• Keine Ergebnisse gefunden

5. Chapter: General discussion

5.5. Conclusions and Outlook

Technological advances in the field of proteomic research such as high-throughput analysis of proteins using LC-MS/MS enabled us to provide large data sets of proteins expressed by MAP during clinical stages of disease in naturally infected cows. Moreover, proteins significantly higher expressed in two mucosa-derived MAP strains compared to their respective culture-derived counterparts are assumed to provide molecular hints to the physiological adaptation during the intracellular life cycle of these mycobacteria. Based on the results we hypothesized that the metabolic activity in the host is based of a “shared principle type” using a large variety of substrates available.

Despite the progress, we are still at the beginning of understanding the complex interplay between host factors inducing bacterial protein expression and their contribution to pathogenesis of mycobacterial infections. Nevertheless, this study provides strong the confirmatory evidence for many aspects of in vivo-metabolism of MAP and other pathogenic mycobacteria, especially M. tuberculosis, previously only obtained from cell culture and mouse infection experiments. Also, we could confirm and expand data obtained by other

groups investigating gene and protein expression of MAP during natural infection or exposure to host-related stressors such as hypoxia, oxidative or nitrosative burst and nutrient starvation.

Furthermore, this study provides novel targets for future work in diagnostics and vaccination.

In the future additional studies have do be performed in order to prove our hypothesis of a

“shared principle type” metabolism of MAP during growth inside the host, and the potential diagnostic value of the antigens has to be investigated.

Chapter 5 - General discussion

114 Reference List

Bahk, Y. Y., Kim, S. A., Kim, J. S., Euh, H. J., Bai, G. H., Cho, S. N. & Kim, Y. S. (2004). Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics 4, 3299-3307.

Chang, J. C., Miner, M. D., Pandey, A. K., Gill, W. P., Harik, N. S., Sassetti, C. M. & Sherman, D. R.

(2009). igr Genes and Mycobacterium tuberculosis cholesterol metabolism. J Bacteriol 191, 5232-5239.

Chen, G. & Pramanik, B. N. (2009). Application of LC/MS to proteomics studies: current status and future prospects. Drug Discov Today 14, 465-471.

Choy, E., Whittington, R. J., Marsh, I., Marshall, J. & Campbell, M. T. (1998). A method for purification and characterisation of Mycobacterium avium subsp. paratuberculosis from the intestinal mucosa of sheep with Johne's disease. Vet Microbiol 64, 51-60.

Cossu, D., Cocco, E., Paccagnini, D., Masala, S., Ahmed, N., Frau, J., Marrosu, M. G. & Sechi, L. A.

(2011). Association of Mycobacterium avium subsp. paratuberculosis with multiple sclerosis in Sardinian patients. PLoS One 6, e18482.

Dautel F., Kalkhof S., Lehmann I., Beyer A. & von Bergen M (2011). Large-scale 2-D DIGE studies - guidelines to overcome pitfalls and challenges along the experimental procedure. JOURNAL OF INTEGRATED OMICS 1, 170-179.

de Carvalho, L. P., Fischer, S. M., Marrero, J., Nathan, C., Ehrt, S. & Rhee, K. Y. (2010). Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol 17, 1122-1131.

de Lima, C. S., Marques, M. A., Debrie, A. S., Almeida, E. C., Silva, C. A., Brennan, P. J., Sarno, E. N., Menozzi, F. D. & Pessolani, M. C. (2009). Heparin-binding hemagglutinin (HBHA) of Mycobacterium leprae is expressed during infection and enhances bacterial adherence to epithelial cells. FEMS Microbiol Lett 292, 162-169.

Delogu, G. & Brennan, M. J. (1999). Functional domains present in the mycobacterial hemagglutinin, HBHA.

Journal of Bacteriology 181, 7464-7469.

