• Keine Ergebnisse gefunden

Chapter 7 / 8 (Summary and Conclusion / Zusammenfassung und Schlussfolgerung) These chapters contain the major findings of this work and their implications for

6. Conclusion

δ18O values immediately prior and after the MECO interval in central Montana (Figs. 2 and 4). The rapid post-MECO increase in pedogenic CaCO3 content further points to enhanced levels of aridity, which is in good agreement with (a) regional paleobotanical evidence indicating cooling and drying (climatically and orographically induced) during the middle Eocene (e.g., DeVore and Pigg, 2010), and (b) post-MECO mid-latitude cooling and aridification in the northern hemisphere (Bosboom et al., 2014).

47 Acknowledgements

Acknowledgements

AM and KM acknowledge support through the LOEWE funding program (Landes-Offensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz) of Hesse's Ministry of Higher Education, Research, and the Arts. CPC, SAG and AM acknowledge support through NSF EAR 1019648 and JF through DFG grant FI-948/4-1. We further thank J. Caves (Stanford) and T. Schwartz (Stanford) for valuable field support and S.

Hofmann (Frankfurt) for technical assistance.

References

Allen, M. R., and Ingram, W. J., 2002, Constraints on future changes in climate and the hydrologic cycle.

Nature 419, 224-232, doi:10.1038/nature01092.

Bijl, P. K., Houben, A. J. P., Schouten, S., Bohaty, S. M., Sluijs, A., Reichart, G.-J., Sinninghe Damsté, J.

S., and Brinkhuis, H., 2010, Transient Middle Eocene Atmospheric CO2 and Temperature Variations.

Science 330, 819-821, doi:10.1126/science.1193654.

Bohaty, S. M., and Zachos, J. C., 2003, Significant Southern Ocean warming event in the late middle Eocene. Geology 31(11), 1017-1020, doi:10.1130/g19800.1.

Bohaty, S. M., Zachos, J. C., Florindo, F., and Delaney, M. L., 2009, Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography 24(2), PA2207, doi:10.1029/2008pa001676.

Bosboom, R. E., Abels, H. A., Hoorn, C., van den Berg, B. C. J., Guo, Z., and Dupont-Nivet, G., 2014, Aridification in continental Asia after the Middle Eocene Climatic Optimum (MECO). Earth Planet Sc Lett 389, 34-42, doi:10.1016/j.epsl.2013.12.014.

Boscolo Galazzo, F., Giusberti, L., Luciani, V., and Thomas, E., 2013, Paleoenvironmental changes during the Middle Eocene Climatic Optimum (MECO) and its aftermath: The benthic foraminiferal record from the Alano section (NE Italy). Palaeogeogr, Palaeocl 378, 22-35, doi:10.1016/j.palaeo.2013.03.018.

Bowen, G. J., Beerling, D. J., Koch, P. L., Zachos, J. C., and Quattlebaum, T., 2004, A humid climate state during the Palaeocene/Eocene thermal maximum.Nature 432(7016), 495-499, doi:10.1038/nature03115.

Bowen, G. J., B. J. Maibauer, M. J. Kraus, U. Röhl, T. Westerhold, A. Steimke, P. D. Gingerich, S. L.

Wing, and W. C. Clyde, 2015, Two massive, rapid releases of carbon during the onset of the Palaeocene-Eocene thermal maximum. Nature Geosci 8(1), 44-47, doi:10.1038/ngeo2316.

Breecker, D. O., Sharp, Z. D., and McFadden, L. D., 2009, Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geol Soc Am Bull 121(3-4), 630-640, doi:10.1130/b26413.1.

Carroll, A. R., Doebbert, A. C., Booth, A. L., Chamberlain, C. P., Rhodes-Carson, M. K., Smith, M. E., Johnson, C. M., and Beard, B. L., 2008, Capture of high-altitude precipitation by a low-altitude Eocene lake, western U.S. Geology 36(10), 791-794, doi:10.1130/g24783a.1.

Cerling, T. E., and Quade, J., 1993, Stable Carbon and Oxygen Isotopes in Soil Carbonates, Climate Change in Continental Isotopic Records, American Geophysical Union, 217-231.

Chamberlain, C. P., Mix, H. T., Mulch, A., Hren, M. T., Kent-Corson, M. L., Davis, S. J., Horton, T. W., and Graham, S. A., 2012, The Cenozoic climatic and topographic evolution of the western North American Cordillera. Am J Sci 312(2), 213-262, doi:10.2475/02.2012.05.

