚๐ป.

Otherwisex0๐‘‘is an interior point in๐น๐‘‘. Similar to the proof of Equation (5.4) in the proof of

โ€œโ‡’โ€ of Theorem 5.12, it implies for๐ป =๐ป(x0,n)that

where(*)is followed from Theorem 5.8. 2

5.3 Convex hull of graphs of polynomial functions over a polytope

Recall Example 5.11 again. We have๐‘‡๐ผ

x0(x0) ={(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ง= 78๐‘ฅโˆ’614, ๐‘ฆ = 4}for the globally convex pointx0 = (1,4), see the green line in Figure 5.4. Corollary 5.13 shows that every valid hyperplane through(x0, ๐‘“(x0))contains๐‘‡๐ผ

x0(x0). Note that๐‘‡๐ผ

x0(x0)is an affine set contained in the tangent plane๐‘‡(x0), we call it a subtangent plane. We give a general definition of subtangent planes that are contained in a valid hyperplane.

Definition 5.14 (Subtangent planes)

Letx0 โˆˆ๐œ•๐‘‹ with corresponding๐ผx0. For every๐ผ โŠ‚ ๐ผx0, a correspondingsubtangent plane ๐‘‡๐ผ(x0)is defined as

๐‘‡๐ผ(x0) =๐‘‡(x0)โˆฉ {(x, ๐‘ง)|๐‘Ž๐‘‡๐‘– x=๐‘๐‘–, ๐‘–โˆˆ๐ผ}.

A subtangent plane๐‘‡๐ผ(x0)is valid if there exists a valid hyperplane๐ป with๐‘‡๐ผ(x0) โŠ‚ ๐ป. Note that๐‘‡(x0)may not be valid and yet๐‘‡๐ผ(x0)is valid by choosing๐ป ฬธ= ๐‘‡(x0). A valid subtangent plane through(x0, ๐‘“(x0))is said to bemaximally valid if there does not exist any other valid subtangent plane๐‘‡๐ผโ€ฒ(x0)such that๐‘‡๐ผ(x0)(๐‘‡๐ผโ€ฒ(x0).

We also extend the definition tox0 โˆˆint๐‘‹since๐ผx0 =โˆ…and๐‘‡โˆ…(x0) =๐‘‡(x0).

Note that since|๐ผx0|=๐‘‘โ€ฒthere are2๐‘‘โ€ฒ such subtangent planes and all of them are affine sets.

For every๐ผ1, ๐ผ2with๐ผ1, ๐ผ2 โŠ‚๐ผx0 it implies that

aff{๐‘‡๐ผ1(x0), ๐‘‡๐ผ2(x0)}=๐‘‡๐ผ1โˆฉ๐ผ2(x0) and it is clear that

๐‘‡๐ผ1(x0)โŠƒ๐‘‡๐ผ2(x0) for๐ผ1 โŠ‚๐ผ2 โŠ‚๐ผx0.

Corollary 5.13 shows that every valid hyperplane๐ปthrough a boundary point(x0, ๐‘“(x0)) satisfies

๐ป โŠƒ๐‘‡๐ผ

x0(x0) =(๏ธ๐‘‡(x0)โˆฉ {(x, ๐‘ง)|xโˆˆ๐‘ƒx0})๏ธโŠƒ(๏ธ๐‘‡(x0)โˆฉ {(x, ๐‘ง)|xโˆˆ๐นx0})๏ธ. Face๐นx0 of dimension less than๐‘›โˆ’1is contained in a face of๐‘‹of higher dimension. Exam-ple 5.15 below shows that there could exist another face๐นx10 of๐‘‹ such that๐นx10 )๐นx0 and there exists also a valid hyperplane๐ป1with๐ป1 โŠƒ(๐‘‡(x0)โˆฉ {(x, ๐‘ง)|xโˆˆ๐นx10}).

