• Keine Ergebnisse gefunden

Convex Hull of Graphs of Polynomial Functions

5.4 Bivariate polynomial functions: a case study

So far, we gave a description of the convex hull of the graph of polynomial functions. Recalling the definitions and theorems, our work focused mainly on theoretical point of view. Instead of obtaining algorithms to compute valid hyperplanes, we dealt with proof of existence. Indeed, algorithmically, it is very hard to verify if a given hyperplane is valid in a general dimension and for a general degree of polynomial functions.

In the next section, we concentrate on bivariate polynomial functions with a limited degree.

Algorithms are developed to find tight hyperplanes. Computations show that these tight hyperplanes accelerate MINLP solving processes.

5.4 Bivariate polynomial functions: a case study

In this section we design algorithms to find finitely many tight valid hyperplanes for the graph of bivariate polynomial functions with degree up to3. Every given bivariate polynomial function with degree up to3has the form

๐‘“(๐‘ฅ, ๐‘ฆ) = โˆ‘๏ธ

0โ‰ค๐‘–,๐‘—โ‰ค3 0โ‰ค๐‘–+๐‘—โ‰ค3

๐‘Ž๐‘–๐‘—๐‘ฅ๐‘–๐‘ฆ๐‘—, (5.17)

where all๐‘Ž๐‘–๐‘— โˆˆRare constants and๐‘‹ โŠ‚R2is the domain which is a polytope. Then๐‘‹is a convex polygon with๐‘šโ‰ฅ3edges and vertices. Every edge is a line segment as well as a facet of๐‘‹and every vertex is an extreme point of๐‘‹.

Again, we only consider the downward closed part. Recall that๐‘‹ห‡๐‘”is the set of all globally convex domain points and๐‘‹ห‡๐‘™is the set of all locally convex domain points. Theoretically, for anyx0 โˆˆint๐‘‹we need only to check if๐‘‡(x0)is valid. However, in practice, this is not easy even for๐‘“ given as in (5.17). Instead of getting valid hyperplanes starting from interior domain points, we pay more attention to those boundary domain points.

Using the result from Section 5.3, the graph of the bivariate polynomial function๐‘“ on a facet of๐‘‹is isomorphic to the graph of a univariate polynomial function on a corresponding projected domain. We show later that finding๐‘‹ห‡๐‘” for univariate polynomial functions with

degreeโ‰ค 3is tractable. Thus we can easily find the set๐‘‹ห‡๐‘”โˆฉ๐œ•๐‘‹ for bivariate polynomial functions with degreeโ‰ค3. In the following we design algorithms which first compute a few hyperplanes that are below๐’ฎover๐‘‹ห‡๐‘”โˆฉ๐œ•๐‘‹. For each of the hyperplanes which are below the boundary of๐’ฎ, we solve a NLP globally either to verify if the hyperplane is valid or to find a valid hyperplane which is parallel to this hyperplane. These NLPs contain only two variables and can be globally solved by SCIP in less than one second.

Going back to our applications, all of these hyperplanes can be found in an offline way, i.e., before we start to solve the MINLPs. For every instance we need only to calculate these hyperplanes once. Every globally solved NLP above yields a tight valid hyperplane.

Remark 5.31

In this section we discuss hyperplanes and graphs of polynomial functions inR3. As before, we use(๐‘ฅ, ๐‘ฆ, ๐‘ง)to denote a point inR3. Similar to Section 5.3, we usex= (๐‘ฅ, ๐‘ฆ)โˆˆR2to denote domain points and use e.g.,x0 = (๐‘ฅ0, ๐‘ฆ0)โˆˆR2 to denote a certain domain point.

For a boundary point(๐‘ฅ, ๐‘ฆ) โˆˆ๐œ•๐‘‹ there exists at least one facet๐น๐‘– of๐‘‹with(๐‘ฅ, ๐‘ฆ) โˆˆ๐น๐‘–. Since๐น๐‘–is a line segment, it must be contained in a line denoted by

{(๐‘ฅ, ๐‘ฆ)|๐‘Ž๐‘–๐‘ฅ+๐‘๐‘–๐‘ฆ+๐‘๐‘– = 0}=: aff{๐น๐‘–},

where๐‘Ž๐‘–, ๐‘๐‘–, ๐‘๐‘– โˆˆ Rare constants and at least one of๐‘Ž๐‘– and๐‘๐‘– is nonzero. Without loss of generality we assume๐‘๐‘– ฬธ= 0(otherwise permute๐‘ฅand๐‘ฆ) and set๐‘๐‘– = 1(otherwise scale๐‘Ž๐‘–, ๐‘๐‘–

and๐‘๐‘–). Facet๐น๐‘–can be then be represented as

๐น๐‘– ={(๐‘ฅ, ๐‘ฆ)|๐‘ฆ=โˆ’๐‘Ž๐‘–๐‘ฅโˆ’๐‘๐‘–, ๐‘ฅโˆˆ[๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ]},

where๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– โˆˆRare constants with๐‘ฅmin๐‘– < ๐‘ฅmax๐‘– . Recalling the definitions in Section 5.3 and using the same notations, we have the projection map

๐‘”๐‘‘: aff{๐น๐‘–} โ†’R,(๐‘ฅ, ๐‘ฆ)โ†ฆโ†’๐‘ฅ and its inverse map

๐‘”๐‘‘โˆ’1 :Rโ†’aff{๐น๐‘–}, ๐‘ฅโ†ฆโ†’

(๏ธƒ ๐‘ฅ

โˆ’๐‘Ž๐‘–๐‘ฅโˆ’๐‘๐‘–

)๏ธƒ

as well as

๐‘“๐‘–(๐‘ฅ) =๐‘“(๐‘ฅ,โˆ’๐‘Ž๐‘–๐‘ฅโˆ’๐‘๐‘–) = โˆ‘๏ธ

0โ‰ค๐‘–,๐‘—โ‰ค3 0โ‰ค๐‘–+๐‘—โ‰ค3

๐‘Ž๐‘–๐‘—๐‘ฅ๐‘–(โˆ’๐‘Ž๐‘–๐‘ฅโˆ’๐‘๐‘–)๐‘— =๐‘Ž๐‘ฅ3+๐‘๐‘ฅ2+๐‘๐‘ฅ+๐‘‘,

where๐‘Ž, ๐‘, ๐‘, ๐‘‘are constants depending on๐‘Ž๐‘–,๐‘๐‘–and all๐‘Ž๐‘–๐‘—. An example has been shown in Figure 5.4 and discussed in Section 5.3.

5.4 Bivariate polynomial functions: a case study

Corollary 5.32

A boundary domain point(๐‘ฅ0, ๐‘ฆ0)on facet๐น๐‘–of๐‘‹is globally convex for๐’ฎ if and only if๐‘ฅ0is globally convex for the graph of๐‘“๐‘–(๐‘ฅ)over[๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ].

Proof. The result is a special case of Theorem 5.12. 2 Let๐‘‹ห‡๐‘–๐‘™ โŠ‚[๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ]denote the set of all locally convex domain points for the graph of ๐‘“๐‘–(๐‘ฅ)and๐‘‹ห‡๐‘–๐‘” โŠ‚๐‘‹ห‡๐‘–๐‘™the set of the globally convex domain points. Note that๐‘‹ห‡๐‘”โˆฉ๐น๐‘– =๐‘”๐‘‘โˆ’1( ห‡๐‘‹๐‘–๐‘”). Thus, finding๐‘‹ห‡๐‘–๐‘”for every๐‘–โˆˆ {1, . . . , ๐‘š}will find๐‘‹ห‡๐‘”โˆฉ๐œ•๐‘‹.

Lemma 5.33

The set of globally convex domain points๐‘‹ห‡๐‘–๐‘” โŠ‚[๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ]has one of the four following forms 1. {๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– },

2. [๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ],

3. [๐‘ฅmin๐‘– , ๐‘ฅmid๐‘– ]โˆช {๐‘ฅmax๐‘– }, 4. {๐‘ฅmin๐‘– } โˆช[๐‘ฅmid๐‘– , ๐‘ฅmax๐‘– ].

In the two latter cases,๐‘ฅmid๐‘– is a constant with๐‘ฅmin๐‘– < ๐‘ฅmid๐‘– < ๐‘ฅmax๐‘– .