Chou, C., Chiang, J. C. H., Lan, C.-W., Chung, C.-H., Liao, Y.-C., and Lee, C.-J., 2013, Increase in the range between wet and dry season precipitation. Nature Geosci 6(4), 263-267, doi:10.1038/ngeo1744.

Constenius, K. N., 1996, Late Paleogene extensional collapse of the Cordilleran foreland fold and thrust belt. Geol Soc Am Bull 108(1), 20-39, doi:10.1130/0016-7606(1996)108<0020:lpecot>2.3.co;2.

Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. M., 2011, Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. Geochim Cosmochim Ac 75(22), 7117-7131, doi:10.1016/j.gca.2011.09.025.

DeVore, M. L., and Pigg, K. B., 2010, Floristic composition and comparison of middle Eocene to late Eocene and Oligocene floras in North America. Bull Geosci 85(1), 111-134.

Dickinson, W.R., 2002. The Basin and Range Province as a Composite Extensional Domain. Int Geol Rev 44(1), 1-38, doi:10.2747/0020-6814.44.1.1.

Edgar, K. M., Wilson, P. A., Sexton, P. F., Gibbs, S. J., Roberts, A. P., and Norris, R. D., 2010, New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene Climatic Optimum in low latitudes. Palaeogeogr, Palaeocl 297(3–4), 670-682, doi:10.1016/j.palaeo.2010.09.016.

Feng, R., Poulsen, C. J., Werner, M., Chamberlain, C. P., Mix, H. T., and Mulch, A., 2013, Early Cenozoic evolution of topography, climate, and stable isotopes in precipitation in the North American Cordillera.

Am J Sci 313(7), 613-648, doi:10.2475/07.2013.01.

49 References

Fields, R.W., Rasmussen, D.L., Tabrum, A.R., Nichols, R., 1985. Cenozoic rocks of the intermontane basins of western Montana and eastern Idaho: A summary, in: Flores, R.M., Kaplan, S.S. (Eds.), Cenozoic Paleogeography of the West-Central United States. Rocky Mountain Section (SEPM), Denver, CO, USA.

Fritz, W.J., Sears, J., McDowell, R., Wampler, J., 2007. Cenozoic volcanic rocks of southwestern Montana.

Northwest Geology 36, 91-110.

Gerdes, A., Zeh, A., 2006. Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons:

Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sc Lett 249(1–2), 47-61, doi:10.1016/

j.epsl.2006.06.039.

Gerdes, A., Zeh, A., 2009. Zircon formation versus zircon alteration — New insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261(3–4), 230-243, doi:10.1016/j.chemgeo.2008.03.005.

Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E.A., Schrag, D., Eiler, J.M., 2006. 13C–

18O bonds in carbonate minerals: A new kind of paleothermometer. Geochim Cosmochim Ac 70(6), 1439-1456, doi:10.1016/j.gca.2005.11.014.

Guo, W., Mosenfelder, J. L., Goddard Iii, W. A., and Eiler, J. M., 2009, Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: Insights from first-principles theoretical modeling and clumped isotope measurements. Geochim Cosmochim Ac 73(24), 7203-7225, doi:10.1016/j.gca.2009.05.071.

Hanneman, D.L., Cheney, E.S., Wideman, C.J., 2003. Cenozoic Sequence Stratigraphy of Northwestern USA, in: Raynolds, R.G., Flores, R.M. (Eds.), Cenozoic Systems of the Rocky Mountain Region. The Rocky Mountain Section SEPM (Society for Sedimentary Geology), Denver, Co.

Held, I. M., and Soden, B. J., 2006, Robust Responses of the Hydrological Cycle to Global Warming. J Climate 19(21), 5686-5699, doi:10.1175/jcli3990.1.

Henkes, G. A., Passey, B. H., Wanamaker Jr, A. D., Grossman, E. L., Ambrose Jr, W. G., and Carroll, M.

L., 2013, Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells.

Geochim Cosmochim Ac 106, 307-325, doi:10.1016/j.gca.2012.12.020.

Hough, B. G., Fan, M., and Passey, B. H., 2014, Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: Implications for paleoelevation and paleoclimate reconstruction. Earth Planet Sc Lett 391, 110-120, doi:10.1016/j.epsl.2014.01.008.

Huber, M., and Goldner, A., 2012, Eocene monsoons. J Asian Earth Sci 44, 3-23, doi:10.1016/j.jseaes.