Example 5.15

Consider the following example inR3. Let๐‘“(๐‘ฅ, ๐‘ฆ) =๐‘ฅ2โˆ’5๐‘ฅ๐‘ฆ+๐‘ฆ2be the polynomial function over domain๐‘‹ = {(๐‘ฅ, ๐‘ฆ) โˆˆ [โˆ’3,10]ร—[โˆ’3,10]}, shown in Figure 5.6. The inequalities for the halfspaces of ๐‘‹with ๐‘ฅ โ‰ฅ โˆ’3,๐‘ฆ โ‰ฅ โˆ’3,๐‘ฅ โ‰ค 10and๐‘ฆ โ‰ค 10 have corresponding index 1,2,3and4, respectively. The graph of๐‘“ inR3is illustrated in Figure 5.5a. The domain point x0= (โˆ’3,โˆ’3)โˆˆ๐‘‹is a boundary point with๐ผx0 ={1,2}. Let๐น1 ={(๐‘ฅ, ๐‘ฆ)|๐‘ฅ=โˆ’3,โˆ’3โ‰ค ๐‘ฆ โ‰ค10}and๐น2 ={(๐‘ฅ, ๐‘ฆ) | โˆ’3 โ‰ค๐‘ฅ โ‰ค 10, ๐‘ฆ = โˆ’3}be two faces of๐‘‹ containingx0. The

(a) The graph and graph on face(s) (b)๐‘‡{1}(x0)and๐ป1

(c)๐‘‡{2}(x0)and๐ป2 (d)๐‘‡{1,2}(x0)and๐ป3

Figure 5.5:Example 5.15 for valid subtangent planes and corresponding valid hyperplanes graph of๐‘“ with restrictionx โˆˆ ๐น1 is the red curve in Figure 5.5a and the graph of ๐‘“ with restrictionxโˆˆ๐น2is the blue curve in Figure 5.5a. In addition, the22 = 4subtangent planes are

๐‘‡โˆ…(x0) ={(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ง= 9๐‘ฅ+ 9๐‘ฆ+ 27}=๐‘‡(x0),

๐‘‡{1}(x0) =๐‘‡(x0)โˆฉ {(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ฅ=โˆ’3}={(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ง= 9๐‘ฆ, ๐‘ฅ=โˆ’3}, ๐‘‡{2}(x0) =๐‘‡(x0)โˆฉ {(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ฆ=โˆ’3}={(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ง= 9๐‘ฅ, ๐‘ฆ=โˆ’3}, ๐‘‡{1,2}(x0) =๐‘‡(x0)โˆฉ {(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ฅ=โˆ’3, ๐‘ฆ=โˆ’3}={(โˆ’3,โˆ’3,โˆ’27)}.

Consider the pointx1 = (10,10)with๐‘“(x1) =โˆ’300. In the following, we investigate whether ๐‘‡โˆ…(x0)is valid. It is clear that the point(10,10,9ยท10 + 9ยท10 + 27) = (10,10,207)โˆˆ๐‘‡โˆ…(x0). Note that the point๐‘ƒ1= (x1, ๐‘“(x1)) = (10,10,โˆ’300)is below๐‘‡โˆ…(x0)because๐‘ƒ1is below the point(10,10,207). Hence๐‘‡โˆ…(x0)is not valid. The subtangent plane๐‘‡{1}(x0)(red line

5.3 Convex hull of graphs of polynomial functions over a polytope

โˆ’4 โˆ’2 0 2 4 6 8 10

0 5 10

Figure 5.6:Domain๐‘‹ ={(๐‘ฅ, ๐‘ฆ)โˆˆ[โˆ’3,10]ร—[โˆ’3,10]}

in Figure 5.5b and in Figure 5.5d) is valid since the hyperplane๐ป1(green plane in Figure 5.5b) with

๐ป1 = aff{๐‘‡{1},{๐‘ƒ1}}={(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ง=โˆ’30๐‘ฅ+ 9๐‘ฆโˆ’90}

can be verified to be valid and๐‘‡{1}(x0)โŠ‚๐ป1. Similarly,๐‘‡{2}(x0)(blue line in Figure 5.5c and in Figure 5.5d) is valid since the hyperplane๐ป2(green plane in Figure 5.5c) with

๐ป2= aff{๐‘‡{2},{๐‘ƒ1}}={(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ง= 9๐‘ฅโˆ’30๐‘ฆโˆ’90}

can be verified to be valid and๐‘‡{2}(x0)โŠ‚๐ป2. Let

๐ป3 ={(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ง=โˆ’10.5๐‘ฅโˆ’10.5๐‘ฆโˆ’90}

with{(โˆ’3,โˆ’3,โˆ’27)} โŠ‚๐ป3and{๐‘ƒ1} โŠ‚๐ป3. The affine set๐ป3(green plane in Figure 5.5d) can also be verified to be valid. The subtangent plane๐‘‡{1,2}(x0)(black point in Figure 5.5d) is valid since๐‘‡{1,2}(x0)โŠ‚๐ป3.

