• Keine Ergebnisse gefunden

VI. A COMPARISON OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)

6.5. Conclusion

119 Fig. 7. Sediment-water distribution coefficient (log KD) of PAHs presented as a mean value of each individual compound from the Siak and the Wenchang and Wanquan estuaries. The median values (black and unfilled marks) were to represent the general differences between the two systems.

120 aromaticity, type of sorbent material and the levels of OM, DOC, BC in both the sediments and the porewater. Therefore, we can conclude that the high PAH levels in the coarse fractions of Siak sediments are most probably associated with the presence of burning events, their residues, peat, and fragmented plant materials.

Acknowledgments

This study is part of the Indonesian SPICE Project Cluster 3.1., and of German-Chinese LANCET research project, funded by the Federal German Ministry of Education, Science, Research and Technology (BMBF, Bonn), and also supported by the German Academic Exchange Service (DAAD). We acknowledge all their supports. Furthermore, we would like to extent our grateful to scientists and students from University of Riau, Indonesia, the Institute of Estuarine and Coastal Research, East China Normal University, China, and to SPICE German colleagues for their contribution during sampling campaigns and discussion.

Furthermore, we appreciate our colleagues at Leibniz Centre for Tropical Marine Ecology ZMT Dipl. Ing. Matthias Birkicht, Ms. Dorothee Dasbach, for the organic measurement and Ms. Sonia Tambou (Marine Chemistry Working Group, Uni-Bremen) for laboratory assistance.

Finally, we thank all reviewers for their constructive critics and comments.

References

Accardi-Dey, A., Gschwend, P.M., 2002. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environmental Science and Technology, 36, 21-29.

Baars, B-J., 2002. The wreckage of the oil tanker ‘Erika’ – human health risk assessment of beach cleaning, sunbathing and swimming. Toxicology Letters, 128, 55-68.

Baum, A., Rixen, T., Samiaji, J., 2007. Relevance of peat draining rivers in central Sumatra for the riverine input of dissolved organic carbon into the ocean. Estuarine, Coastal and Shelf Science 73, 563 – 570.

Budzinski, H., Jones, I., Bellocq, J., Pierard, C., Garriques, P., 1997. Evaluation of sediment contaminant by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry 58, 85-97.

Chen, Y., Zhu, L., Zhou, R., 2007. Characterization and distribution of polycyclic aromatic hydrocarbon in surface water and sediment from Qiantang River, China. Journal of Hazardous Materials, 141: 148-155.

Chin, Y-P., Gschwend, P.M., 1992. Partitioning of polycyclic aromatic hydrocarbons to marine porewater organic colloids. Environmental Science and Technology, 26, 1621-1626.

Cornelissen, G., Gustafsson, Ö., 2004. Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environmental Science and Technology, 38, 148-155.

de Abrantes, R., de Assunção, J.V., Pesquero, C.R., 2004. Emission of polycyclic aromatic hydrocarbons from light-duty diesel vehicles exhaust. Atmospheric Environment 38, 1631-1640.

De Luca, G.D., Furesi, A., Micera, G., Panzanelli, A., Piu, P.C., Pilo, M.I., Spano, N., Sanna., 2005. Nature, distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Olbia harbor (Northern Sardinia, Otaly). Marine Pollution Bulletin 50, 1223-1232.

121 Fang, M., Zheng, M., Wang, F., To, K.L., Jaafar, A.B., Tong, S.L., 1999. The

solvent-extractable organic conpounds in the Indonesia biomass burning aerosols – characterization studies. Atmospheric Environment 33, 783-795.

Fernandes, M.B., Sicre, M.-A., Boireau, A., Tronczynski, J., 1997. Polyaromatic hydrocarbon (PAH) distributions in the Seine river and its estuary. Marine Pollution Bulletin, 34(11):

857-867.

Gauthier, T.D., Seltz, W.R., Grant, C.L., 1987. Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environmental Science and Technology, 21(3), 243-248.

Ghosh, U., Gillette, J.S., Luthy, R.G., Zare, R.N., 2000. Microscale location, characterization, and association of polycyclic aromatic hydrocarbons on harbor sediment particles.

Environmental Science & Technology 34, 1729-1736.

Ghosh, U., Zimmerman, J.R., Luthy, R.G., 2003. PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. Environmental Science & Technology 37, 2209-2217.

Grathwohl, P., 1990. Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: iplication on Koc correlations.

Environmental Science and Technology 24, 1687-1693.

Gustafsson, Ö., Haghseta, F., Chan, C., Macfarlane, J., Gschwend, P.M., 1997. Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability.

Environmental Science and Technology 31, 203-209.

Gustafsson, Ö., Haghseta, F., Chan, C., Macfarlane, J., Gschwend, P.M., 1997. Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability.

Environmental Science and Technology 31, 203-209.

Holtvoeth, J., 2004. Terrigeneous organic matter in sediments of the eastern equatorial Atlantic – distribution, reactivity, and relation to Late Quaternary climate -. PhD Dissertation, Fachberiech Geowissenschaften, der Universität Bremen, Germany.