Dick, T., Manjunatha, U., Kappes, B. & Gengenbacher, M. (2010). Vitamin B6 biosynthesis is essential for survival and virulence of Mycobacterium tuberculosis. Mol Microbiol 78, 980-988.

Egan, S., Lanigan, M., Shiell, B., Beddome, G., Stewart, D., Vaughan, J. & Michalski, W. P. (2008). The recovery of Mycobacterium avium subspecies paratuberculosis from the intestine of infected ruminants for proteomic evaluation. J Microbiol Methods 75, 29-39.

Ehrenshaft, M., Bilski, P., Li, M. Y., Chignell, C. F. & Daub, M. E. (1999). A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis. Proc Natl Acad Sci U S A 96, 9374-9378.

Friedman, D. B., Wang, S. E., Whitwell, C. W., Caprioli, R. M. & Arteaga, C. L. (2007). Multivariable difference gel electrophoresis and mass spectrometry: a case study on transforming growth factor-beta and ERBB2 signaling. Mol Cell Proteomics 6, 150-169.

Griffin, J. E., Gawronski, J. D., Dejesus, M. A., Ioerger, T. R., Akerley, B. J. & Sassetti, C. M. (2011).

High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7, e1002251.

Grove, H., Faergestad, E. M., Hollung, K. & Martens, H. (2009). Improved dynamic range of protein quantification in silver-stained gels by modelling gel images over time. Electrophoresis 30, 1856-1862.

Gu, S., Chen, J., Dobos, K. M., Bradbury, E. M., Belisle, J. T. & Chen, X. (2003). Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Mol Cell Proteomics 2, 1284-1296.

Gumber, S., Taylor, D. L., Marsh, I. B. & Whittington, R. J. (2009). Growth pattern and partial proteome of Mycobacterium avium subsp. paratuberculosis during the stress response to hypoxia and nutrient starvation. Vet Microbiol 133, 344-357.

Hatzios, S. K. & Bertozzi, C. R. (2011). The regulation of sulfur metabolism in Mycobacterium tuberculosis.

PLoS Pathog 7, e1002036.

He, Z. G. & De Buck, J. (2010). Localization of proteins in the cell wall of Mycobacterium avium subsp paratuberculosis K10 by proteomic analysis. Proteome Science 8.

Henningsen, R., Gale, B. L., Straub, K. M. & DeNagel, D. C. (2002). Application of zwitterionic detergents to the solubilization of integral membrane proteins for two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2, 1479-1488.

Hughes, V., Smith, S., Garcia-Sanchez, A., Sales, J. & Stevenson, K. (2007). Proteomic comparison of Mycobacterium avium subspecies paratuberculosis grown in vitro and isolated from clinical cases of ovine paratuberculosis. Microbiology 153, 196-205.

Jain, S. K. & Lim, G. (2001). Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radic Biol Med 30, 232-237.

Karp, N. A., McCormick, P. S., Russell, M. R. & Lilley, K. S. (2007). Experimental and statistical considerations to avoid false conclusions in proteomics studies using differential in-gel electrophoresis.

Mol Cell Proteomics 6, 1354-1364.

Masungi, C., Temmerman, S., Van Vooren, J. P., Drowart, A., Pethe, K., Menozzi, F. D., Locht, C. &

Mascart, F. (2002). Differential T and B cell responses against Mycobacterium tuberculosis heparin-binding hemagglutinin adhesin in infected healthy individuals and patients with tuberculosis. J Infect Dis 185, 513-520.

Matxain, J. M., Padro, D., Ristila, M., Strid, A. & Eriksson, L. A. (2009). Evidence of high *OH radical quenching efficiency by vitamin B6. J Phys Chem B 113, 9629-9632.

McKinney, J. D., Honer zu, B. K., Munoz-Elias, E. J., Miczak, A., Chen, B., Chan, W. T., Swenson, D., Sacchettini, J. C., Jacobs, W. R., Jr. & other authors (2000). Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735-738.