Note that๐‘‡{1}(x0)and๐‘‡{2}(x0), both through(x0, ๐‘“(x0)), are maximally valid subtangent planes. Hence a maximally valid subtangent plane does not have to be unique. โ™ข Definition 5.16

Let๐‘†1, ๐‘†2โŠ‚R๐‘›+1be two sets. For a given domain๐ทโŠ‚R๐‘›,๐‘†1is said to be(strictly) below๐‘†2 over๐ทif๐œ‹x(๐‘†1)โˆฉ๐œ‹x(๐‘†2)โˆฉ๐ทฬธ=โˆ…and for everyx0โˆˆ๐œ‹x(๐‘†1)โˆฉ๐œ‹x(๐‘†2)โˆฉ๐ทand๐‘ง1, ๐‘ง2 โˆˆR with(x0, ๐‘ง1)โˆˆ๐‘†1and(x0, ๐‘ง2)โˆˆ๐‘†2, we have

๐‘ง1โ‰ค๐‘ง2(๐‘ง1 < ๐‘ง2).

In this case we also call๐‘†2is(strictly) above๐‘†1over๐ท. We omit โ€œover๐ทโ€ if ๐ทโŠƒ(๐œ‹x(๐‘†1)โˆฉ๐œ‹x(๐‘†2)).

Figure 5.7:Example of half hyperplanes for Lemma 5.18 and Lemma 5.19

Remark 5.17

In the definition above, the comparison below or above allows the compared sets to have intersection points. Note that for the special case๐‘†1 =๐‘†2, we also have๐‘†1 is above๐‘†2as well as๐‘†1is below๐‘†2.

Note that a hyperplane๐ป is valid if and only if it is below๐’ฎ. In the example shown in Figure 5.11a,๐ป๐‘–is below๐ป๐‘—over[๐‘™, ๐‘ข]for all๐‘–, ๐‘—with1โ‰ค๐‘– < ๐‘— โ‰ค4and๐ป๐‘–is below๐’ฎfor all ๐‘–โˆˆ {1,2,3,4}. Note that for any๐‘†1, ๐‘†2, ๐‘†3 โŠ‚R๐‘›+1 with๐‘†1 is below๐‘†2 over๐ท1 โŠ‚R๐‘›and ๐‘†2is below๐‘†3over๐ท2 โŠ‚R๐‘›,๐‘†1is below๐‘†3over๐ท1โˆฉ๐ท2.

Lemma 5.18 (Half hyperplanes) Let

๐ป1=๐ป(x0,n1) ={(x, ๐‘ง)|๐‘ง=๐‘ง0+n1ยท(xโˆ’x0)}

with the normal vectorn1 โˆˆR๐‘›and

๐ป2=๐ป(x0,n2) ={(x, ๐‘ง)|๐‘ง=๐‘ง0+n2ยท(xโˆ’x0)}

with the normal vectorn2 โˆˆR๐‘›be two nonvertical and nonparallel hyperplanes with an intersection point(x0, ๐‘ง0)โˆˆ๐ป1โˆฉ๐ป2. Let

๐œ‹x(๐ป1โˆฉ๐ป2) ={xโˆˆR๐‘›|๐‘ง0+n1ยท(xโˆ’x0) =๐‘ง0+n2ยท(xโˆ’x0)}={xโˆˆR๐‘›|(n1โˆ’n2)ยท(xโˆ’x0) = 0}.

5.3 Convex hull of graphs of polynomial functions over a polytope

Then๐ป1is below๐ป2over๐ฟ:={xโˆˆR๐‘›|(n1โˆ’n2)ยท(xโˆ’x0)โ‰ค0}.

In addition, for any set๐‘†with๐‘†โŠ‚๐ฟor๐‘†โŠ‚๐‘…:={xโˆˆR๐‘›|(n1โˆ’n2)ยท(xโˆ’x0)โ‰ฅ0}, either ๐ป1is below๐ป2over๐‘†or๐ป2is below๐ป1over๐‘†.

Proof. For anyxโˆˆ๐ฟwe compare(x, ๐‘ง1)โˆˆ๐ป1and(x, ๐‘ง2)โˆˆ๐ป2with

๐‘ง1โˆ’๐‘ง2= (๐‘ง0+n1ยท(xโˆ’x0))โˆ’(๐‘ง0+n2ยท(xโˆ’x0)) = (n1โˆ’n2)ยท(xโˆ’x0)โ‰ค0, which means๐ป1is below๐ป2 over๐ฟ.