Proof. If๐‘Ž= 0, then๐‘“๐‘–(๐‘ฅ)is a convex function (if๐‘โ‰ฅ0) or a concave function (if๐‘โ‰ค0). For this reason, we only need to consider the case๐‘Žฬธ= 0. We first seek the locally convex points๐‘ฅ0 since every globally convex point is also locally convex. Let๐‘“๐‘–(๐‘›)denote the๐‘›th derivative of ๐‘“๐‘–. We have

๐‘“๐‘–(1)(๐‘ฅ) = 3๐‘Ž๐‘ฅ2+ 2๐‘๐‘ฅ+๐‘, ๐‘“๐‘–(2)(๐‘ฅ) = 6๐‘Ž๐‘ฅ+ 2๐‘, ๐‘“๐‘–(3)(๐‘ฅ) = 6๐‘Žฬธ= 0, ๐‘“๐‘–(๐‘›)(๐‘ฅ) = 0for all๐‘›โ‰ฅ4.

Similar to the proof of Lemma 5.5, using Taylorโ€™s Formula, we can easily prove that for any ๐‘ฅโˆˆ(๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ),๐‘ฅis locally convex if๐‘“๐‘–(2)(๐‘ฅ) = 6๐‘Ž๐‘ฅ+ 2๐‘ >0. Note that the extreme points ๐‘ฅmin๐‘– and๐‘ฅmax๐‘– are globally convex and thus locally convex which is implied by Corollary 5.22.

Since๐‘“๐‘–(2)(๐‘ฅ) = 6๐‘Ž๐‘ฅ+ 2๐‘is a monotonic function and has at most one root, depending on the value of๐‘Ž,๐‘ ๐‘ฅmin๐‘– and๐‘ฅmax๐‘– , the set of locally convex domain๐‘‹ห‡๐‘–๐‘™has one of the following four forms:

1. {๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– }, 2. [๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ],

3. [๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž)โˆช {๐‘ฅmax๐‘– },

4. {๐‘ฅmin๐‘– } โˆช(โˆ’๐‘/3๐‘Ž, ๐‘ฅmax๐‘– ].

We now discuss the set๐‘‹ห‡๐‘–๐‘”with the four cases above.

1. It is clear that๐‘‹ห‡๐‘–๐‘” ={๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– }if๐‘‹ห‡๐‘–๐‘™={๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– }.

2. If๐‘‹ห‡๐‘–๐‘™ = [๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ], then๐‘“๐‘–(2)(๐‘ฅ)โ‰ฅ0for all๐‘ฅโˆˆ[๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ]which implies that๐‘“๐‘–(๐‘ฅ) is a convex function with domain[๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ]. Since๐‘“๐‘–(๐‘ฅ)is differentiable, the tangent plane{(๐‘ฅ, ๐‘ฆ)|๐‘ฆ= (3๐‘Ž๐‘ฅ20+ 2๐‘๐‘ฅ0+๐‘)(๐‘ฅโˆ’๐‘ฅ0) +๐‘“๐‘–(๐‘ฅ0)}at point(๐‘ฅ0, ๐‘“๐‘–(๐‘ฅ0))for every ๐‘ฅ0โˆˆ๐น๐‘– is below the graph of๐‘“๐‘–over๐น๐‘–. Hence๐‘‹ห‡๐‘–๐‘” = [๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ].

3. Examples of this case can be seen in Figure 5.14. Note that๐‘‹ห‡๐‘–๐‘” โŠ‚[๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž)โˆช {๐‘ฅmax๐‘– } and{๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– } โŠ‚๐‘‹ห‡๐‘–๐‘”. Theorem 5.8 implies that๐‘ฅ0โˆˆ(๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž)is globally convex if and only if the corresponding tangent plane

๐‘‡๐‘‘(๐‘ฅ0) ={(๐‘ฅ, ๐‘ฆ)|๐‘ฆ= (3๐‘Ž๐‘ฅ20+ 2๐‘๐‘ฅ0+๐‘)(๐‘ฅโˆ’๐‘ฅ0) +๐‘“๐‘–(๐‘ฅ0)}

is valid. Note that ๐‘‡๐‘‘(๐‘ฅ0) is below the graph of ๐‘“๐‘– in [๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž]. With ๐‘‹ห‡๐‘–๐‘” โŠ‚ [๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž)โˆช {๐‘ฅmax๐‘– }, Lemma 5.20 implies that๐‘ฅ0 โˆˆ(๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž)is globally convex if and only if๐‘‡๐‘‘(๐‘ฅ0)is below the point(๐‘ฅmax๐‘– , ๐‘“๐‘–(๐‘ฅmax๐‘– )). Define

๐‘”max(๐‘ฅ) = (3๐‘Ž๐‘ฅ2+ 2๐‘๐‘ฅ+๐‘)(๐‘ฅmax๐‘– โˆ’๐‘ฅ) +๐‘“๐‘–(๐‘ฅ)

such that point (๐‘ฅmax๐‘– , ๐‘”max(๐‘ฅ)) โˆˆ ๐‘‡๐‘‘(๐‘ฅ) for any ๐‘ฅ โˆˆ [๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž]. The tangent plane ๐‘‡๐‘‘(๐‘ฅ0)for๐‘ฅ0 โˆˆ [๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž]is below the point(๐‘ฅmax๐‘– , ๐‘“๐‘–(๐‘ฅmax๐‘– ))if and only if๐‘”max(๐‘ฅ0) โ‰ค ๐‘“๐‘–(๐‘ฅmax๐‘– ). Thus we only need to compare๐‘”max(๐‘ฅ0)and๐‘“๐‘–(๐‘ฅmax๐‘– ). Con-sider the first derivative of๐‘”max(๐‘ฅ)

๐‘”(1)max(๐‘ฅ) = (๐‘ฅmax๐‘– โˆ’๐‘ฅ)(6๐‘Ž๐‘ฅ+ 2๐‘๐‘ฅ)โˆ’(3๐‘Ž๐‘ฅ2+ 2๐‘๐‘ฅ+๐‘) +๐‘“๐‘–(1)(๐‘ฅ)

= (๐‘ฅmax๐‘– โˆ’๐‘ฅ)(6๐‘Ž๐‘ฅ+ 2๐‘๐‘ฅ).

Thus,๐‘”maxis strictly increasing on[๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž)since we have๐‘”(1)max(๐‘ฅ)>0for any๐‘ฅโˆˆ [๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž); similarly๐‘”maxis strictly decreasing on(โˆ’๐‘/3๐‘Ž, ๐‘ฅmax๐‘– )since๐‘”max(1) (๐‘ฅ)<0 for any๐‘ฅโˆˆ[๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž). It is then clear that

๐‘”max(โˆ’๐‘/3๐‘Ž)> ๐‘”max(๐‘ฅmax๐‘– ) =๐‘“๐‘–(๐‘ฅmax๐‘– ).

Now we compare๐‘”max(๐‘ฅmin๐‘– )and๐‘“๐‘–(๐‘ฅmax๐‘– ). If๐‘”max(๐‘ฅmin๐‘– )> ๐‘“๐‘–(๐‘ฅmax๐‘– ), see an example in Figure 5.14a, we have๐‘”max(๐‘ฅ)> ๐‘“๐‘–(๐‘ฅmax๐‘– )for all๐‘ฅโˆˆ(๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž). Hence no point in(๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž)is globally convex, which implies๐‘‹ห‡๐‘–๐‘” ={๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– }.

Otherwise we have๐‘”max(๐‘ฅmin๐‘– )โ‰ค๐‘“๐‘–(๐‘ฅmax๐‘– ), see an example in Figure 5.14b. Consider the strictly increasing function๐‘”max(๐‘ฅ)โˆ’๐‘“๐‘–(๐‘ฅmax๐‘– )over(๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž), with๐‘”max(๐‘ฅmin๐‘– )โˆ’ ๐‘“๐‘–(๐‘ฅmax๐‘– )โ‰ค0and๐‘”max(โˆ’๐‘/3๐‘Ž)โˆ’๐‘“๐‘–(๐‘ฅmax๐‘– )>0. This function has exactly one real root over[๐‘ฅmin๐‘– ,โˆ’๐‘/3๐‘Ž), say๐‘ฅmid๐‘– . Then we have๐‘‹ห‡๐‘–๐‘” = [๐‘ฅmin๐‘– , ๐‘ฅmid๐‘– ]โˆช {๐‘ฅmax๐‘– }if๐‘ฅmin๐‘– < ๐‘ฅmid๐‘– and๐‘‹ห‡๐‘–๐‘” ={๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– }if๐‘ฅmin๐‘– =๐‘ฅmid๐‘– .