2011.09.014.

Huber, M., and Sloan, L. C., 1999, Warm climate transitions: A general circulation modeling study of the Late Paleocene Thermal Maximum (∼56 Ma). J Geophys Res-Atmos 104(D14), 16633-16655, doi:10.1029/1999jd900272.

Janecke, S.U., 1994. Sedimentation and paleogeography of an Eocene to Oligocene rift zone, Idaho and Montana. Geol Soc Am Bull 106(8), 1083-1095, doi:10.1130/0016-7606(1994)106<1083:SAPOAE>

2.3.CO;2.

Janecke, S.U., McIntosh, W., Good, S., 1999. Testing models of rift basins: structure and stratigraphy of an Eocene–Oligocene supradetachment basin, Muddy Creek half graben, south-west Montana. Basin Res 11(2), 143-165, doi:0.1046/j.1365-2117.1999.00092.x.

Kent-Corson, M. L., Sherman, L. S., Mulch, A., and Chamberlain, C. P., 2006, Cenozoic topographic and climatic response to changing tectonic boundary conditions in Western North America. Earth Planet Sc Lett 252(3–4), 453-466, doi:10.1016/j.epsl.2006.09.049.

Kim, S.-T., and O'Neil, J. R., 1997, Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Ac 61(16), 3461-3475, doi:10.1016/S0016-7037(97)00169-5.

Ludwig, K., 2007. Isoplot 3.62. Berkeley Geochronology Center Special Publication 4, 70.

Marvel, K., and Bonfils, C., 2013, Identifying external influences on global precipitation. P Natl Acad Sci 110(48), 19301-19306, doi:10.1073/pnas.1314382110.

M'Gonigle, J.W., Dalrymple, G.B., 1996. 40Ar/39Ar ages of some Challis Volcanic Group rocks and the initiation of Tertiary sedimentary basins in southwestern Montana. U.S. Geol Survey bull 2132.

Mix, H. T., Mulch, A., Kent-Corson, M. L., and Chamberlain, C. P., 2011, Cenozoic migration of topography in the North American Cordillera. Geology 39(1), 87-90, doi:10.1130/g31450.1.

Mulch, A., Chamberlain, C. P., Cosca, M. A., Teyssier, C., Methner, K. A., and Graham, S. A., 2015, Rapid change in western North American high-elevation rainfall patterns during the Mid Eocene Climatic Optimum (MECO). Am J Sci 315(4), 317-336, doi:10.2475/04.2015.02.

Ogg, J. G., 2012, Chapter 5 - Geomagnetic Polarity Time Scale, in Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., eds., The Geologic Time Scale: Boston, Elsevier, 85-113.

Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., and Eiler, J. M., 2010, High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. P Natl Acad Sci 107(25), 11245-11249, doi:10.1073/pnas.1001824107.

Peters, N. A., Huntington, K. W., and Hoke, G. D., 2013, Hot or not? Impact of seasonally variable soil carbonate formation on paleotemperature and O-isotope records from clumped isotope thermometry.

Earth Planet Sc Lett 361, 208-218, doi:10.1016/j.epsl.2012.10.024.

Pound, M. J., Tindall, J., Pickering, S. J., Haywood, A. M., Dowsett, H. J., and Salzmann, U., 2014, Late Pliocene lakes and soils: a global data set for the analysis of climate feedbacks in a warmer world. Clim Past 10(1), 167-180, doi:10.5194/cp-10-167-2014.

Quade, J., Eiler, J., Daëron, M., and Achyuthan, H., 2013, The clumped isotope geothermometer in soil and paleosol carbonate. Geochim Cosmochim Ac 105, 92-107, doi:10.1016/j.gca.2012.11.031.

Rasbury, E.T., Hanson, G.N., Meyers, W.J., Holt, W.E., Goldstein, R.H., Saller, A.H., 1998. U-Pb dates of paleosols: Constraints on late Paleozoic cycle durations and boundary ages. Geology 26(5), 403-406, doi:10.1130/0091-7613(1998)026<0403:updopc>2.3.co;2.

Rasmussen, D. L., 2003, Tertiary History of Western Montana and East-Central Idaho: A Synopsis, in Raynolds, R. G., and Flores, R. M., eds., Cenozoic Systems of the Rocky Mountain Region: Denver, Co, Rockey Mountain SEPM, 459-477.

Retallack, G. J., 2005, Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols.

Geology 33(4), 333-336, doi:10.1130/g21263.1.