After that, the second part is trivial to prove. 2

Note that if we write๐œ‹x(๐ป1โˆฉ๐ป2) ={xโˆˆR๐‘›|(n2โˆ’n1)ยท(xโˆ’x0) = 0}, then๐ป1is above ๐ป2over{xโˆˆR๐‘›|(n2โˆ’n1)ยท(xโˆ’x0)โ‰ค0}={xโˆˆR๐‘›|(n1โˆ’n2)ยท(xโˆ’x0)โ‰ฅ0}=R. An example is shown in Figure 5.7.

Lemma 5.19

Consider the set ๐‘ƒ๐‘›โˆ’1 = {(x, ๐‘ง) | ๐‘ง = ๐‘ง0 +n1 ยท(xโˆ’x0),(n1 โˆ’n2) ยท(x โˆ’x0) = 0}

forn1,n2 โˆˆ R๐‘›,n1 ฬธ= n2 and x0 โˆˆ ๐‘‹, ๐‘ง0 โˆˆ R. Then๐‘ƒ๐‘›โˆ’1 is an affine set of dimension (๐‘›โˆ’1). For any compact set๐‘† โˆˆ R๐‘›+1 with๐œ‹x(๐‘†) โŠ‚ {x | (n1โˆ’n2)ยท(xโˆ’x0) < 0}or ๐œ‹x(๐‘†)โŠ‚ {x|(n1โˆ’n2)ยท(xโˆ’x0)>0}, there exists a hyperplane๐ปโŠƒ๐‘ƒ๐‘›โˆ’1which is below๐‘†.

Proof. The set๐‘ƒ๐‘›โˆ’1 can be equivalently written as

๐‘ƒ๐‘›โˆ’1 ={(x, ๐‘ง)|๐‘ง=๐‘ง0+n1ยท(xโˆ’x0)} โˆฉ {(x, ๐‘ง)|๐‘ง=๐‘ง0+n2ยท(xโˆ’x0)}, which is an intersection of two nonparallel hyperplanes. Hence it is an affine set of dimension (๐‘›โˆ’1).

Note that for any(x, ๐‘ง) โˆˆ๐‘†, we havex ฬธโˆˆ ๐œ‹x(๐‘ƒ๐‘›โˆ’1). The affine setaff{๐‘ƒ๐‘›โˆ’1,{(x, ๐‘ง)}}

is then a nonvertical hyperplane. We take an arbitrary fixed pointx๐‘Ÿ โˆˆ๐œ‹x(๐‘†)as areference point, with an affine set{(x๐‘Ÿ, ๐‘ง)|๐‘งโˆˆR}. For any(x, ๐‘ง)โˆˆ๐‘†,aff{๐‘ƒ๐‘›โˆ’1,{(x, ๐‘ง)}}has exactly one intersecting point with the affine set{(x๐‘Ÿ, ๐‘ง)|๐‘ง โˆˆR}, see examples in Figure 5.7 with (x, ๐‘ง) = (x1, ๐‘ง1)or(x, ๐‘ง) = (x2, ๐‘ง2). Denoting the intersection point by(x๐‘Ÿ, ๐‘“x๐‘Ÿ(x))with

{(x๐‘Ÿ, ๐‘“x๐‘Ÿ(x))}= aff{๐‘ƒ๐‘›โˆ’1,{(x, ๐‘ง)โˆˆ๐‘†}} โˆฉ {(x๐‘Ÿ, ๐‘ง)|๐‘งโˆˆR}

and๐‘“x๐‘Ÿ :๐œ‹x(๐‘†)โ†’R. Function๐‘“x๐‘Ÿ is continuous since the affine function above is continuous.

Let(x1, ๐‘ง1) โˆˆ ๐‘† and(x2, ๐‘ง2) โˆˆ ๐‘†. Then the hyperplaneaff{๐‘ƒ๐‘›โˆ’1,{(x1, ๐‘ง1)}} is below aff{๐‘ƒ๐‘›โˆ’1,{(x2, ๐‘ง2)}}over๐‘†if and only if๐‘“x๐‘Ÿ(x1)โ‰ค๐‘“x๐‘Ÿ(x2), see an example in Figure 5.7.