Holtvoeth, J., Kolonic, S., Wagner, T., 2005. Soil organic matter as an important contributor to late quaternary sediments of the tropical West African continental margin. Geochimica et Cosmochimica Acta 69(8), 2031-2041.

Horowitz, A.J., Elrick, K.A., 1987. The relation of stream sediment surface area, grain size and composition to trace element chemistry. Applied Geochemistry, 2, 437-451.

IARC, 1987. IARC Monographs on the evaluation of carcinogenic risks to humans, Suppl. 7, overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42, Lyon, IARC Press.

ICES, 1997. Determination of polycyclic aromatic hydrocarbons (PAHs) in sediments:

Analytical methods. In Report of the ICES Advisory Committee on the Marine Environment, 1997. ICES Cooperative Research Report 222, 118-124.

Jenkins, B.M., Jones, A.D., Turn, S.Q., Williams, R.B., 1996. Emission factors for polycyclic aromatic hydrocarbons from biomass burning. Environmental Science and Technology, 30, 2462-2469.

Jonker, M.T.O., Koelmans, A.A., 2002. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment : mechanistic considerations. Environmental Science and Technology, 36, 3725-3734.

Kakareka, S.V., Kukharchyk, T.I., 2003. PAH emission from the open burning of agricultural debris. The Science of the Total Environmental, 308, 257-261.

Li, C-T., Mi, H-H., Lee, W-J., You, W-C., Wang, Y-F., 1999. PAH emission from the industrial boilers. Journal of Hazardous Materials, A69, 1-11.

Liu, H., Amy, G., 1993. Modeling partitioning and transport interactions between natural organic matter and polynuclear aromatic hydrocarbons in groundwater. Environmental Science and Technology, 27, 1553-1582.

Liu, W.X., Dou, H., Wei, Z.C., Chang, B., Qiu, W.X., Liu, Y., Tao, S., 2009. Emission characteristics of polycyclic aromatic hydrocarbons from combustion of different residential coals in North China. Science of the Total Environment 407, 1436-1446.

122 Luthy, R. G., Aiken, G.R., Brusseau, M.L., Cunningham, S.D., Gschwend, P.M., Pignatello, J.J., Reinhard, M., Traina, S.J., 1997. Sequestration of hydrophobic organic contaminants by geosorbents. Environmental Science and Technology, 31, 3341-3347.

Marr, LC., Kirchstetter, T.W., Harley, R.A., Miguel, A.H., Hering, S.V., Hammond, S.K., 1999.

Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environmental Science and Technology, 33, 3091-3099.

McGroddy, S.E., Farrington, J.W., 1995. Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston Harbor, Massachussetts.

Environmental Science and Technology, 29, 1542-1550.

Meyer, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology 114, 289-302.

Neff, J.M., 1979. Polycyclic aromatic hydrocarbon in the aquatic environment: sources, fates and biological effects. Applied Science Publisher Ltd, Essex, UK, 262 pp.

Oanh, N.T.K., Albina, D.O., Ping, L., Wang, X., 2005. Emission of particulate and polycyclic aromatic hydrocarbons from selected cookstove – fuel systems in Asia. Biomass and Bioenergy, 28, 579-590.

Page, S.E., Siegert, F., Rieley, J.O., Boehm, H-D. V., Jaya, A., Limin, S., 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61-65.

Pillon, P., Jocteur-Monrozier, L., Gonzalez, C., Saliot, A., 1986. Organic geochemistry of recent equatorial deltaic sediments. Organic Geochemistry, 10, 711-716.

Prahl, F.G., Carpenter, R., 1983. Polycyclic aromatic hydrocarbons (PAH) phase associations in Washington Coastal sediments. Geochimica et Cosmochimica Acta 47, 1013-1023.

Requejo, A.G., Sassen, R., McDonald, T., Denoux, G., Kennicutt II, M.C., Brooks, J.M., 1996.

Polynuclear aromatic hydrocarbons (PAH) as indicators of the source and maturity of marine crude oils. Organic Geochemistry 24(10/11), 1017-1033.

Rockne, K.J., Shor, L.M., Young, L.Y., Taghon, G.L., Kosson, D.S., 2002. Distribution sequestration and release of PAHs in weathered sediment: the role of sediment structure and organic carbon properties. Environmental Science and Technology 36, 2636-2644.

Ruttenberg, K.C., Goi, M.A., 1997. Phosphorus distribution, C:N:P ratios, and 13Coc in arctic, temperate, and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter. Marine Geology 139, 123-145.

Saeed, T., Al-Mutairi, M., 2000. Comparative composition of polycyclic aromatic hydrocarbons (PAHs) in the sea water-soluble fractions of different Kuwaiti crude oils. Advances in Environmental Research 4, 141-145.

Sargenti, S.R., McNair, H.M., 1998. Comparison of solid-phase extraction and supercritical fluid extraction for extraction of polycyclic aromatic hydrocarbons from drinking water.