5.4 Bivariate polynomial functions: a case study

4. Similar to case3, we need only to know whether the polynomial function of๐‘ฅ (3๐‘Ž๐‘ฅ2+ 2๐‘๐‘ฅ+๐‘)(๐‘ฅmin๐‘– โˆ’๐‘ฅ) +๐‘“๐‘–(๐‘ฅ)

โŸ โž

=:๐‘”min(๐‘ฅ)

โˆ’๐‘“๐‘–(๐‘ฅmin๐‘– )

has a real root over ๐‘ฅ โˆˆ (โˆ’๐‘/3๐‘Ž, ๐‘ฅmax๐‘– ). If the root exists, say ๐‘ฅmid๐‘– , then we have ๐‘‹ห‡๐‘–๐‘” ={๐‘ฅmin๐‘– } โˆช[๐‘ฅmid๐‘– , ๐‘ฅmax๐‘– ]; otherwise, we have๐‘‹ห‡๐‘–๐‘” ={๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– }as well. 2

(a) Case1 (b) Case2

Figure 5.14:Examples for globally and locally convex domain points

Considering the four cases, the set of globally convex points๐‘‹ห‡๐‘–๐‘” โŠ‚[๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ]has either two points, or is an interval plus a point, or an interval. Since the projection function๐‘”โˆ’1๐‘‘ is bijective, the set of globally convex points on๐น๐‘–, denoted by๐‘‹ห‡๐‘”โˆฉ๐น๐‘– =๐‘”โˆ’1๐‘‘ ( ห‡๐‘‹๐‘–๐‘”), also consists of either two extreme points, or is a line segment inR2plus an extreme point, or a line segment inR2. Note that every extreme point of ๐‘‹is globally convex. We call an extreme point an isolated extreme point if it is not contained in a line segment that consists of globally convex boundary domain points only. We then get the following lemma easily.

Lemma 5.34

The set ๐‘‹ห‡๐‘” โˆฉ๐œ•๐‘‹ of globally convex boundary domain points for the graph of ๐‘“(๐‘ฅ, ๐‘ฆ) over the polytope ๐‘‹ โˆˆ R2 is a union of ๐‘š1 line segments and ๐‘š2 isolated extreme points with ๐‘š1, ๐‘š2 โˆˆN0, ๐‘š1 โ‰ค๐‘šand๐‘š2 โ‰ค๐‘š.

Let๐ฟ1, ๐ฟ2, . . . , ๐ฟ๐‘š1 be the๐‘š1line segments andx๐‘’1,x๐‘’2, . . . ,x๐‘’๐‘š2 be the๐‘š2isolated extreme points. With this notation we have

๐‘‹ห‡๐‘”โˆฉ๐œ•๐‘‹ =๐ฟ1โˆช ยท ยท ยท โˆช๐ฟ๐‘š1 โˆช {x๐‘’1, . . . ,x๐‘’๐‘š

2}.

Furthermore, let๐’ฎ๐ฟ๐‘–be the graph of๐‘“(๐‘ฅ, ๐‘ฆ)on๐ฟ๐‘–with

๐’ฎ๐ฟ๐‘– ={(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ง=๐‘“(๐‘ฅ, ๐‘ฆ),(๐‘ฅ, ๐‘ฆ)โˆˆ๐ฟ๐‘–}

Figure 5.15:Hyperplane that intersects๐’ฎ๐ฟ๐‘–,๐’ฎ๐ฟ๐‘— and below them

for every๐‘–โˆˆ {1, . . . , ๐‘š}and let

๐’ฎ๐‘‹๐‘’ ={(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ง=๐‘“(๐‘ฅ, ๐‘ฆ),(๐‘ฅ, ๐‘ฆ)โˆˆ๐‘‹๐‘’}.

In the following, for any(๐‘ฅ0, ๐‘ฆ0)โˆˆ๐ฟ๐‘–, we show that there exists a hyperplane๐ปthrough (๐‘ฅ0, ๐‘ฆ0, ๐‘“(๐‘ฅ0, ๐‘ฆ0))such that๐ปis below๐’ฎ๐ฟ๐‘–over๐‘‹ห‡๐‘”โˆฉ๐œ•๐‘‹. In Lemma 5.36 we have more details included. We show later in Theorem 5.37 that either๐ป is a tight valid hyperplane or a tight valid hyperplane๐ป*can be found very easily which is parallel to๐ป.

To find the hyperplane๐ปwith the properties described above, we first prove Lemma 5.35, which implies that for any๐ฟ๐‘— there exists a hyperplane๐ป๐‘–๐‘— which is below๐’ฎ over๐ฟ๐‘–โˆช๐ฟ๐‘—

with ๐‘–, ๐‘— โˆˆ {1, . . . , ๐‘š1}, ๐‘– ฬธ= ๐‘—. Using this result, we show that a hyperplane ๐ป through (๐‘ฅ0, ๐‘ฆ0, ๐‘“(๐‘ฅ0, ๐‘ฆ0))exists such that๐ปis below๐’ฎ๐ฟ๐‘— for any๐‘—โˆˆ {1, . . . , ๐‘š1}, ๐‘–ฬธ=๐‘—. In addition,

a hyperplane๐ปcan be found that it is below(x๐‘’๐‘˜, ๐‘“(x๐‘’๐‘˜))for any๐‘˜โˆˆ {1, . . . , ๐‘š1}. Lemma 5.35

For any๐ฟ๐‘– and๐ฟ๐‘— with๐‘–, ๐‘— โˆˆ {1, . . . , ๐‘š1}, ๐‘– ฬธ= ๐‘— and for any (๐‘ฅ0, ๐‘ฆ0) โˆˆ ๐ฟ๐‘–, there exists a hyperplane๐ปthrough(๐‘ฅ0, ๐‘ฆ0, ๐‘“(๐‘ฅ0, ๐‘ฆ0))with๐ปโˆฉ ๐’ฎ๐ฟ๐‘— ฬธ=โˆ…and๐ปis below๐’ฎ๐ฟ๐‘–and๐’ฎ๐ฟ๐‘—.

Moreover, such a hyperplane๐ปis unique for any(๐‘ฅ0, ๐‘ฆ0)โˆˆ๐ฟ๐‘–โˆ–๐‘‹๐‘’.

5.4 Bivariate polynomial functions: a case study

Proof. An example is shown in Figure 5.15. The two blue curves are๐’ฎ๐ฟ๐‘– and๐’ฎ๐ฟ๐‘—. We need to find a hyperplane๐ปthrough(๐‘ฅ0, ๐‘ฆ0, ๐‘“(๐‘ฅ0, ๐‘ฆ0))that intersects both๐’ฎ๐ฟ๐‘– and๐’ฎ๐ฟ๐‘— and at the same time๐ปis below them.

For the special case(๐‘ฅ0, ๐‘ฆ0)โˆˆ๐ฟ๐‘—, we can easily check that๐ป =๐‘‡(๐‘ฅ0, ๐‘ฆ0), i.e., the tangent plane at(๐‘ฅ0, ๐‘ฆ0)fulfills all the conditions. In this case๐ป is not unique.

Assume that(๐‘ฅ0, ๐‘ฆ0)ฬธโˆˆ๐ฟ๐‘—. We discuss the case(๐‘ฅ0, ๐‘ฆ0)โˆˆ๐ฟ๐‘–โˆ–๐‘‹๐‘’, e.g.,(๐‘ฅ0, ๐‘ฆ0) = (๐‘ฅ1, ๐‘ฆ1) in Figure 5.15. Corollary 5.13 implies that a hyperplane๐ปthrough(๐‘ฅ0, ๐‘ฆ0, ๐‘“(๐‘ฅ0, ๐‘ฆ0))which is below๐’ฎ๐ฟ๐‘– contains the subtangent plane

ล(๐‘ฅ0, ๐‘ฆ0) =๐‘‡(๐‘ฅ0, ๐‘ฆ0)โˆฉ {(๐‘ฅ, ๐‘ฆ, ๐‘ง)|(๐‘ฅ, ๐‘ฆ)โˆˆaff{๐ฟ๐‘–}} (5.18) which is the lower left green line in Figure 5.15. Denote๐‘ƒ0 = (๐‘ฅ0, ๐‘ฆ0, ๐‘“(๐‘ฅ0, ๐‘ฆ0)). For every point๐‘ƒ๐‘— = (๐‘ฅ๐‘—, ๐‘ฆ๐‘—, ๐‘ง๐‘—) โˆˆ ๐’ฎ๐ฟ๐‘—, we define๐ป(ล(๐‘ฅ0, ๐‘ฆ0), ๐‘ƒ๐‘—) = aff{ล(๐‘ฅ0, ๐‘ฆ0),{๐‘ƒ๐‘—}}which is a hyperplane below๐‘ƒ๐‘—. Similar to the proof of Theorem 5.27, there exists a point๐‘ƒ*โˆˆ ๐’ฎ๐ฟ๐‘— such that๐ป* =๐ป(ล(๐‘ฅ0, ๐‘ฆ0), ๐‘ƒ*)is below๐’ฎ๐ฟ๐‘—. Note that๐ป* is unique since it is associated to the objective value of an optimization problem introduced in Theorem 5.27 which always has an optimum.