Due to the Weierstrass Theorem, we can find(x*, ๐‘ง*)โˆˆ๐‘†such that๐‘“x๐‘Ÿ attains a minimum atx*. Then we haveaff{๐‘ƒ๐‘›โˆ’1,{(x*, ๐‘ง*)}}is belowaff{๐‘ƒ๐‘›โˆ’1,{(x๐‘–, ๐‘ง๐‘–)}}for any(x๐‘–, ๐‘ง๐‘–)โˆˆ๐‘†.

This implies thataff{๐‘ƒ๐‘›โˆ’1,{(x*, ๐‘ง*)}} is below any(x๐‘–, ๐‘ง๐‘–) โˆˆ ๐‘†. Hence the hyperplane

๐ป := aff{๐‘ƒ๐‘›โˆ’1,{(x*, ๐‘ง*)}}is below๐‘†. 2

Figure 5.8:A point sequence in the neighborhood ofx0

With the following lemma we prove that a hyperplane๐ปis valid if and only if๐ปis below๐’ฎ over๐‘‹ห‡๐‘”.

Lemma 5.20

The hyperplane๐ป(x0,n0)is below๐’ฎover๐‘‹if and only if๐ป(x0,n0)is below๐’ฎover๐‘‹ห‡๐‘”, which means for everyxโˆˆ๐‘‹ห‡๐‘”it satisfies

๐‘“(x)โ‰ฅ๐‘“(x0) +n0ยท(xโˆ’x0). (5.8) Proof. Direction โ€โ‡’โ€œ simply follows since๐‘‹โŠƒ๐‘‹ห‡๐‘”.

For the proof of โ€โ‡โ€œ, first consider the optimization problem

xโˆˆ๐‘‹min ๐‘“(x)โˆ’๐‘“(x0)โˆ’n0ยท(xโˆ’x0), (5.9) which has a continuous objective function over a compact feasible region. Since๐‘‹is compact, an optimum always exists due to the Weierstrass Theorem. Due tox0โˆˆ๐‘‹, we have

minxโˆˆ๐‘‹ ๐‘“(x)โˆ’๐‘“(x0)โˆ’n0ยท(xโˆ’x0)โ‰ค๐‘“(x0)โˆ’๐‘“(x0)โˆ’n0ยท(x0โˆ’x0) = 0.

The hyperplane๐ป(x0,n0)is valid if and only if the optimization problem (5.9) has optimal value0. Note that by assumption, everyxโˆˆ๐‘‹ห‡๐‘”satisfies (5.8) . The hyperplane๐ป(x0,n0)is valid if the inequality holds also for everyxโˆˆ๐‘‹โˆ–๐‘‹ห‡๐‘”. We assume there exists anxโˆ’ โˆˆ๐‘‹โˆ–๐‘‹ห‡๐‘” with

๐‘“(xโˆ’)< ๐‘“(x0) +n0ยท(xโˆ’โˆ’x0).

Then the optimization problem (5.9) possesses an optimal solution(x*, ๐‘ง*)with value<0, i.e., ๐‘“(x*)< ๐‘“(x0) +n0ยท(x*โˆ’x0).

Note thatx* is a globally convex domain point since๐ป(x*,n0)is valid. This is a contradiction to (5.8) for everyxโˆˆ๐‘‹ห‡๐‘”. It implies thenxโˆ’does not exist and (5.8) is also satisfied for every xโˆˆ๐‘‹โˆ–๐‘‹ห‡๐‘”. Hence๐ป(x0,n0)is a valid hyperplane. 2

5.3 Convex hull of graphs of polynomial functions over a polytope

Proof idea of direction โ€œโ‡โ€ of Theorem 5.12. Recall Example 5.11. As shown in Figure 5.4b, for๐’ฎ๐‘‘,(x0๐‘‘, ๐‘“๐‘‘(x0๐‘‘)) = (1,โˆ’536)is globally convex. To show Theorem 5.12, we need to prove that there exists a valid hyperplane through(x0, ๐‘“(x0)) = (1,4,โˆ’536), which is the red point in Figure 5.4a. According to Corollary 5.13, every such hyperplane should contain๐‘‡๐ผ

x0(x0) which is the green line in Figure 5.4a. Note that in this example๐‘‡๐ผ

x0(x0)is an affine set of dimension1. According to Lemma 5.19, by setting๐‘ƒ๐‘›โˆ’1 =๐‘‡๐ผ