Journal of Microcolumn Separation 10(1), 125-131.

See, S.W., Balasubramanian, R., Rianawati, E., Karthikeyan, S., Streets, D.G., 2007.

Characterization and source apportionment of particulate matter 2.5 μm in Sumatra, Indonesia during a recent peat fire episode. Environmental Science and Technology, 41, 3488-3494.

Shi, Z., Tao, S., Pan, B., Fan, W., He, H.C., Zuo, Q., Wu, S.P., Li, B.G., Cao, J., Liu, W.X., Xu, F.L., Wang, X.J., Shen, W.R., Wong, P.K., 2005. Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environmental Pollution, 134: 97-111.

Siegel, H., Stottmeister, I., Reißmann, J., Gerth, M., Jose, C., Samiaji, J., 2009. Siak river system-east Sumatra characterisation of sources, estuarine processes, and discharges into the Malacca Strait. Journal of Marine Systems 77, 148-159.

Soclo, H.H., Garrigues, PH., Ewald, M., 2000. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin 40(5), 387-396.

Vila-Escalé, M., Vegas-Villarubia, T., Prat, N., 2007. Release of polycyclic aromatic compounds into a Mediterranean creek (Catalonia, NE Spain) after a forest fire. Water Research, 41: 2171-2179.

123 Wang, Z., Fingas, M., Lambert, P., Zeng, G., Yang, C., Hollebone, B., 2004. Characterization and identification of the Detroit River mystery oil spill (2002). Journal of Chromatography A 1038, 201-214.

Wang, Z., Fingas, M., Page, D.S., 1999. Oil spill identification. Journal of Chromatography A 843, 369-411.

Yang, H-H., Lee, W-J., Chen, S-J., Lai, S-O., 1998. PAH emission from various industrial stacks. Journal of Hazardous Materials 60, 159-174.

Yu, Y., Xu, J., Wang, P., Sun, H., Dai, S., 2009. Sediment-porewater partition of polycyclic aromatic hydrocarbons (PAHs) from Lanzhou Reach of Yellow River China. Journal of Hazardous Materials 165, 494-500.

Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, H., Goyette, D., Sylvestre, S., 2002.

PAHs in the Fraser River basin: a critical appraisal of PAH ratio as indicators of PAH source and composition. Organic Geochemistry 33, 489-515.

Zakaria, M.P., Horinouchi, A., Tsutsumi, S., Takada, H., Tanabe, S., Ismail, A., 2000. Oil pollution in the Straits of Malacca, Malaysia: Application of molecular markers for source identification. Environmental Science and Technology, 34, 1189-1196.

Zhang, Y., Tao, S., 2009. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environment, 43, 812-819.

Zhou, J., Wang, T., Huang, Y., Mao, T., Zhong, N., 2005. Size distribution of polycyclic aromatic hydrocarbons in urban and suburban sites of Beijing, China. Chemosphere 61:

792-799.

124 Appendix 1. Physical & chemical properties of 16 PAHs of the US EPA priority pollutants. No. Compounds Molecular Formula Mol. Weighta,b (g/mol)

CAS number a,bBoiling Pointa (BPo C) Melting Pointa (MPo C)

Water Solubilityd mg/L

Vapor Pressurea (mm Hg)

Henry’s Law Constante KH (atm m3/mol)