Retallack, G. J., 2007, Cenozoic Paleoclimate on Land in North America. J Geol 115(3), 271-294, doi:10.1086/512753.

Rothfuss, J.L., Lielke, K., Weislogel, A.L., 2012. Application of detrital zircon provenance in paleogeographic reconstruction of an intermontane basin system, Paleogene Renova Formation, southwest Montana. Geol Soc Am Special Papers 487, 63-95, doi:10.1130/2012.2487(04).

Rozanski, K., Araguás-Araguás, L., and Gonfiantini, R., 1993, Isotopic Patterns in Modern Global Precipitation, Climate Change in Continental Isotopic Records, American Geophysical Union, 1-36.

Sears, J.W., Ryan, P.C., 2003. Cenozoic Evolution of the Montana Cordillera: Evidence From Paleovalleys, in: Raynolds, R.G., Flores, R.M. (Eds.), Cenozoic Systems of the Rocky Mountain Region. The Rocky Mountain Section (SEPM), Denver, Co, 289-301.

Sewall, J. O., Sloan, L. C., Huber, M., and Wing, S., 2000, Climate sensitivity to changes in land surface characteristics: Global Planet Change, 26(4), 445-465, doi:10.1016/S0921-8181(00)00056-4.

Sherwood, S., and Fu, Q.,2014,ADrierFuture?Science 343(6172), 737-739, doi:10.1126/science.1247620.

Sluijs, A., Zeebe, R. E., Bijl, P. K., and Bohaty, S. M., 2013, A middle Eocene carbon cycle conundrum.

Nature Geosci 6(6), 429-434, doi:10.1038/ngeo1807.

Smith, M.E., Carroll, A.R., Singer, B.S., 2008. Synoptic reconstruction of a major ancient lake system:

Eocene Green River Formation, western United States. Geol Soc Am Bull 120(1-2), 54-84, doi:10.1130/b26073.1.

Sonder, L. J., and C. H. Jones (1999), Western United States Extension: How the West was Widened. Ann Rev Earth Pl Sc 27(1), 417-462, doi:10.1146/annurev.earth.27.1.417.

51 References

Spofforth, D. J. A., Agnini, C., Pälike, H., Rio, D., Fornaciari, E., Giusberti, L., Luciani, V., Lanci, L., and Muttoni, G., 2010, Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys. Paleoceanography 25(3), PA3210, doi:10.1029/2009pa001738.

Tabrum, A. R., Prothero, D. R., and Garcia, D., 1996, Magnetostratigraphy and Biostratigraphy of the Eocene-Oligocene transition, Southwestern Montana, in Prothero, D. R., and Emery, R. J., eds., The terrestrial Eocene-Oligocene transition in North America: Cambridge, UK, Cambridge University Press, 278-311.

Tripati, A.K., Eagle, R.A., Thiagarajan, N., Gagnon, A.C., Bauch, H., Halloran, P.R., Eiler, J.M., 2010.

13C–18O isotope signatures and ‘clumped isotope’ thermometry in foraminifera and coccoliths.

Geochim Cosmochim Ac 74(20), 5697-5717, doi:10.1016/j.gca.2010.07.006.

Wacker, U., Fiebig, J., and Schoene, B. R., 2013, Clumped isotope analysis of carbonates: comparison of two different acid digestion techniques. Rapid Commun Mass Spectrom 27(14), 1631-1642, doi:10.1002/rcm.6609.

Wacker, U., Fiebig, J., Tödter, J., Schöne, B. R., Bahr, A., Friedrich, O., Tütken, T., Gischler, E., and Joachimski, M. M., 2014, Empirical calibration of the clumped isotope paleothermometer using calcites of various origins. Geochim Cosmochim Ac 141, 127-144, doi:10.1016/j.gca.2014.06.004.

Winnick, M. J., Welker, J. M., and Chamberlain, C. P., 2013, Stable isotopic evidence of El Niño-like atmospheric circulation in the Pliocene western United States. Clim Past 9(2), 903-912, doi:10.5194/cp-9-903-2013.

Witkowski, J., Bohaty, S. M., McCartney, K., and Harwood, D. M., 2012, Enhanced siliceous plankton productivity in response to middle Eocene warming at Southern Ocean ODP Sites 748 and 749.

Palaeogeogr, Palaeocl 326–328, 78-94, doi:10.1016/ j.palaeo.2012.02.006.