Finally, we discuss the case(๐‘ฅ0, ๐‘ฆ0) โˆˆ ๐ฟ๐‘– โˆฉ๐‘‹๐‘’, e.g., (๐‘ฅ0, ๐‘ฆ0) = (๐‘ฅ2, ๐‘ฆ2) in Figure 5.15.

Consider a lineล๐‘™(๐‘ฅ0, ๐‘ฆ0)โŠ‚ {(๐‘ฅ, ๐‘ฆ, ๐‘ง)|(๐‘ฅ, ๐‘ฆ)โˆˆaff{๐ฟ๐‘–}}through(๐‘ฅ0, ๐‘ฆ0, ๐‘“(๐‘ฅ0, ๐‘ฆ0))which is belowล(๐‘ฅ0, ๐‘ฆ0)defined by (5.18) such that(๐‘ฅ, ๐‘ฆ)โˆˆ๐ฟ๐‘–. In the example in Figure 5.15,ล๐‘™(๐‘ฅ0, ๐‘ฆ0) is the red line andล(๐‘ฅ0, ๐‘ฆ0)is the upper right green line. Every hyperplane๐ปwhich contains ล๐‘™(๐‘ฅ0, ๐‘ฆ0)is through(๐‘ฅ0, ๐‘ฆ0, ๐‘“(๐‘ฅ0, ๐‘ฆ0))and below๐’ฎ๐ฟ๐‘–. Similar to the discussion above, there exists a point๐‘ƒ* โˆˆ ๐’ฎ๐ฟ๐‘—such that๐ป*= aff{ล๐‘™(๐‘ฅ0, ๐‘ฆ0),{๐‘ƒ๐‘—}}is below๐’ฎ๐ฟ๐‘—. Note that for every fixed chosenล๐‘™(๐‘ฅ0, ๐‘ฆ0)there exists a unique๐ป*. However, we have infinitely manyล๐‘™(๐‘ฅ0, ๐‘ฆ0)

to choose. 2

Now we discuss how to algorithmically find๐ป which fulfills Lemma 5.35. Note that for (๐‘ฅ0, ๐‘ฆ0)โˆˆ๐ฟ๐‘–โˆฉ๐‘‹๐‘’we may chooseล๐‘™(๐‘ฅ0, ๐‘ฆ0) = ล(๐‘ฅ0, ๐‘ฆ0)which can be computed easily. For any (๐‘ฅ0, ๐‘ฆ0)โˆˆ๐ฟ๐‘–we compute a hyperplane๐ปthat fulfills Lemma 5.35 and satisfies๐ปโŠƒล(๐‘ฅ0, ๐‘ฆ0) which is a line defined in (5.18). This is equivalent to finding a point(๐‘ฅ*, ๐‘ฆ*)โˆˆ๐ฟ๐‘— such that ๐ป = aff{ล(๐‘ฅ0, ๐‘ฆ0),{((๐‘ฅ*, ๐‘ฆ*), ๐‘“(๐‘ฅ*, ๐‘ฆ*))}}is below๐’ฎ๐ฟ๐‘—. Consider the two linesaff{๐ฟ๐‘–}and aff{๐ฟ๐‘—}. They are either not parallel or parallel. Examples for both cases are in Figure 5.16.

As mentioned before, for the case(๐‘ฅ0, ๐‘ฆ0) โˆˆ ๐ฟ๐‘—, we set ๐ป =๐‘‡(๐‘ฅ0, ๐‘ฆ0) and we are done.

Otherwise, let

๐ฟ๐‘– ={(๐‘ฅ, ๐‘ฆ)|๐‘ฆ=๐‘Ž๐‘–๐‘ฅ+๐‘๐‘–, ๐‘ฅโˆˆ[๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ]}

and

๐ฟ๐‘— ={(๐‘ฅ, ๐‘ฆ)|๐‘ฆ=๐‘Ž๐‘—๐‘ฅ+๐‘๐‘—, ๐‘ฅโˆˆ[๐‘ฅmin๐‘— , ๐‘ฅmax๐‘— ]}.

Define ๐‘“๐ฟ๐‘–(๐‘ฅ) = ๐‘“(๐‘ฅ, ๐‘Ž๐‘–๐‘ฅ +๐‘๐‘–) for ๐‘ฅ โˆˆ [๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ]and define๐‘“๐ฟ๐‘—(๐‘ฅ) = ๐‘“(๐‘ฅ, ๐‘Ž๐‘—๐‘ฅ +๐‘๐‘—) for๐‘ฅ โˆˆ [๐‘ฅmin๐‘— , ๐‘ฅmax๐‘— ]. ๐‘“๐ฟ๐‘–(๐‘ฅ)and๐‘“๐ฟ๐‘—(๐‘ฅ) are univariate functions with degree up to3. The

(a)aff{๐ฟ๐‘–}andaff{๐ฟ๐‘—}are not parallel (b)aff{๐ฟ๐‘–}andaff{๐ฟ๐‘—}are parallel Figure 5.16:Two linesaff{๐ฟ๐‘–}andaff{๐ฟ๐‘—}can be parallel or not parallel

lineล๐‘–(๐‘ฅ0, ๐‘ฆ0) = ๐‘‡(๐‘ฅ0, ๐‘ฆ0)โˆฉ {(๐‘ฅ, ๐‘ฆ, ๐‘ง) |(๐‘ฅ, ๐‘ฆ) โˆˆaff{๐ฟ๐‘–}}for๐‘ฅ0 โˆˆ [๐‘ฅmin๐‘– , ๐‘ฅmax๐‘– ]with๐‘ฆ0 = ๐‘Ž๐‘—๐‘ฅ0+๐‘๐‘— can also be represented as

ล๐‘–(๐‘ฅ0, ๐‘ฆ0) ={(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ฅโˆˆR, ๐‘ฆ=๐‘Ž๐‘–๐‘ฅ+๐‘๐‘–, ๐‘ง =๐‘“๐ฟโ€ฒ๐‘–(๐‘ฅ0)(๐‘ฅโˆ’๐‘ฅ0) +๐‘“๐ฟ๐‘–(๐‘ฅ0)}. (5.19) Analogously, for every๐‘ฅ1 โˆˆ[๐‘ฅmin๐‘— , ๐‘ฅmax๐‘— ]and๐‘ฆ1 =๐‘Ž๐‘—๐‘ฅ1+๐‘๐‘—, we get

ล๐‘—(๐‘ฅ1, ๐‘ฆ1) ={(๐‘ฅ, ๐‘ฆ, ๐‘ง)|๐‘ฅโˆˆR, ๐‘ฆ=๐‘Ž๐‘—๐‘ฅ+๐‘๐‘—, ๐‘ง=๐‘“๐ฟโ€ฒ๐‘—(๐‘ฅ1)(๐‘ฅโˆ’๐‘ฅ1) +๐‘“๐ฟ๐‘—(๐‘ฅ1)}.