Octanol-Water Partition Coefficient d Log Kow 1.NaphthaleneC10H8128,1791-20-3 218 80.530.28.89E-024.50E-033.45 2.Acenaphthylene C12H8 152,20 208-96-8 256-275 92-93 16.1a 2.90E-02n.a.3.98e 3.AcenaphtheneC12H10154,2183-82-9 279 96.23.933.75E-032.40E-044.22 4.FluoreneC13H10 166,22 86-73-7 293-295 116-117 1.903.24E-03 7.40E-05 4.38 5.PhenanthreneC14H10178,2385-01-8 340 101 1.186.80E-042.70E-044.46 6.AnthraceneC14H10 178,23 120-12-7 340 214-216 0.076 2.55E-05 1.80E-06 4.54 7.FluorantheneC16H10202,26206-44-00 375 151* 0.2608.13E-061.95E-035.20 8.Pyrene C16H10 202,26129-00-03931560.1354.25E-061.30E-055.30 9.ChryseneC18H12228,29218-01-9 448 255-256 0.0015 7.80E-09n.a.5.61 10.Benzo(a)anthraceneC18H12 228,2956-55-34351620.0111.54E-071.20E-065.91 11.Benzo(a)pyrene C20H12252,3250-32-8 495* 176.4*0.0038 4.89E-097.40E-056.35 12.Benzo(b)fluorantheneC20H12 252,32 205-99-2 n.a. 162-165* 0.0140 8.06E-08 n.a. 5.78 13.Benzo(k)fluorantheneC20H12252,32207-08-9 480 217 0.0080 9.59E-112.70E-076.20 14.Benzo(g,h,i)perylene C22H12 276,34 191-24-2 542* 277-279* 0.0003 1.00E-10 2.00E-07 6.90 15.Indeno(1.2.3-cd)pyrene C22H12276,34193-39-5 260* 160* 0.0005 1.40E-10n.a.6.51 16.Dibenzo(a,h)anthraceneC22H14 278,35 53-70-3 n.a. 269-270 0.0005 2.10E-11 2.00E-09 6.75 n.a. = data not available; a = Weast & Astle, 1985; b = Bojes & Pope, 2007; c = Schwarzenbach et al. 1993; d = Williamson et al., 2002; e = Martinez et al., 2004; * = Beilstein Database from various references as follows: Fluoranthene(MP): Ref. 2, 1718469; Journal; Hershberg bei Fieser; Novello; JACSAT; Journal of the American Chemical Society; 62; 1940; 1855,1859 Anm. 23; DOI: 10.1021/ja01864a061; ISSN: 0002-7863. Benzo(a)pyrene(BP): Ref. 1, 4467311; Journal; Lewis; Edstrom; JOCEAH; Journal of Organic Chemistry; 28; 1963; 2050,2053; ISSN: 0022-3263.; (MP): Ref. 9, 4258666; Journal; Murray et al.; CJCHAG; Canadian Journal of Chemistry; 52; 1974; 557; DOI: 10.1139/v74-087; ISSN: 0008-4042. Benzo(b)fluoranthene(MP): Ref. 2, 159677; Journal; Badger,G.M.; Spotswood,T.M.; JCSOA9; Journal of the Chemical Society; English; 1960; 4420 - 4427; DOI: 10.1039/jr9600004420; ISSN: 0368-1769. Benzo(g,h,i)perylene(BP): Ref. 3, 6482028; Journal; Gonzalez, Maykel Perez; Toropov, Andrey A.; Duchowicz, Pablo R.; Castro, Eduardo A.; MOLEFW; Molecules; English; 9; 12; 2004; 1019 - 1033; ISSN: 1420-3049.; (MP): Ref. 9, 4276855; Journal; Aronson; Katlowitz; JINCAO; Journal of Inorganic and Nuclear Chemistry; 41; 1979; 1579; DOI: 10.1016/0022- 1902(79)80180-3; ISSN: 0022-1902. Indeno(1,2,3-cd)pyrene(BP): Ref. 1 4623412; Journal; Studt; JLACBF; Justus Liebigs Annalen der Chemie; 1978; 530; ISSN: 0075-4617.; (MP): Ref. 3 4467311; Journal; Lewis; Edstrom; JOCEAH; Journal of Organic Chemistry; 28; 1963; 2050,2053; ISSN: 0022-3263.

125

Appendix 2. Emission factors and isomeric ratios of PAHs from various pyrogenic and petrogenic sources (literature data)

Appendix 2.1. Emission factors of PAHs (mg/kg fuel) from various coal, biomass, and petroleum combustions

Sources

Emission Factor (mg/kg fuel)

Remarks References

Coal

Bituminous Coal 121 Cu addition at 800oC Yan et al 2004 Bituminous Coal 248 Cupric oxide, CuO, addition at

1000oC Yan et al 2004 Coal Briquette 101 Cookstove in Southeast Asia Oanh et al., 1999 Bituminous Coal 109 Domestic heating Lee et al., 2005 Bituminous Coal 1435 Residential heating coal source:

the Jinxi coal mine in Beijing Liu et al 2009 Bituminous Coal 1096 Coal source: the Datong coal

mine in Shanxi province Anthracite Coal 77,8 coal source: the Jinxi coal mine in

Beijing

Anthracite Coal 151 Coal source: the Datong coal mine in Shanxi province Honeycomb Briquette 812 Coal source: the Datong coal

mine in Shanxi province Bituminous Coal 152 Samples from Elmsworth

gasfield, Canada

Willsch & Radke, 1995 cited in Achten & Hofmann, 2009 Bituminous Coal 137 Elmsworth gasfield, Canada

Bituminous Coal 153 Ruhr basin, Osterfeld Germany Bituminous Coal 124 Ruhr basin, Hugo Germany Bituminous Coal 164 Ruhr basin, Westerholt Germany Bituminous Coal 155 Ruhr basin, Blumenthal Germany