Woodburne, M. O., 2004, Global events and the North American mammalian biochronology, in Woodburne, M. O., ed., Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology: New York, Columbia University Press, 315–344.

Zaarur, S., Affek, H.P., Brandon, M.T., 2013. A revised calibration of the clumped isotope thermometer.

Earth Planet Sc Lett 382(0), 47-57, doi:10.1016/j.epsl.2013.07.026.

Zachos, J. C., Dickens, G. R., and Zeebe, R. E., 2008, An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279-283, doi:10.1038/nature06588.

Figures

Fig. 1. (A) Overview map of the western United States. Star marks the location of Fig.

1b. (B) Geological map of SW Montana, USA, with sampling locality of the Upper Dell Beds, southern Sage Creek Basin. (C) Dell Beds at the Kay Draw locality. The sections are composed of a series of stacked paleosols. The section exposes the disconformable contact between the Dell Beds and the overlying Oligocene Cook Ranch member (Tabrum et al. 1996). (D) Composite section of the Dell Beds. Dots mark carbonate samples (orange for ∆47 samples), stars denote the samples for U-Pb dating.

53 Figures

Fig. 2. Stratigraphic, stable isotope, and clumped isotope record of the Dell Beds, Montana. (A) Clumped isotope (∆47) temperatures of pedogenic mudstones (squares) and nodules (circles) in [°C] with 2σ standard errors. n denotes the number of replicate measurements for each sample. (B) Carbonate content of pedogenic mudstone in [%]. (C) Oxygen [‰, VSMOW] isotope record. Colored symbols represent average values from individual measurements (grey). Stars and grey lines mark the position of U-Pb geochronology samples.

Fig. 3. Tera-Wasserburg diagrams of paleosol samples. (A) 238U/206Pb – 207Pb/206Pb plot of sample 11-KM-124 (at 14.6 m of section) yields an isochron age of 39.5 ±1.4 Ma with a MSWD (mean squared weighted deviates) of 0.89 and (B) 238U/206Pb – 207Pb/206Pb plot of sample 11-KM-122 (at 12.9 m of section) yields an isochron age of 40.1 ±0.8 Ma with a MSWD of 1.15. All uncertainties are reported at the 2σ level.

55 Figures

Fig. 4. Comparison of temperature estimates and δ18O values of the Middle Eocene Climatic Optimum in marine (A, B; adapted from Sluijs et al., 2013) and terrestrial records (C, D; this study). (A) UK37 (blue) and TEX86 (purple) sea surface temperatures (SST) reflect 3-point running average (Bijl et al., 2010). (B) Benthic foraminifera δ18O data and corresponding ice-free temperatures from Southern Ocean ODP sites 738 (orange) and 748 (red), adapted from Bohaty et al. (2009). (C) Clumped isotope (∆47) paleotemperatures of the Dell Beds with 2σ standard error. The terrestrial warming event is characterized by a transient increase in temperatures followed by a profound temperature drop after peak warming, which is similar to the first-order characteristics of the marine δ18O record. Our dating results (white dots) place the temperature excursion slightly after the marine MECO, however within error U-Pb geochronology permits the Dell Beds to cover the same time interval as the marine MECO records (see text for details). (D) δ18O values of soil water in [‰, VSMOW], calculated from carbonate δ18O values considering ∆47 temperatures and calcite-water oxygen isotope fractionation (Kim and O’Neil, 1997).

57

Chapter 3

Rapid change in high-elevation precipitation patterns of western North America during the Middle Eocene Climatic Optimum (MECO)

Mulch, A., C.P. Chamberlain, M.A. Cosca, C. Teyssier, K. Methner, M.T. Hren, and S.A.

Graham

Published in: American Journal of Science, 2015, 315, 317-336, doi:10.2475/04.2015.02