x0(x0), for any subset๐‘‹โ€ฒ โŠ‚๐‘‹ with๐‘‹โ€ฒโˆฉ๐นx0 =โˆ…, there exists a hyperplane๐ป โŠƒ๐‘‡๐ผ

x0(x0)such that๐ปis below๐’ฎover๐‘‹โ€ฒ. The proof idea is as follows. After finding a set๐‘ƒ๐‘›โˆ’1as described in Lemma 5.19, we split๐‘‹ into two compact sets๐‘‹๐‘€ and๐‘‹ฮ”such that๐œ‹x(๐‘ƒ๐‘›โˆ’1)โŠ‚๐‘‹๐‘€ and๐‘‹ฮ”โˆฉ๐œ‹x(๐‘ƒ๐‘›โˆ’1) =โˆ…as

The following lemma helps us to find๐‘‹๐‘€ and๐ป*as mentioned in the proof idea.

Lemma 5.21

For every x0 โˆˆ ๐‘‹ห‡๐‘”, there exists an ๐œ€ > 0 such that ๐‘‡(x0) is below ๐’ฎ over ๐‘‹ห‡๐‘” โˆฉ ๐ต๐œ€(x0). Furthermore, every valid hyperplane๐ปthrough(x0, ๐‘“(x0))is below๐‘‡(x0)over๐‘‹.

Proof. Note that for anyx0โˆˆint๐‘‹this lemma is clear due to Lemma 5.5 and Theorem 5.8.

We need only to consider the casex0 โˆˆ ๐œ•๐‘‹. For a given globally convex domain point x0โˆˆ๐œ•๐‘‹โˆฉ๐‘‹ห‡๐‘”, we want to capture the globally convex domain points in its neighborhood.

Let๐ด, ๐ตโŠ‚R๐‘›+1be two subsets, then

which follows directly from the definition of subtangent planes.

For any๐‘‡๐ผ(x0)which is below๐’ฎ,๐‘‡(x0)is then below๐’ฎ over๐‘‹ห‡๐‘”โˆฉ๐ต๐œ€(x0)โˆฉ๐œ‹x(๐‘‡๐ผ(x0)) for any๐œ€ >0. It implies that๐‘‡(x0)is below๐’ฎover

โ‹ƒ๏ธ

๐ผโŠ‚๐ผx0 ๐‘‡๐ผ(x0)is below๐’ฎ

๐‘‹ห‡๐‘”โˆฉ๐ต๐œ€(x0)โˆฉ๐œ‹x(๏ธ๐‘‡๐ผ(x0))๏ธ.

Note that

๐‘‹ห‡๐‘”โˆฉ๐ต๐œ€(x0) = โ‹ƒ๏ธ

๐ผโŠ‚๐ผx0

๐‘‹ห‡๐‘”โˆฉ๐ต๐œ€(x0)โˆฉ๐œ‹x

(๏ธ๐‘‡๐ผ(x0))๏ธ.

In the following we need only to prove that for a sufficiently small๐œ€ >0it holds

โ‹ƒ๏ธ

๐ผโŠ‚๐ผx0 ๐‘‡๐ผ(x0)is below๐’ฎ

๐‘‹ห‡๐‘”โˆฉ๐ต๐œ€(x0)โˆฉ๐œ‹x(๏ธ๐‘‡๐ผ(x0))๏ธ= โ‹ƒ๏ธ

๐ผโŠ‚๐ผx0

๐‘‹ห‡๐‘”โˆฉ๐ต๐œ€(x0)โˆฉ๐œ‹x(๏ธ๐‘‡๐ผ(x0))๏ธ (5.11)

which implies the first consequence that๐‘‡(x0)is below๐’ฎover๐‘‹ห‡๐‘”โˆฉ๐ต๐œ€(x0).

Before proving (5.11) we first prove that for everyx0โˆˆ๐‘‹ห‡๐‘”there exists an๐œ€๐ฝ >0such that any subtangent plane๐‘‡๐ฝ(x0), ๐ฝ โŠ‚ ๐ผx0 thatdoes not fulfillthe condition๐‘‡๐ฝ(x0)is below๐’ฎ satisfies

๐‘‹ห‡๐‘”โˆฉ๐ต๐œ€๐ฝ(x0)โˆฉrelint(๏ธ๐น๐ฝ(x0))๏ธ=โˆ…. (5.12) Assume that there does not exist an๐œ€๐ฝ for which (5.12) holds. Then there exists๐ฝ โŠ‚๐ผx0 such that๐‘‡๐ฝ(x0)does not fulfill๐‘‡๐ฝ(x0)is below๐’ฎand for every๐œ€๐ฝ >0

๐‘‹ห‡๐‘”โˆฉ๐ต๐œ€๐ฝ(x0)โˆฉrelint(๏ธ๐น๐ฝ(x0))๏ธฬธ=โˆ….