Biomasses Woods

Almond 14,1 Wind tunnel simulation of open

burning Jenkins et al.,1996

Walnut 23,1 Jenkins et al.,1996

Pine 26,7 Jenkins et al.,1996

Fir 28,0 Jenkins et al.,1996

Chinese clay woodstoves 23,3 Domestic heating Oanh et al., 2005

Wood 36,8 Domestic burning Lee et al., 2005

Eucalyptus wood 1 33,5 Residential fireplace Schauer et al., 2001

Oak Wood 38,0 Schauer et al., 2001

Lao traditional wood chips 41,2 Cookstove fuel system in Asia Oanh et al., 2005

Thai bucket wood chips 50,2 Oanh et al., 2005

Cambodian traditional wood

chips 53,4 Oanh et al., 2005

Vietnam traditional wood

chips 56,4 Oanh et al., 2005

Eucalyptus wood 110 Open burning in Southeast Asia Oanh et al., 1999

Paper 68,8 Joss paper furnace Yang et al., 2005

Grasses / debris

Rice grasses 15,1 Wind tunnel simulation of open

burning Jenkins et al.,1996

Corn grasses 45,3 Jenkins et al.,1996

Agricultural debris 410 Open burning Kakareka & Kukharchyk, 2003 Petroleum

Natural Gas 2,82 Industrial boiler Li et al., 1999

Diesel 2,86 Industrial boiler Li et al., 1999

Heavy oil 13,6 Industrial boiler Li et al., 1999

Fuel Oil 3,51 Industrial stacks, heavy oil plant Yang et al., 1998

Diesel 4,66 Heavy-duty Vehicles Marr et al., 1999

Diesel* 5,84 Light-duty Diesel Vehicles de Abrantes et al., 2004

*mg/km

126

Appendix 2.2. The isomeric ratios for source apportionment from various organic matter combustion/burnings

Sources LMW/HMW MW 178 MW 202 MW 228 MW 276 References Coal and Petroleum combustions

Coal- Cement

Industry 18 0,10 0,24 0,58 0,65 Yang et al., 1998 Bituminous Coal 10 0,12 0,21 0,35 0,31 Yang et al., 1998

Charcoal 7,3 0,21 0,33 0,37 Oanh et al., 1999

Coal Briquette 15 0,55 0,32 0,15 Oanh et al., 1999 Bituminous Coal 5,1 0,40 0,93 0,49 0,36 Lee et al., 2005 Diesel, Industrial

Boiler 1,1 0,28 0,91 0,61 0,28 Li et al., 1999

Fuel Oil, Heavy-oil

Plant 6,0 0,14 0,24 0,35 0,35 Yang et al., 1998

Diesel – Heavy-duty

Vehicles 1,0 0,43 0,56 Marr et al., 1999

Heavy oil, Industrial

Boiler 6,5 0,25 0,52 0,53 0,70 Li et al., 1999

Light-duty Diesel

vehicles 1,7 0,04 0,93 0,87 de Abrantes et al.,

2004 Biomass Burnings

Woods/Bamboo

Almond 8,3 0,14 0,54 0,51 Jenkins et al.,1996

Walnut 8,6 0,16 0,57 0,43 Jenkins et al.,1996

Chinese clay

woodstoves 4,3 0,25 0,79 0,56 0,59 Oanh et al., 2005 Pine-domestic

heating 8,8 0,14 0,56 0,53 Jenkins et al.,1996

Fir 6,1 0,16 0,55 0,54 0,00 Jenkins et al.,1996

Eucalyptus wood 2,4 0,18 0,56 0,48 0,49 Schauer et al., 2001 Wood, Domestic

Heating 2,6 0,20 0,52 0,53 0,57 Yang et al., 2005

Oak Wood 2,5 0,19 0,57 0,45 Schauer et al., 2001

Lao traditional wood

chips 2,4 0,26 0,77 0,51 0,64 Oanh et al., 2005

Thai bucket wood

chips 4,0 0,28 0,79 0,39 0,82 Oanh et al., 2005

Cambodian traditional wood chips

2,9 0,24 0,81 0,53 0,77 Oanh et al., 2005 Vietnam traditional

wood chips 4,2 0,21 0,80 0,40 0,88 Oanh et al., 2005 Eucalyptus wood 7,4 0,29 0,67 0,48 0,69 Oanh et al., 1999 Joss Paper 14 0,04 0,65 0,11 0,56 Yang et al., 2005

Bamboo 0,2 0,30 0,53 0,50 1,00 Oros et al., 2006

Grasses/debris/peats

Sugarcane 0,4 0,23 0,53 0,42 1,00 Oros et al., 2006

Pampas grass 0,2 0,16 0,43 0,52 Oros et al., 2006

Mixed ryegrass 0,7 0,21 0,44 0,68 Oros et al., 2006 Rice grasses 10 0,15 0,59 0,47 0,50 Jenkins et al.,1996 Corn grasses 0,3 0,04 0,50 0,40 0,94 Jenkins et al.,1996 Agricultural Debris 3,4 0,23 0,71 0,69 0,26 Kakareka &

Kukharchyk, 2003 Peat Burning Dumai

(ng/m3) 0,7 0,16 0,38 0,73 0,62 See et al 2007

Peat Smoke

Pekanbaru (ng/m3) 0,7 0,79 0,49 0,90 0,68 See et al 2007

127

Appendix 2.2.