First we discuss the case thataff{๐ฟ๐‘–}andaff{๐ฟ๐‘—}are not parallel, see an example in Fig-ure 5.16a. Since๐‘Ž๐‘– ฬธ=๐‘Ž๐‘—, the intersection ofaff{๐ฟ๐‘–}andaff{๐ฟ๐‘—}is(๐‘ฅ๐‘–๐‘—, ๐‘ฆ๐‘–๐‘—)with

๐‘ฅ๐‘–๐‘— = ๐‘๐‘—โˆ’๐‘๐‘–

๐‘Ž๐‘–โˆ’๐‘Ž๐‘— and๐‘ฆ๐‘–๐‘— = ๐‘๐‘—๐‘Ž๐‘–โˆ’๐‘๐‘–๐‘Ž๐‘—

๐‘Ž๐‘–โˆ’๐‘Ž๐‘— . Consider the point๐‘ƒ๐‘–๐‘— = (๐‘ฅ๐‘–๐‘—, ๐‘ฆ๐‘–๐‘—, ๐‘ง๐‘–๐‘—)with๐‘ง๐‘–๐‘— =๐‘“๐ฟโ€ฒ

๐‘–(๐‘ฅ0)(๐‘ฅ๐‘–๐‘— โˆ’๐‘ฅ0) +๐‘“๐ฟ๐‘–(๐‘ฅ0). We can check that๐‘ƒ๐‘–๐‘— โˆˆล๐‘–(๐‘ฅ0, ๐‘ฆ0)which implies that๐‘ƒ๐‘–๐‘— โˆˆ๐ปfor every๐ปthat fulfills Lemma 5.35. Since๐ป also intersects๐’ฎ๐ฟ๐‘—, finding๐ปfulfilling Lemma 5.35 is equivalent to finding a point๐‘ƒ* โˆˆ ๐’ฎ๐ฟ๐‘— such thataff{ล๐‘–(๐‘ฅ0, ๐‘ฆ0),{๐‘ƒ*}}is below๐’ฎ๐ฟ๐‘—. Consider the function

๐‘”๐‘—(๐‘ฅ) =๐‘“๐ฟโ€ฒ๐‘—(๐‘ฅ)(๐‘ฅ๐‘–๐‘—โˆ’๐‘ฅ) +๐‘“๐ฟ๐‘—(๐‘ฅ)

for๐‘ฅ โˆˆ [๐‘ฅmin๐‘— , ๐‘ฅmax๐‘— ]. Note that the point (๐‘ฅ1, ๐‘Ž๐‘—๐‘ฅ1 +๐‘๐‘—, ๐‘”๐‘—(๐‘ฅ1))lies in lineล๐‘—(๐‘ฅ1, ๐‘ฆ1) for ๐‘ฅ1 โˆˆ [๐‘ฅmin๐‘— , ๐‘ฅmax๐‘— ]. As we analyzed before by considering the sign of the first derivative, ๐‘”๐‘—(๐‘ฅ)is a strictly decreasing function if ๐‘ฅ๐‘–๐‘— < ๐‘ฅmin๐‘— and is a strictly increasing function if

5.4 Bivariate polynomial functions: a case study

(a) For case๐‘ง๐‘–๐‘—< ๐‘”๐‘—(๐‘ฅmin๐‘— )< ๐‘”๐‘—(๐‘ฅmax๐‘— ) (b) For case๐‘”๐‘—(๐‘ฅmax๐‘— )< ๐‘”๐‘—(๐‘ฅmin๐‘— )< ๐‘ง๐‘–๐‘—

(c) For case๐‘ง๐‘–๐‘—< ๐‘”๐‘—(๐‘ฅmax๐‘— )< ๐‘”๐‘—(๐‘ฅmin๐‘— ) (d) For case๐‘”๐‘—(๐‘ฅmin๐‘— )< ๐‘”๐‘—(๐‘ฅmax๐‘— )< ๐‘ง๐‘–๐‘—

Figure 5.17:Example for the4cases in the proof of Lemma 5.35

๐‘ฅ๐‘–๐‘— > ๐‘ฅmax๐‘— . There are no other cases since๐‘ฅ๐‘–๐‘— ฬธโˆˆ[๐‘ฅmin๐‘— , ๐‘ฅmax๐‘— ]. In both cases we have๐‘”๐‘—(๐‘ฅmin๐‘— )ฬธ=

๐‘”๐‘—(๐‘ฅmax๐‘— ). We compare๐‘ง๐‘–๐‘—,๐‘”๐‘—(๐‘ฅmin๐‘— )and๐‘”๐‘—(๐‘ฅmax๐‘— ). If๐‘ง๐‘–๐‘— is between๐‘”๐‘—(๐‘ฅmin๐‘— )and๐‘”๐‘—(๐‘ฅmax๐‘— ), i.e., ๐‘”๐‘—(๐‘ฅmin๐‘— ) โ‰ค๐‘ง๐‘–๐‘— โ‰ค๐‘”๐‘—(๐‘ฅmax๐‘— )or๐‘”๐‘—(๐‘ฅmax๐‘— ) โ‰ค๐‘ง๐‘–๐‘— โ‰ค๐‘”๐‘—(๐‘ฅmin๐‘— ), then the increasing or decreasing function๐‘”๐‘—(๐‘ฅ)โˆ’๐‘ง๐‘–๐‘— has a unique root๐‘ฅ* โˆˆ[๐‘ฅmin๐‘— , ๐‘ฅmax๐‘— ]with๐‘”๐‘—(๐‘ฅ*)โˆ’๐‘ง๐‘–๐‘— = 0. Note that since ๐‘”๐‘—(๐‘ฅ)is a polynomial function of degree up to3,๐‘ฅ*can be computed very easily. It implies that the lineล๐‘—(๐‘ฅ*, ๐‘ฆ*)with๐‘ฆ* =๐‘Ž๐‘—๐‘ฅ*+๐‘๐‘—contains also๐‘ƒ๐‘–๐‘— and

๐ป = aff{ล๐‘–(๐‘ฅ0, ๐‘ฆ0),ล๐‘—(๐‘ฅ*, ๐‘ฆ*)}

is a hyperplane which fulfills Lemma 5.35.

Otherwise, if๐‘ง๐‘–๐‘— is not between๐‘”๐‘—(๐‘ฅmin๐‘— )and๐‘”๐‘—(๐‘ฅmax๐‘— ), we have the following four cases 1. ๐‘ง๐‘–๐‘— < ๐‘”๐‘—(๐‘ฅmin๐‘— )< ๐‘”๐‘—(๐‘ฅmax๐‘— ),

2. ๐‘”๐‘—(๐‘ฅmax๐‘— )< ๐‘”๐‘—(๐‘ฅmin๐‘— )< ๐‘ง๐‘–๐‘—,

3. ๐‘ง๐‘–๐‘— < ๐‘”๐‘—(๐‘ฅmax๐‘— )< ๐‘”๐‘—(๐‘ฅmin๐‘— ), 4. ๐‘”๐‘—(๐‘ฅmin๐‘— )< ๐‘”๐‘—(๐‘ฅmax๐‘— )< ๐‘ง๐‘–๐‘—.

Examples for the four cases are shown in Figure 5.17. In the first two cases we set ๐‘ƒ*= (๐‘ฅmin๐‘— , ๐‘Ž๐‘—๐‘ฅmin๐‘— +๐‘๐‘—, ๐‘“๐ฟ๐‘—(๐‘ฅmin๐‘— )).

In the last two cases we set

๐‘ƒ* = (๐‘ฅmax๐‘— , ๐‘Ž๐‘—๐‘ฅmax๐‘— +๐‘๐‘—, ๐‘“๐ฟ๐‘—(๐‘ฅmax๐‘— )).

For all four cases, the lineaff{๐‘ƒ*, ๐‘ƒ๐‘–๐‘—}, shown as the red line in the corresponding subgraphs, is below๐’ฎ๐ฟ๐‘— (the corresponding blue curve). We then have ๐ป = aff{ล๐‘–(๐‘ฅ0, ๐‘ฆ0),{๐‘ƒ*}} โŠƒ aff{๐‘ƒ*, ๐‘ƒ๐‘–๐‘—}which fulfills Lemma 5.35 and is the hyperplane we are looking for.

Now it only remains to discuss the case thataff{๐ฟ๐‘–}andaff{๐ฟ๐‘—}are parallel, see an example in Figure 5.16b. Note that ๐‘Ž๐‘– = ๐‘Ž๐‘— and for any ๐‘ฅ1 โˆˆ [๐‘ฅmin๐‘— , ๐‘ฅmax๐‘— ] with ๐‘ฆ1 = ๐‘Ž๐‘—๐‘ฅ1 +๐‘๐‘—, the red line in the corresponding subgraphs, is below๐’ฎ๐ฟ๐‘— (the corresponding blue curve). Thus ๐ป= aff{ล๐‘–(๐‘ฅ0, ๐‘ฆ0),{๐‘ƒ*}}fulfills the requirements of Lemma 5.35 and is the hyperplane we solving a system of linear equations. The algorithm is summarized in Algorithm 5.1.