Recall that๐น๐ฝ(x0)is a compact set. There exists then a point sequence(x๐‘–)๐‘–โˆˆN โŠ‚๐‘‹ห‡๐‘”, as shown in Figure 5.8, such that

๐‘–โ†’โˆžlim x๐‘– =x0and{((x๐‘–)๐‘–โˆˆN)} โŠ‚(๏ธ๐‘‹ห‡๐‘”โˆฉ๐ต๐œ€๐ฝ(x0)โˆฉrelint(๏ธ๐น๐ฝ(x0))๏ธ)๏ธ

for๐œ€๐ฝ >0. The pointx๐‘–for any๐‘–โˆˆNis a globally convex domain point and a relative interior point in๐น๐ฝ(x0). Denotingx๐‘–byy, the function

๐บy(x) =๐‘“(x)โˆ’(โˆ‡๐‘“(y)ยท(xโˆ’y) +๐‘“(y))

evaluates the validity of the tangent plane๐‘‡(y) through(y, ๐‘“(y)): Tangent plane ๐‘‡(y) is valid if and only if๐บy(x)โ‰ฅ0for allxโˆˆ๐‘‹; subtangent plane๐‘‡๐ฝ(y)is below๐’ฎif and only if ๐บy(x)โ‰ฅ0for allxโˆˆ๐น๐ฝ(y). Consider the function

โ„Ž:๐น๐ฝ(x0)โ†’R,yโ†ฆโ†’ min

xโˆˆ๐น๐ฝ(y)๐บy(x).

5.3 Convex hull of graphs of polynomial functions over a polytope

With โ€œโ‡’โ€ of Theorem 5.12,y โˆˆ ๐‘‹ห‡๐‘” implies that๐‘‡๐ฝ(y) is below๐’ฎ which is equivalent to ๐‘‡(y)is below๐’ฎ over๐น๐ฝ(y). Thus,โ„Ž(x๐‘–) โ‰ฅ0for every๐‘–โˆˆN. For anyyfunction๐บy(x)is a continuous function, it impliesโ„Žis also continuous since it maps from a compact set to the minimum of๐บy(x). Together withlim๐‘–โ†’โˆžx๐‘– =x0 it implies thatโ„Ž(x0)โ‰ฅ 0. This implies that๐‘‡๐ฝ(x0)is below๐’ฎ. This is a contradiction to our assumption. Hence there exists an๐œ€๐ฝ >0 such that

๐‘‹ห‡๐‘”โˆฉ๐ต๐œ€๐ฝ(x0)โˆฉrelint(๏ธ๐น๐ฝ(x0))๏ธ=โˆ….

Since we have finitely many subtangent planes through (x0, ๐‘“(x0)), there exists an๐œ€ > 0 which is the minimum of all๐œ€๐ฝ such that (5.12) holds for every such subtangent plane through (x0, ๐‘“(x0)).

Using (5.14) iteratively and together with (5.12), it implies that ๐‘‹ห‡๐‘”โˆฉ๐‘†๐ฝ๐œ€(x0) = โ‹ƒ๏ธ

๐ฝโŠ‚๐ผโŠ‚๐ผx0

๐‘‡๐ผ(x0)is below๐’ฎ

๐‘‹ห‡๐‘”โˆฉ๐‘†๐ผ๐œ€(x0)

for every๐ฝ โŠ‚๐ผx0. This implies๐‘‡(x0)is below๐’ฎover

โ‹ƒ๏ธ

๐ผโŠ‚๐ผx0

๐‘‡๐ผ(x0)is below๐’ฎ

๐‘‹ห‡๐‘”โˆฉ๐‘†๐ผ๐œ€(x0) = โ‹ƒ๏ธ

๐ผโŠ‚๐ผx0

๐‘‹ห‡๐‘”โˆฉ๐‘†๐ผ๐œ€(x0) = ห‡๐‘‹๐‘”โˆฉ๐ต๐œ€(x0).