Mendoza, J. L., Lana, R. & Diaz-Rubio, M. (2009). Mycobacterium avium subspecies paratuberculosis and its relationship with Crohn's disease. World J Gastroenterol 15, 417-422.

Menozzi, F. D., Reddy, V. M., Cayet, D., Raze, D., Debrie, A. S., Dehouck, M. P., Cecchelli, R. & Locht, C.

(2006). Mycobacterium tuberculosis heparin-binding haemagglutinin adhesin (HBHA) triggers receptor-mediated transcytosis without altering the integrity of tight junctions. Microbes and Infection 8, 1-9.

Nesbitt, N. M., Yang, X., Fontan, P., Kolesnikova, I., Smith, I., Sampson, N. S. & Dubnau, E. (2010). A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78, 275-282.

Old, W. M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K. G., Mendoza, A., Sevinsky, J. R., Resing, K.

A. & Ahn, N. G. (2005). Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4, 1487-1502.

Chapter 5 - General discussion

116

Pandey, A. K. & Sassetti, C. M. (2008). Mycobacterial persistence requires the utilization of host cholesterol.

Proc Natl Acad Sci U S A 105, 4376-4380.

Patton, W. F. (2000). A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 21, 1123-1144.

Pethe, K., Alonso, S., Biet, F., Delogu, G., Brennan, M. J., Locht, C. & Menozzi, F. D. (2001). The heparin-binding haemagglutinin of M-tuberculosis is required for extrapulmonary dissemination. Nature 412, 190-194.

Pierce, E. S. (2009). Where are all the Mycobacterium avium subspecies paratuberculosis in patients with Crohn's disease? PLoS Pathog 5, e1000234.

Quadroni, M. & James, P. (1999). Proteomics and automation. Electrophoresis 20, 664-677.

Radosevich, T. J., Reinhardt, T. A., Lippolis, J. D., Bannantine, J. P. & Stabel, J. R. (2007). Proteome and differential expression analysis of membrane and cytosolic proteins from Mycobacterium avium subsp.

paratuberculosis strains K-10 and 187. J Bacteriol 189, 1109-1117.

Reddy, V. M. & Kumar, B. (2000). Interaction of Mycobacterium avium complex with human respiratory epithelial cells. J Infect Dis 181, 1189-1193.

Rosloniec, K. Z., Wilbrink, M. H., Capyk, J. K., Mohn, W. W., Ostendorf, M., van der, G. R., Dijkhuizen, L. & Eltis, L. D. (2009). Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol Microbiol 74, 1031-1043.

Rosu, V., Ahmed, N., Paccagnini, D., Gerlach, G., Fadda, G., Hasnain, S. E., Zanetti, S. & Sechi, L. A.

(2009). Specific immunoassays confirm association of Mycobacterium avium subsp. paratuberculosis with type-1 but not type-2 diabetes mellitus. PLoS One 4, e4386.

Santema, W., Overdijk, M., Barends, J., Krijgsveld, J., Rutten, V. & Koets, A. (2009). Searching for proteins of Mycobacterium avium subspecies paratuberculosis with diagnostic potential by comparative qualitative proteomic analysis of mycobacterial tuberculins. Vet Microbiol 138, 191-196.

Santoni, V., Molloy, M. & Rabilloud, T. (2000). Membrane proteins and proteomics: un amour impossible?

Electrophoresis 21, 1054-1070.

Sassetti, C. M. & Rubin, E. J. (2003). Genetic requirements for mycobacterial survival during infection.

Proceedings of the National Academy of Sciences of the United States of America 100, 12989-12994.

Schnappinger, D., Ehrt, S., Voskuil, M. I., Liu, Y., Mangan, J. A., Monahan, I. M., Dolganov, G., Efron, B., Butcher, P. D. & other authors (2003). Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J Exp Med 198, 693-704.

Schnell, R. & Schneider, G. (2010). Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis. Biochem Biophys Res Commun 396, 33-38.