Define๐œ•๐’ฎ = {(๐‘ฅ, ๐‘ฆ, ๐‘ง) |(๐‘ฅ, ๐‘ฆ) โˆˆ ๐œ•๐‘‹, ๐‘ง = ๐‘“(๐‘ฅ, ๐‘ฆ)}and for each๐‘–โˆˆ {1, . . . , ๐‘š}and the corresponding facet๐น๐‘–we further define๐’ฎ๐น๐‘– ={(๐‘ฅ, ๐‘ฆ, ๐‘ง)|(๐‘ฅ, ๐‘ฆ)โˆˆ๐น๐‘–, ๐‘ง=๐‘“(๐‘ฅ, ๐‘ฆ)}.

Lemma 5.36

For any๐ฟ๐‘– โŠ‚ ๐‘‹ห‡๐‘”โˆฉ๐œ•๐‘‹ with๐‘–โˆˆ {1, . . . , ๐‘š1}and for any(๐‘ฅ0, ๐‘ฆ0) โˆˆ๐ฟ๐‘– โŠ‚ ๐น๐‘–, there exists a hyperplane๐ป

5.4 Bivariate polynomial functions: a case study

Algorithm 5.1:Algorithm that computes a hyperplane that intersects๐’ฎ๐ฟ๐‘–,๐’ฎ๐ฟ๐‘—and is below them

(a) For the case๐‘“๐ฟโ€ฒ๐‘–(๐‘ฅ0)< ๐‘“๐ฟโ€ฒ๐‘—(๐‘ฅmin๐‘— ) (b) For the case๐‘“๐ฟโ€ฒ๐‘–(๐‘ฅ0)> ๐‘“๐ฟโ€ฒ๐‘—(๐‘ฅmax๐‘— ) Figure 5.18:Two cases by๐‘“๐ฟโ€ฒ

๐‘–(๐‘ฅ0)ฬธโˆˆ[๐‘“๐ฟโ€ฒ

๐‘—(๐‘ฅmin๐‘— ), ๐‘“๐ฟโ€ฒ

๐‘—(๐‘ฅmax๐‘— )] in Algorithm 5.1

1. either with๐ป=๐‘‡(๐‘ฅ0, ๐‘ฆ0) 2. or with(๐ปโˆฉ๐œ•๐’ฎ)โˆ– ๐’ฎ๐น๐‘– ฬธ=โˆ…

such that๐ป โŠƒล๐‘–(๐‘ฅ0, ๐‘ฆ0). In addition,๐ปis below๐’ฎover(๐‘ฅ, ๐‘ฆ)โˆˆ๐‘‹ห‡๐‘”โˆฉ๐œ•๐‘‹. Proof. We develop an algorithm to find the hyperplane๐ป.

Denote aff{๐น๐‘–} = {(๐‘ฅ, ๐‘ฆ) | ๐‘Ž๐‘–๐‘ฅ+๐‘๐‘–๐‘ฅ = ๐‘๐‘–} with three constants ๐‘Ž๐‘–, ๐‘๐‘–, ๐‘๐‘– โˆˆ R. Since ๐น๐‘– is a facet of๐‘‹, we have๐‘‹ โŠ‚ {(๐‘ฅ, ๐‘ฆ) | ๐‘Ž๐‘–๐‘ฅ+๐‘๐‘–๐‘ฅ โ‰ฅ ๐‘๐‘–}or๐‘‹ โŠ‚ {(๐‘ฅ, ๐‘ฆ) | ๐‘Ž๐‘–๐‘ฅ+๐‘๐‘–๐‘ฅ โ‰ค ๐‘๐‘–}. Lemma 5.18 implies that for any two nonvertical ๐ป1, ๐ป2 with ๐ป1 โŠƒ ล๐‘–(๐‘ฅ0, ๐‘ฆ0) and ๐ป2 โŠƒ ล๐‘–(๐‘ฅ0, ๐‘ฆ0), either ๐ป1 is below ๐ป2 over ๐‘‹ or๐ป2 is below ๐ป1 over ๐‘‹. Recall that ๐‘‹ห‡๐‘”โˆฉ๐œ•๐‘‹ =๐ฟ1โˆช ยท ยท ยท โˆช๐ฟ๐‘š1โˆช {x๐‘’1, . . . ,x๐‘’๐‘š2}. For every๐ฟ๐‘— with๐‘—ฬธ=๐‘–and๐‘— โˆˆ {1, . . . , ๐‘š1}, compute๐ป๐‘—๐ฟ = ๐ป((๐‘ฅ0, ๐‘ฆ0), ๐ฟ๐‘–, ๐ฟ๐‘—)as output of Algorithm 5.1. For everyx๐‘’๐‘— with x๐‘—๐‘’ ฬธโˆˆ ๐น๐‘–

and๐‘— โˆˆ {1, . . . , ๐‘š2}, compute๐ป๐‘—๐‘’ = aff{ล๐‘–(๐‘ฅ0, ๐‘ฆ0),{(x๐‘—๐‘’, ๐‘“(x๐‘’๐‘—))}}which is a nonvertical hyperplane since(x๐‘’๐‘—, ๐‘“(x๐‘’๐‘—))ฬธโˆˆล๐‘–(๐‘ฅ0, ๐‘ฆ0)andx๐‘’๐‘— ฬธโˆˆ๐น๐‘–. Consider the set

โ„‹(๐‘ฅ0, ๐‘ฆ0) ={๐ป๐‘—๐ฟ|๐‘—ฬธ=๐‘–, ๐‘—โˆˆ {1, . . . , ๐‘š1}} โˆช {๐ป๐‘—๐‘’|x๐‘’๐‘— ฬธโˆˆ๐น๐‘–, ๐‘— โˆˆ {1, . . . , ๐‘š2}}

of finitely many hyperplanes that all containล๐‘–(๐‘ฅ0, ๐‘ฆ0). There exists๐ป* โˆˆ โ„‹(๐‘ฅ0, ๐‘ฆ0)such that๐ป*is below๐ปover๐‘‹for every๐ป โˆˆ โ„‹(๐‘ฅ0, ๐‘ฆ0). The hyperplane๐ป*is below๐’ฎ๐น๐‘– since ล๐‘–(๐‘ฅ0, ๐‘ฆ0)โŠ‚๐ป*which is below๐’ฎ๐น๐‘–. The hyperplane๐ป*is below every๐’ฎ๐น๐‘— with๐‘— ฬธ=๐‘–since ๐ป*is below๐ป๐‘—๐ฟover๐น๐‘— โŠ‚๐‘‹and๐ป๐‘—๐ฟis below๐’ฎ๐น๐‘—. Similarly,๐ป*is below every(x๐‘’๐‘—, ๐‘“(x๐‘’๐‘—)) since๐ป*is below๐ป๐‘—๐‘’over๐‘‹ โˆ‹x๐‘’๐‘—. Thus๐ป*is below๐’ฎover(๐‘ฅ, ๐‘ฆ)โˆˆ๐‘‹ห‡๐‘”โˆฉ๐œ•๐‘‹.

5.4 Bivariate polynomial functions: a case study

If๐ป* =๐ป๐‘˜๐ฟfor some๐‘˜โˆˆ {1, . . . , ๐‘š1}, Algorithm 5.1 implies that either๐ป* =๐‘‡(๐‘ฅ0, ๐‘ฆ0) or there exists a pointx๐‘˜โˆˆ๐ฟ๐‘˜withx๐‘˜ฬธโˆˆ๐น๐‘–and(x๐‘˜, ๐‘“(x๐‘˜))โˆˆ๐ป*. Otherwise if๐ป* =๐ป๐‘˜๐‘’, there exists a pointx๐‘˜โˆˆ๐‘‹๐‘’withx๐‘˜ ฬธโˆˆ๐น๐‘–and(x๐‘˜, ๐‘“(x๐‘˜))โˆˆ๐ป*.

In all cases either๐ป =๐‘‡(๐‘ฅ0, ๐‘ฆ0)or(x๐‘˜, ๐‘“(x๐‘˜))โˆˆ(๐ปโˆฉ๐œ•๐’ฎ)โˆ– ๐’ฎ๐น๐‘– ฬธ=โˆ…. 2 Theorem 5.37

For any๐ฟ๐‘– โŠ‚๐‘‹ห‡๐‘”โˆฉ๐œ•๐‘‹ with๐‘–โˆˆ {1, . . . , ๐‘š1}and for any(๐‘ฅ0, ๐‘ฆ0)โˆˆ๐ฟ๐‘– โŠ‚๐น๐‘–, a hyperplane๐ป* which fulfills Lemma 5.36 is either a tight valid hyperplane or there exists a tight valid hyperplane ๐ป**which is parallel to๐ป*. Furthermore,๐ป*is always a tight valid hyperplane if the Hessian matrix is negative semidefinite, i.e., it satisfies

๐ป(๐‘“)(๐‘ฅ, ๐‘ฆ) = (๏ธƒ ๐œ•2

๐œ•๐‘ฅ2๐‘“ ๐œ•๐‘ฅ๐œ•๐‘ฆ๐œ•2 ๐‘“

๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ๐‘“ ๐œ•๐‘ฆ๐œ•22๐‘“ )๏ธƒ

โชฏ0 (5.20)

for all(๐‘ฅ, ๐‘ฆ)โˆˆint๐‘‹.