Sources LMW/HMW MW 178 MW 202 MW 228 MW 276 References Crude oil / Oil Spills

Alaskan North Slope

Crude (ppm) 10 0,03 0,26 0,10 0,18 Requojo et al. 1996

Oil spills "Oil Tanker

Enrika" (mg/kg) 1,0 0,15 0,15 0,37 0,21 Baars et al., 2002 Oil spills "Enrika"

Beach Sample1 0,7 0,13 0,11 0,31 0,37

Oil spills "Enrika"

Beach Sample2 0,4 0,14 0,09 0,31 0,47

Detroil Oil Spill_1

(μg/g TSEM*) 1,3 0,10 0,57 0,51 0,47 Wang et al 2004 Detroil Oil Spill_2 1,5 0,11 0,57 0,50 0,47

Detroil Oil Spill_3 1,0 0,05 0,61 0,51 0,49

LMW/HMW = sigma low molecular weight compounds (2-3 rings) / sigma high molecular weight compounds (4-6 rings)

MW 178= the ratio of anthracene /( anthracene + phenanthrene) MW 202 = the ratio of fluoranthene /( fluoranthene + pyrene)

MW 228 = the ratio of benzo(a)anthracene/( benzo(a)anthracene + chrysene)

MW 276 = the ratio of indeno(1,2,3-cd)pyrene /( indeno(1,2,3-cd)pyrene + benzo(g,h,i)perylene)

*TSEM = total solvent-extractable materials

128 Appendix 3.1. Dilution system of 16 PAH reference standards for calibration Standard Stock = 16 PAH Mix 61 (US EPA 16) in 1 mL acetone/methanol (1:1) obtained from Dr. Ehrenstorfer GmbH, Augsburg, Germany Dilution solvent = acetonitrile (HPLC grade) Concentration unit= ng/μl CompoundStockSub-Stock Calibration standard (CAL-#) 1 2 3 4 5 6 7 8 9 10 Dilution Fractor (DF) 10100 200 400 800 1000 2000 4000 10000 20000 40000 Naphthalene 1000 100 105 2,5 1,251 0,5 0,250,1 0,050,025 Acenaphthylene 2000 200 201052,5210,50,20,10,05 Acenaphthene 1000 100 105 2,5 1,251 0,5 0,250,1 0,050,025 Fluorene200 20210,50,250,20,10,050,020,010,005 Phenanthrene 100 101 0,5 0,250,125 0,1 0,050,025 0,010,005 0,0025 Anthracene100 1010,50,250,1250,10,050,0250,010,0050,0025 Fluoranthene200 20210,50,250,20,10,050,020,010,005 Pyrene100 1010,50,250,1250,10,050,0250,010,0050,0025 Benzo(a)anthracene100 101 0,5 0,250,125 0,1 0,050,025 0,010,005 0,0025 Chrysene 100 1010,50,250,1250,10,050,0250,010,0050,0025 Benzo(b)fluoranthene200 20210,50,250,20,10,050,020,010,005 Benzo(k)fluoranthene100 1010,50,250,1250,10,050,0250,010,0050,0025 Benzo(a)pyrene100 101 0,5 0,250,125 0,1 0,050,025 0,010,005 0,0025 Dibenzo(a,h)anthracene200 20210,50,250,20,10,050,020,010,005 Benzo(g,h,i)perylene 200 20210,50,250,20,10,050,020,010,005 Indeno(1,2,3-c,d)pyrene 100 1010,50,250,1250,10,050,0250,010,0050,0025 Making a dilution Prepared from Sub-Stock Prepared from CAL-2 Prepared from CAL-7 Dilution Factor 10204080 510202.5510 Volume standard (μL) 1000 400 400 200 100 50 800 400 200 1600 800 400 Acetonitrile (μL) 3600 3600 3800 3900 3950 3200 3600 3800 2400 3200 3600

129

Appendix 3.2.1. Percent recovery of surrogate standards used for compensating the procedural efficiency and reproducibility in surface sediment fractions.

Sample Station Sediment Fraction (μm)