Abstract

We present Eocene terrestrial oxygen (δ18O), carbon (δ13C), and strontium (87Sr/86Sr) isotope lake and paleosol records from two high elevation sites on the western North American plateau. These records represent terrestrial stable isotope evidence of the Middle Eocene Climatic Optimum (MECO) an enigmatic and rapid global warming event that interrupted protracted Eocene global cooling at around 40.0 Ma. Revised stratigraphy based on 15 40Ar/39Ar ages from air-fall and water-lain ash in the Elko basin (Nevada) places evaporative lake conditions followed by rapid (<150 ka) freshening and a large (14-15 ‰) negative shift in δ18O of lake water between 40.2 Ma and 39.4 Ma, right at the climax of MECO. Prior to MECO high δ18O and δ13C values in well-laminated organic-rich shales are consistent with high evaporation-to-precipitation ratios, lack of lake overturn, persistent lake stratification, and moderate to high lake salinity. However, a step-wise large magnitude (>20 ‰) decrease in δ13C values already during the pre-MECO cooling phase, requires that in contrast to pre-MECO climate conditions, MECO temperature seasonality in western North America was sufficiently strong to (re-)establish regular lake overturn. The rate and magnitude of the rapid negative lacustrine δ18O shift during MECO in the Elko lake basin is inconsistent with a simple scenario of regional surface uplift affecting decrease of δ18O in precipitation and associated lake freshening.

We consider the overall negative shift in δ18O of non-evaporatively 18O-enriched lake waters (-9.3 ±1.8 ‰) between the 42 to 43 Ma Elko Formation and the ca. 38 Ma base of the Indian Well Formation to be composed of a ca. 3 to 4 ‰ decrease in δ18O of lake carbonate as a consequence of post-MECO cooling and an additional ca. 5 to 6 ‰ decrease in δ18O of riverine lake input as a response to 43 to 38 Ma surface uplift. When combined with isotope-enabled global circulation model results, the Elko lake data further suggest that once critical elevations were attained a change in upstream moisture transport including strengthening of monsoonal summer rainfall on the (south-)eastern flanks of the Cordillera and a larger fraction of air parcel trajectories to the (eastern) lee of the Cordilleran highlands that had passed over the (western) continental interior were responsible for the rapid middle Eocene decrease in δ18O of precipitation in the central Cordilleran hinterland.

1. Introduction

A series of short-term (104-105 a) hyperthermal events during the Early to Middle Eocene (e.g., Zachos et al., 2001, 2006; Galeotti et al., 2010) were characterized by high atmospheric CO2 concentrations and a 3 to 6 °C warming of surface and deep oceans (for example Lourens et al., 2005; Bohaty et al., 2009; Bijl et al., 2010). Lowering of carbon isotopic compositions and associated pH of the oceans (Zachos et al., 2005) and shoaling of the carbonate compensation depth suggests rapid release of low-δ13C methane (Dickens et al., 1997) or high atmospheric pCO2 (Bohaty et al., 2009; Bijl et al., 2010) as potential feedbacks and triggers in the ocean-atmosphere system, yet corresponding continental paleoclimate records are still sparse and consequences of such rapid warming for terrestrial ecosystems pretty elusive.

Another first-order control on global atmospheric circulation is the topography of the world’s largest mountain ranges, especially for the mid-latitudes where the transience of equator-pole temperature gradients directly influences zonal moisture and heat transport.

Model experiments highlight the role of western North American elevations on northern hemisphere atmospheric circulation and the resulting climatic teleconnections (e.g., Ruddiman and Kutzbach, 1989, 1990; Ruddiman and Prell, 1997; Seager et al., 2002).

Stable isotope paleoaltimetry in the North American Cordillera (e.g., Horton et al., 2004;

Mulch et al., 2007; Mix et al., 2011; Chamberlain et al., 2012; Lechler et al., 2013; Cassel et al., 2014; Fan et al., 2014) points to Eocene north-to-south reorganization of surface topography culminating in the assembly of a 3 to 4 km Eocene highland, whose construction was assisted by magmatism and mid-crustal extension, collectively calling for the convective removal of mantle lithosphere during the Early to Middle Eocene (Mix et al., 2011; Chamberlain et al., 2012). At the same time a transient global warming event, the ~40.0 Ma Middle Eocene Climatic Optimum (MECO) interrupted a period of protracted Eocene cooling (Bohaty and Zachos, 2003; Bohaty et al., 2009). Despite the importance of understanding such aberrations on global climate and resulting atmospheric circulation patterns we lack reliable terrestrial climate records from hyperthermal events when major reorganization of the global hydrological cycle and enhanced seasonality characterized continental precipitation patterns (e.g., Giusberti et al., 2007; Nicolo et al., 2007).

Here, we present lacustrine and pedogenic terrestrial stable isotope records from the western North American plateau region covering the MECO interval (ca. 42 – 38 Ma) when the surrounding landscapes experienced a major phase of volcanism and reorganization of surface elevations (Brooks et al., 1995; Horton et al., 2004; Henry, 2008; Mix et al., 2011; Chamberlain et al., 2012).

59