Proof. Denote ๐ป* = {(๐‘ฅ, ๐‘ฆ, ๐‘ง) | ๐‘ง = ๐‘Ž๐‘–๐‘ฅ +๐‘๐‘–๐‘ฆ +๐‘๐‘–}with ๐‘Ž๐‘–, ๐‘๐‘–, ๐‘๐‘– โˆˆ R. Consider the optimization problem

min

(๐‘ฅ,๐‘ฆ)โˆˆ๐‘‹๐‘“(๐‘ฅ, ๐‘ฆ)โˆ’(๐‘Ž๐‘–๐‘ฅ+๐‘๐‘–๐‘ฆ+๐‘๐‘–) (OPmin๐ป*) that has a minimum๐‘ง*, since๐‘‹is a compact set and๐‘“(๐‘ฅ, ๐‘ฆ)โˆ’(๐‘Ž๐‘–๐‘ฅ+๐‘๐‘–๐‘ฆ+๐‘๐‘–)is a continuous function. Note that๐‘ง* โ‰ค0since๐’ฎ โˆฉ๐ป*ฬธ=โˆ…. The hyperplane๐ป*is valid if and only if๐‘ง* = 0. The maximally valid subtangent plane๐‘‡๐ปmax(๐‘ฅ0, ๐‘ฆ0)isล๐‘–(๐‘ฅ0, ๐‘ฆ0)and there exists another point (๐‘ฅ1, ๐‘ฆ1, ๐‘ง1)โˆˆ ๐’ฎ โˆฉ๐ป*with(๐‘ฅ1, ๐‘ฆ1, ๐‘ง1)ฬธโˆˆaff{ล๐‘–(๐‘ฅ0, ๐‘ฆ0)}. Recalling the definition of tight valid

hyperplanes in Section 5.3, we have

aff{ล๐‘–(๐‘ฅ0, ๐‘ฆ0),{(๐‘ฅ1, ๐‘ฆ1, ๐‘ง1)}} โŠ‚aff{๏ธ๐‘‡๐ปmax* (x0) : for allx0โˆˆ๐‘‹๐ป*}๏ธ=:๐‘†๐ป* which implies

2 = dim aff{ล๐‘–(๐‘ฅ0, ๐‘ฆ0),{(๐‘ฅ1, ๐‘ฆ1, ๐‘ง1)}} โ‰คdim๐‘†๐ป* โ‰ค2.

Hence๐‘†๐ป* is a hyperplane which implies๐ป*is a tight valid hyperplane. Otherwise we have ๐‘ง* <0with solution(๐‘ฅ*, ๐‘ฆ*). Note that(๐‘ฅ*, ๐‘ฆ*)must be an interior point of๐‘‹ since๐ป*is below๐’ฎover๐‘‹ห‡๐‘”โˆฉ๐œ•๐‘‹. We have then๐‘‡(๐‘ฅ*, ๐‘ฆ*) =๐‘Ž๐‘–๐‘ฅ+๐‘๐‘–๐‘ฆ+๐‘๐‘–+๐‘ง*which is a tight valid hyperplane and is parallel to๐ป*.

Every globally convex interior point is also a locally convex interior point. According to [Edw94] and Lemma 5.5, (๐‘ฅ0, ๐‘ฆ0)satisfies๐ป(๐‘“)(๐‘ฅ0, ๐‘ฆ0) โชฐ 0. If (5.20) is satisfied for all (๐‘ฅ, ๐‘ฆ) โˆˆ int๐‘‹ then we have๐‘‹ห‡๐‘” โˆฉint๐‘‹ = โˆ… which implies that ๐ป* is below ๐’ฎ over๐‘‹ห‡๐‘”. Lemma 5.20 implies that๐ป*is valid. As we discussed above,๐ป* is tight if it is valid. 2

The hyperplanes fulfilling Lemma 5.36 arepotentiallytight valid hyperplanes since we only need to check if the corresponding optimization problem (OPmin๐ป*) has the minimum๐‘ง* = 0. Until now we have only consideredpotentiallytight valid hyperplanes that containล๐‘–(๐‘ฅ0, ๐‘ฆ0)for an(๐‘ฅ0, ๐‘ฆ0)in an๐ฟ๐‘–. In order to show that there exists otherpotentiallytight valid hyperplanes ๐ปwhich are below๐‘“(๐‘ฅ, ๐‘ฆ)over๐‘‹ห‡๐‘”โˆฉ๐œ•๐‘‹we give the following definition.

Definition 5.38 (Potentially tight valid hyperplanes of type๐ดand type๐ต)

A hyperplane which fulfills Lemma 5.36 is apotentially tightvalid hyperplanes oftype๐ด. A hyperplane๐ปis apotentially tightvalid hyperplane oftype๐ตif

โ€ข ๐ป is below๐‘“(๐‘ฅ, ๐‘ฆ)over๐‘‹ห‡๐‘”โˆฉ๐œ•๐‘‹,

โ€ข it satisfies๐œ‹x(๐ปโˆฉ๐œ•๐’ฎ)โŠ‚๐‘‹๐‘’and|๐ปโˆฉ๐œ•๐’ฎ| โ‰ฅ3and

โ€ข there does not exist๐ฟ๐‘– withx๐‘’โˆˆ๐ฟ๐‘–andx๐‘’โˆˆ๐œ‹x(๐ปโˆฉ๐œ•๐’ฎ)such that๐ปโŠƒล๐‘–(x๐‘’). Due to the last condition in the definition of potentially tight valid hyperplanes of type๐ต, the set of potentially tight valid hyperplanes of type๐ดand the set of type๐ตare disjoint.

Corollary 5.39

Let๐ป*be a potentially tight valid hyperplane of type๐ต. Then๐ป*is either a tight valid hyperplane or there exists a tight valid hyperplane๐ป**which is parallel to๐ป*. Furthermore,๐ป*is always a tight valid hyperplane if every(๐‘ฅ, ๐‘ฆ)โˆˆint๐‘‹satisfies (5.20).

Proof. The proof is the same as the proof of Theorem 5.37. 2 Now we discuss how to compute potentially tight valid hyperplanes๐ป**of type๐ต algo-rithmically. Note that every such๐ปsatisfies๐œ‹x(๐ปโˆฉ๐œ•๐’ฎ)โŠ‚๐‘‹๐‘’and|๐ปโˆฉ๐œ•๐’ฎ| โ‰ฅ3. As every three pointsx๐‘–,x๐‘—,x๐‘˜ โˆˆ๐‘‹๐‘’ with1 โ‰ค๐‘– < ๐‘— < ๐‘˜ โ‰ค ๐‘šdo not lie on a same line, it implies that๐ป๐‘–๐‘—๐‘˜= aff{(x๐‘–, ๐‘“(x๐‘–),(x๐‘—, ๐‘“(x๐‘—),(x๐‘˜, ๐‘“(x๐‘˜)}is a hyperplane. There are(๏ธ€๐‘š3)๏ธ€such hyper-planes๐ป๐‘–๐‘—๐‘˜. We can easily prove that a given๐ป๐‘–๐‘—๐‘˜is a potentially tight valid hyperplane๐ป**

of type๐ตif and only if

โ€ข for everyx๐‘™ โˆˆ๐‘‹๐‘’,๐ป๐‘–๐‘—๐‘˜is below(x๐‘™, ๐‘“(x๐‘™));

โ€ข for every๐ฟ๐‘–,๐ป๐‘–๐‘—๐‘˜is below๐’ฎ๐ฟ๐‘–, for this we need only to compare the curve๐’ฎ๐ฟ๐‘–defined by a polynomial of degree up to3and the line segment๐ป๐‘–๐‘—๐‘˜โˆฉ {(x, ๐‘ง)|xโˆˆ๐ฟ๐‘–};

โ€ข for any๐ฟ๐‘˜containingx๐‘ ,๐‘ โˆˆ {๐‘–, ๐‘—, ๐‘˜}, check if it fulfillsล๐‘–(x๐‘™)ฬธโŠ‚๐ป๐‘–๐‘—๐‘˜.