Now it remains only to prove that every valid hyperplane๐ปthrough(x0, ๐‘“(x0))is below ๐‘‡(x0)over๐‘‹. Assume that๐ป ฬธ= ๐‘‡(x0), otherwise we are done. An example for๐‘› = 1is shown in Figure 5.9. Let๐‘‹ = [๐‘™, ๐‘ข]and๐‘™,๐‘ฅ๐‘šand๐‘ขbe globally convex points. Tangent plane ๐‘‡(๐‘™), shown as the green line, is not valid. However, the example in Figure 5.9 shows that every valid hyperplane through(๐‘™, ๐‘“(๐‘™))is below๐‘‡(๐‘™)over๐‘‹; it also shows that every hyperplane through(๐‘™, ๐‘“(๐‘™))which is above๐‘‡(๐‘™)over๐‘‹cannot be valid. For interior domain point๐‘ฅ๐‘š, there does not exist another hyperplane through(๐‘ฅ๐‘š, ๐‘“(๐‘ฅ๐‘š))which is below๐‘‡(๐‘ฅ๐‘š), thus there exists at most one valid hyperplane through(๐‘ฅ๐‘š, ๐‘“(๐‘ฅ๐‘š))which is also implied by Theorem 5.8.

For domain point๐‘ข,๐‘‡(๐‘ข)is valid. In addition, every hyperplane through(๐‘ข, ๐‘“(๐‘ข))which is below๐‘‡(๐‘ข)over๐‘‹is also valid; every hyperplane through(๐‘ข, ๐‘“(๐‘ข))which is not๐‘‡(๐‘ข)and above๐‘‡(๐‘ข)over๐‘‹is not valid.

We go back to the proof for general๐‘›. Under the assumption๐ป ฬธ=๐‘‡(x0), hyperplanes๐ป and๐‘‡(x0)are not parallel due to the intersection point(x0, ๐‘“(x0)). Similar to the notation in Lemma 5.18, denote

๐œ‹x(๐ปโˆฉ๐‘‡(x0)) ={xโˆˆR๐‘›|n0ยท(xโˆ’x0) = 0}, and

๐ฟ:={xโˆˆR๐‘›|n0ยท(xโˆ’x0)โ‰ค0}, ๐‘…:={xโˆˆR๐‘›|n0ยท(xโˆ’x0)โ‰ฅ0}

withn0 โˆˆR๐‘›. Note that sincex0is a boundary point of๐‘‹, we have either๐œ‹x(๐ปโˆฉ๐‘‡(x0))โˆฉ int๐‘‹ ฬธ= โˆ… or๐œ‹x(๐ปโˆฉ๐‘‡(x0))โˆฉint๐‘‹ = โˆ…. If๐œ‹x(๐ป โˆฉ๐‘‡(x0))โˆฉint๐‘‹ ฬธ= โˆ…, then we have ๐ฟโˆฉint๐‘‹ ฬธ=โˆ…and๐‘…โˆฉint๐‘‹ฬธ=โˆ…. Lemma 5.18 implies๐ปis above๐‘‡(x0)over๐ฟor๐‘…. Without loss of generality,๐ปis above๐‘‡(x0)over๐ฟ. Consider the graph of๐‘“over๐ฟโˆฉ๐ต๐œ€(x0)โˆฉint๐‘‹ฬธ=โˆ… for any๐œ€ >0. There always exists a pointx1 โˆˆ๐ฟโˆฉ๐ต๐œ€(x0)โˆฉint๐‘‹such that(x1, ๐‘“(x1))is below๐ป. Thus๐ปcannot be valid if๐œ‹x(๐ปโˆฉ๐‘‡(x0))โˆฉint๐‘‹ ฬธ=โˆ….

Now we consider the case๐œ‹x(๐ปโˆฉ๐‘‡(x0))โˆฉint๐‘‹=โˆ…. There are two cases, either๐‘‹ โŠ‚๐ฟor ๐‘‹โŠ‚๐‘…. Without loss of generality, let๐‘‹โŠ‚๐ฟ. Lemma 5.18 implies that๐ปis either below๐‘‡(x0)

Now we consider the case๐œ‹x(๐ปโˆฉ๐‘‡(x0))โˆฉint๐‘‹=โˆ…. There are two cases, either๐‘‹ โŠ‚๐ฟor ๐‘‹โŠ‚๐‘…. Without loss of generality, let๐‘‹โŠ‚๐ฟ. Lemma 5.18 implies that๐ปis either below๐‘‡(x0)