d10-phenanthrene d10-fluoranthene d12-perylene

River S 24 > 63 74,1 109 100

< 63 79,5 98,5 90,8

S 101 > 63 83,2 117 90,5

< 63 74,1 94,0 95,0

S 20 > 63 99,2 113 94,9

< 63 86,9 103 101

S 104 > 63 81,1 105 88,5

< 63

S 105 > 63 40,6 117 85,0

< 63

S 35 > 63 72,5 82,3 88,5

< 63

S 116 > 63 78,1 105 87,3

< 63 69,7 99,4 119

S 42 > 63 94,1 84,2 73,9

< 63 109 105 99,7

S 145 > 63 76,3 102 92,4

< 63 81,2 108 83,9

Estuary

S 143 > 63 64,5 93,9 82,5

< 63 77,0 105 94,3

S 142 > 63 86,3 119 96,7

< 63 75,7 93,0 94,5

S 138 > 63 66,5 72,9 75,8

< 63 92,2 93,6 86,2

S 134 > 63 83,2 108 104

< 63 93,4 76,7 106

S 252 > 63 82,8 97,5 95,1

< 63 82,8 97,5 109

S 125 > 63 69,5 77,8 89,6

< 63 82,4 103 82,7

S 250 > 63 113 109 121

< 63 99,1 87 119

S 251 > 63 81,2 115 87,5

< 63 82,8 109 107

Coast

S 269 > 63 73,1 70,2 102

< 63 68,0 69,4 103

S 226 > 63 82,8 92,0 75,6

< 63 82,8 141 120

S 227 > 63 82,8 88,4 81,5

< 63 82,8 99,9 104

S 228 > 63 77,2 94,9 99,7

< 63 79,4 87,3 86,7

S 267 > 63 94,2 104 88,8

< 63 70,3 86,4 87,3

S 266 > 63 97,3 90,5 107

< 63 84,0 117 118

S 253 > 63 82,8 114 91,6

< 63 82,8 89,0 90,4

S 230 > 63 114 87,0 79,8

< 63 96,8 97,1 83,2

S 231 > 63 95,2 81,1 83,2

< 63 82,6 97,9 99,4

S 232 > 63 83,6 91,3 95,5

< 63 78,4 74,7 84,9

130

Appendix 3.2.2. Percent recovery of surrogate standards used for compensating the procedural efficiency and reproducibility in SPM and SPE.

Sample Station d10-phenanthrene d10-fluoranthene d12-perylene SPM

River S102 75,6 93,3 79,4

S105 118 91,1 99,5

S115 80,2 85,1 79,4

S205 84,2 114 87,7

S272 101 102 95,4

S218 103 96,1 92,2

S216 109 103 92,2

S 291 85,5 103 88,4

S 301 103 103 96,6

Estuary S 139 103 73,5 92,3

S 140 108 88,8 90,3

S 137 102 85,2 82,4

S 134 93,9 118 113

S 133 89,2 86,8 101

S 132 79,0 98,1 97,4

S 124 98,5 84,8 93,4

125 102 112 115

126 91,0 92,0 93,7

128 101 86,3 95,5

130 87,2 105 104

Coast S 225 106 94,7 106

S 226 88,2 105 96,1

S 227 107 96,5 105

S 228 89,7 95,7 98,4

S 267 87,2 90,9 105

S 266 104 102 96,1

S 233 101 107 101

S 230 96,1 108 101

S 231 88,5 88,5 76,0

S 232 85,2 90,0 94,8

S 229 86,2 95,9 101

S 251 93,3 104 93,2

SPE S 291 85,4 85,3

S 370 87,8 97,1

S 301

S 305 98,2 88,4

S 307 96,7 77,2

S 312 88,0 101

S 314 95,9 97,9

S 316 88,0 81,2

S 317 94,6 91,5

S 318 103 96,8

S 324 79,9 71,5

131 Appendix 4. Tables for the Manuscript in the Chapter IV

Table 1. Sampling stations and properties of the sediment fractions

Station Sand Mud

Percentage of total sediment

Organic Carbon

(%)

Total Nitrogen

(%)

C/N (mol/mol)

Percentage of total sediment

Organic Carbon

(%)

Total Nitrogen

(%)

C/N (mol/mol) River

S 24 17.2 2.34 0.30 9.12 77.8 3.08 0.75 4.82

S 101 45.5 1.71 0.25 8.11 45.3 2.39 0.40 6.91

S 20 76.6 0.29 0.01 41.7 16.8 2.98 0.29 11.8

S 104 99.0 0.05 0.003 18.5 0.40 n.a. n.a. n.a.

S 105 98.4 0.14 0.008 19.4 1.11 n.a. n.a. n.a.

S 35 87.3 0.22 0.01 24.3 2.22 n.a. n.a. n.a.

S 116 34.1 3.52 0.34 11.9 62.6 3.70 0.26 16.4

S 42 6.06 14.0 0.62 26.2 63.3 3.24 0.38 9.89

S 145 69.0 2.08 0.11 22.5 28.4 1.41 0.20 8.32

Estuary

S 143 33.0 4.04 0.36 12.9 60.4 2.25 0.13 20.4

S 142 24.2 24.0 1.14 24.6 70.3 1.27 0.16 9.53

S 138 12.3 9.07 0.64 16.5 70.3 1.46 0.19 8.85

S 134 16.3 4.78 0.45 12.4 72.3 1.61 0.11 17.6

S 252 59.1 1.25 0.11 12.7 37.4 2.04 0.27 8.67

S 125 33.5 1.96 0.21 10.7 59.7 1.13 0.09 14.7

S 250 20.8 7.29 0.55 15.5 55.4 3.31 0.35 10.9

S 251 91.8 0.22 0.03 9.08 4.14 1.82 0.08 27.2

Coast

S 269 6.78 0.11 0.01 24.0 84.3 1.05 0.09 13.4

S 226 18.8 0.23 0.01 28.1 72.8 0.41 0.04 12.2

S 227 28.5 2.66 0.07 42.2 65.9 0.34 0.04 9.80

S 228 18.0 2.37 0.06 43.8 75.8 0.46 0.05 11.7

S 267 64.7 0.01 0.001 11.1 29.0 1.19 0.10 13.8

S 266 55.0 0.30 0.01 49.2 26.9 1.15 0.09 14.8

S 253 24.1 0.28 0.01 32.9 69.5 1.44 0.09 18.7

S 230 3.75 0.05 0.004 17.4 65.5 1.29 0.09 16.2

S 231 7.25 1.13 0.04 30.6 69.2 2.18 0.14 18.8

S 232 4.58 6.72 0.16 47.9 83.0 1.71 0.11 18.6

n.a. = data not available due to insufficient sediment

132 Table 2. Median and range of PAH contents (ng g-1 d.w.) in the global sediment fractions from the Siak River, estuary and the coastal areas. The PAHs are ordered by following their elution time. PAHs Bulk was calculated from the fraction contents