All the three conditions above can be checked easily. Thus we design Algorithm 5.3 to compute potentially tight valid hyperplanes of type๐ต.

The proof of Lemma 5.36 describes an algorithm to compute the unique potentially tight valid hyperplane๐ป* of type๐ดthat containsล๐‘–(x0), denoted by๐ป*(x0, ๐ฟ๐‘–). Note that we cannot omit๐ฟ๐‘– in the notation since there may existx๐‘˜ โˆˆ๐‘‹๐‘’withx๐‘˜ โˆˆ๐ฟ๐‘–,x๐‘˜ โˆˆ๐ฟ๐‘—,๐‘–ฬธ=๐‘—

5.5 Computational results

and๐ป*(x๐‘˜, ๐ฟ๐‘–) ฬธ= ๐ป*(x๐‘˜, ๐ฟ๐‘—). For anyx1 โˆˆ ๐ฟ๐‘— withx1 ฬธ= x0,๐ป*(x0, ๐ฟ๐‘–) = ๐ป*(x1, ๐ฟ๐‘—) if and only if๐ป*(x0, ๐ฟ๐‘–) โŠƒ ล๐‘—(x1). On the other hand, for every three pointsx๐‘–,x๐‘—,x๐‘˜ โˆˆ ๐‘‹๐‘’, we use the algorithm above to check if๐ป๐‘–๐‘—๐‘˜ = aff{(x๐‘–, ๐‘“(x๐‘–),(x๐‘—, ๐‘“(x๐‘—),(x๐‘˜, ๐‘“(x๐‘˜)}

is a potentially tight valid hyperplane ๐ป** of type๐ต. If yes, denote it by๐ป**(๐‘–, ๐‘—, ๐‘˜). Let x๐‘–โ€ฒ,x๐‘—โ€ฒ,x๐‘˜โ€ฒ โˆˆ ๐‘‹๐‘’be three points such that๐ป๐‘–โ€ฒ๐‘—โ€ฒ๐‘˜โ€ฒ is a potentially tight valid hyperplane of type๐ตwith{x๐‘–โ€ฒ,x๐‘—โ€ฒ,x๐‘˜โ€ฒ} ฬธ={x๐‘–,x๐‘—,x๐‘˜}. Then๐ป**(๐‘–, ๐‘—, ๐‘˜) =๐ป**(๐‘–โ€ฒ, ๐‘—โ€ฒ, ๐‘˜โ€ฒ)if and only if all the points{(x๐‘™, ๐‘“(x๐‘™))|๐‘™โˆˆ {๐‘–, ๐‘—, ๐‘˜, ๐‘–โ€ฒ, ๐‘—โ€ฒ, ๐‘˜โ€ฒ}}are on a same hyperplane.

Definition 5.40 (Tight valid hyperplanes of type๐ดand type๐ต)

A tight valid hyperplane๐ป*is a tight valid hyperplane of type๐ดif๐ป* is also a potentially tight valid hyperplane of type๐ดor๐ป* is parallel to a potentially tight valid hyperplanes of type๐ด. Similarly, a tight valid hyperplane๐ป**is a tight valid hyperplane of type๐ตif๐ป**is also a potentially tight valid hyperplane of type๐ตor๐ป**is parallel to a potentially tight valid hyperplane of type๐ต.

For any๐‘–โˆˆ {1, . . . , ๐‘š1}, let๐‘‹๐‘– โŠ‚๐ฟ๐‘–be a set of finitely many points. Algorithm 5.2 computes a set of tight valid hyperplanes of type๐ด. Let๐‘2 โˆˆNbe the upper bound of the number of tight valid hyperplanes of type๐ตwe want to have. Algorithm 5.3 computes a set of tight valid hyperplanes of type๐ต.

5.5 Computational results

Recall the complete MINLP model (2.26) introduced in Section 2.1. All nonlinearities and integrality conditions can be handled by the solver SCIP directly. Note that in that model, we just consider pumps with fixed speed because of the two real-world instances introduced in Section 3.3.

In many water supply networks, there are variable speed pumps. For them the character-istic diagrams often involve the relative speed๐œ”. In [Hae08; Kol11], the pressure increase is approximated by

ฮ”โ„Ž๐‘๐‘ก=๐œ”2๐‘๐‘ก๐›ผ0๐‘โˆ’๐œ”๐‘๐‘ก๐›ผ1๐‘๐‘„๐‘๐‘กโˆ’๐›ผ2๐‘๐‘„2๐‘๐‘ก, (5.21) where๐›ผ0๐‘,๐›ผ1๐‘and๐›ผ2๐‘are constants derived from the characteristic curve for pump๐‘.

Figure 5.19 shows the characteristic curves for pump๐‘with variable speed, in cases of๐œ”1= 1, ๐œ”1 = 0.8and๐œ”1 = 0.6.

Similar to (2.23), the power consumption of pump๐‘can be approximated as

๐ถ๐‘๐‘ก= ๐œ…๐‘ก๐œŒ๐‘”ฮ”โ„Ž๐‘๐‘ก๐‘„๐‘๐‘ก

๐œ‚๐‘๐‘ก =

๐œ…๐‘ก๐œŒ๐‘”(๏ธ๐œ”๐‘๐‘ก2๐›ผ0๐‘๐‘„๐‘๐‘กโˆ’๐œ”๐‘๐‘ก๐›ผ1๐‘๐‘„2๐‘๐‘กโˆ’๐›ผ2๐‘๐‘„3๐‘๐‘ก)๏ธ

๐œ‚๐‘๐‘ก(๐‘„๐‘๐‘ก, ๐œ”๐‘๐‘ก) =:๐‘”(๐‘„๐‘๐‘ก, ๐œ”๐‘๐‘ก) (5.22) Note that the efficiency๐œ‚๐‘๐‘กalso depends on๐‘„๐‘๐‘กand๐œ”๐‘๐‘กand there exists a function to present it, hence there exists a function๐‘”(๐‘„๐‘๐‘ก, ๐œ”๐‘๐‘ก)to approximate๐ถ๐‘๐‘ก.

Algorithm 5.2:Algorithm that computes a set of tight valid hyperplanes of type๐ด Input: A polynomial function in form (5.17), polytope๐‘‹ โŠ‚R2as the domain set, the

corresponding๐ฟ1, ๐ฟ2, . . . , ๐ฟ๐‘š1 and{x๐‘’1, . . . ,x๐‘’๐‘š

2}, point sets๐‘‹1, ๐‘‹2, . . . , ๐‘‹๐‘š1 Output: Setโ„‹๐ดof tight valid hyperplanes for๐’ฎ

1 Initializeโ„‹๐ด=โ„‹* =โˆ…

21 ifeveryxint๐‘‹satisfies (5.20)then

22 Setโ„‹๐ด=โ„‹*

5.5 Computational results

Algorithm 5.3:Algorithm that computes a set of tight valid hyperplanes of type๐ต Input: A polynomial function in form (5.17), domain set๐‘‹ โŠ‚R2and๐‘2โˆˆN Output: A setโ„‹of up to๐‘2tight (downward closed) valid hyperplanes for๐’ฎ

1 Initializeโ„‹๐ต=โ„‹**=โˆ…

Figure 5.19:Example of characteristic curve for a pump with variable speed

Our solver SCIP can solve general nonconvex MIQCP [VG18; BHV12]. As a consequence, constraints consisting of any polynomial function can be handled by SCIP, e.g., by substituting them recursively until they contain only nonlinear terms in form of๐‘ฅยท๐‘ฆor๐‘ฅ2.1

To enable that SCIP can handle the constraints like (5.22), we try to approximate function๐‘” with a polynomial function. Note that characteristic diagrams are usually given by the vendor with a set of measured points.

For polynomial fitting, on the one hand, we want to keep the degree of polynomials as low as possible. This is very helpful for the outer-approximation algorithms. On the other hand, the degree of polynomials should be high enough so that the approximation error is acceptable.

For the computation we got a third real-world instance from Tsinghua University, Department of Hydraulic Engineering. Figure 5.20 shows a small water supply networkn9p3a11in the

For the computation we got a third real-world instance from Tsinghua University, Department of Hydraulic Engineering. Figure 5.20 shows a small water supply networkn9p3a11in the