Sechi, L. A., Ahmed, N., Felis, G. E., Dupre, I., Cannas, S., Fadda, G., Bua, A. & Zanetti, S. (2006).

Immunogenicity and cytoadherence of recombinant heparin binding haemagglutinin (HBHA) of Mycobacterium avium subsp paratuberculosis: Functional promiscuity or a role in virulence? Vaccine 24, 236-243.

Seibert, V., Wiesner, A., Buschmann, T. & Meuer, J. (2004). Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI TOF-MS) and ProteinChip((R)) technology in proteomics research. Pathology Research and Practice 200, 83-94.

Sohn, H., Kim, J. S., Shin, S. J., Kim, K., Won, C. J., Kim, W. S., Min, K. N., Choi, H. G., Lee, J. C. &

other authors (2011). Targeting of Mycobacterium tuberculosis heparin-binding hemagglutinin to mitochondria in macrophages. PLoS Pathog 7, e1002435.

Stokes, R. W. & Waddell, S. J. (2009). Adjusting to a new home: Mycobacterium tuberculosis gene expression in response to an intracellular lifestyle. Future Microbiol 4, 1317-1335.

Stratmann, J., Strommenger, B., Goethe, R., Dohmann, K., Gerlach, G. F., Stevenson, K., Li, L. L., Zhang, Q., Kapur, V. & other authors (2004). A 38-kilobase pathogenicity island specific for Mycobacterium avium subsp paratuberculosis encodes cell surface proteins expressed in the host.

Infection and Immunity 72, 1265-1274.

Sung, N. & Collins, M. T. (2003). Variation in resistance of Mycobacterium paratuberculosis to acid environments as a function of culture medium. Appl Environ Microbiol 69, 6833-6840.

Takatsuka, M., Osada-Oka, M., Satoh, E. F., Kitadokoro, K., Nishiuchi, Y., Niki, M., Inoue, M., Iwai, K., Arakawa, T. & other authors (2011). A histone-like protein of mycobacteria possesses ferritin superfamily protein-like activity and protects against DNA damage by Fenton reaction. PLoS ONE 6, e20985.

Talapatra, A., Rouse, R. & Hardiman, G. (2002). Protein microarrays: challenges and promises.

Pharmacogenomics 3, 527-536.

Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J., Pognan, F., Hawkins, E., Currie, I. & other authors (2001). Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1, 377-396.

Unlu, M., Morgan, M. E. & Minden, J. S. (1997). Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071-2077.

Van der Geize R., Grommen, A. W., Hessels, G. I., Jacobs, A. A. & Dijkhuizen, L. (2011). The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development. PLoS Pathog 7, e1002181.

Van der Geize, R., Yam, K., Heuser, T., Wilbrink, M. H., Hara, H., Anderton, M. C., Sim, E., Dijkhuizen, L., Davies, J. E. & other authors (2007). A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 104, 1947-1952.

Vidal Pessolani, M. C., Marques, M. A., Reddy, V. M., Locht, C. & Menozzi, F. D. (2003). Systemic dissemination in tuberculosis and leprosy: do mycobacterial adhesins play a role? Microbes Infect 5, 677-684.

Weigoldt, M., Meens, J., Doll, K., Fritsch, I., Möbius, P., Goethe, R. & Gerlach, G. F. (2011). Differential proteome analysis of Mycobacterium avium subsp. paratuberculosis grown in vitro and isolated from cases of clinical Johne's disease. Microbiology 157, 557-565.

Zanetti, S., Bua, A., Delogu, G., Pusceddu, C., Mura, M., Saba, F., Pirina, P., Garzelli, C., Vertuccio, C. &

other authors (2005). Patients with pulmonary tuberculosis develop a strong humoral response against methylated heparin-binding hemagglutinin. Clin Diagn Lab Immunol 12, 1135-1138.

Chapter 6

Summary

6. Chapter: Summary