Compound River Estuary Coast

Median Range Median Range Median Range

SAND

Naphthalene 48,8 14.2 – 310 45,8 13.0 – 221 42,0 3.24 - 84.0 Acenaphthylene 108 9.68 –4235 104 80.7 –2085 805 426 - 1780 Acenaphthene 23,5 1.93 – 155 23,3 7.24 - 83.5 14,5 5.50 - 133 Fluorene 7,96 1.92 - 89.0 7,19 2.83 - 26.6 1,87 0.68 - 4.99 Phenanthrene 20,2 9.05 – 321 18,8 10.3 - 78.0 7,73 3.51 - 31.6 Anthracene 1,65 0.58 - 4.49 3,58 1.52 - 24.5 1,10 0.07 - 15.4 Fluoranthene 31,2 9.13 – 138 45,9 12.2 – 119 59,3 8.99 - 378 Pyrene 45,2 7.32 – 335 20,7 4.54 – 114 13,7 1.20 - 94.7 Benzo(a)anthracene 7,86 1.98 - 31.4 10,3 0.93 - 42.6 5,79 0.31 - 81.6 Chrysene 10,1 3.98 - 47.0 18,1 1.26 - 49.8 9,59 0.15 - 114 Benzo(b)fluoranthene 14,9 2.06 – 278 25,3 6.75 – 137 17,9 0.84 - 179 Benzo(k)fluoranthene 4,97 1.35 - 34.3 10,4 1.47 - 76.7 2,22 0.07 - 50.5 Benzo(a)pyrene 2,88 1.01 - 32.5 15,9 1.31 – 210 8,30 0.87 - 249 Dibenzo(a,h)anthracene 129 4.09 – 580 70,4 8.63 – 885 26,7 1.42 - 1061 Benzo(g,h,i)perylene 4,52 0.48 - 40.1 5,46 0.37 - 43.3 10,5 0.47 - 194 Indeno(1,2,3-c,d)pyrene 7,23 0.39 - 18.1 17,7 0.77 - 71.8 3,90 0.30 - 37.1 PAHs 556 164 – 5474 425 208 – 3913 1442 594 - 2495

MUD

Naphthalene 63,0 23.3 - 67.4 34,8 12.5 - 61.1 28,6 15.3 - 41.9 Acenaphthylene 144 38.6 – 836 162 9.42 – 314 403 257 - 762 Acenaphthene 18,4 3.82 - 40.9 24,9 2.23 - 65.1 10,7 1.60 - 70.7 Fluorene 3,84 1.90 - 15.1 3,54 1.57 - 4.82 2,83 1.08 - 3.93 Phenanthrene 16,4 5.27 - 25.2 13,4 6.44 - 34.3 6,20 0.94 - 23.8 Anthracene 1,40 0.69 - 2.17 1,77 0.53 - 6.31 0,60 0.09 - 3.35 Fluoranthene 35,2 18.7 - 97.9 26,0 8.58 – 106 34,4 3.73 - 228 Pyrene 30,6 11.5 - 93.6 14,3 2.19 - 38.0 10,9 2.29 - 40.4 Benzo(a)anthracene 5,06 3.38 - 18.6 3,88 1.08 - 7.68 2,55 1.24 - 40.0 Chrysene 8,60 3.91 - 52.0 8,29 2.37 - 12.8 5,51 0.67 - 59.1 Benzo(b)fluoranthene 17,8 2.59 - 79.7 14,9 5.56 - 38.9 8,86 2.89 - 51.8 Benzo(k)fluoranthene 5,86 1.90 - 17.3 4,57 0.05 - 10.9 1,79 0.88 - 7.97 Benzo(a)pyrene 4,31 0.32 - 11.8 5,52 2.45 - 21.1 4,12 0.45 - 31.7 Dibenzo(a,h)anthracene 198 0.98 – 405 38,7 6.10 – 206 15,9 4.18 - 188 Benzo(g,h,i)perylene 7,87 4.03 - 16.0 5,21 1.82 - 16.7 9,94 0.70 - 48.9 Indeno(1,2,3-c,d)pyrene 7,86 1.81 - 11.7 3,77 2.09 - 13.8 4,24 0.09 - 16.8

PAHs 521 319 – 1143 468 126 – 584 633 443 – 1314

PAHs Bulk 484 161 – 1055 443 145 – 880 577 454 – 1234

133 Table 3. Summary of PAHs (ng g-1 d.w.) from different river, estuarine and coastal sediments in several Asian and European countries. The contents were mainly derived from bulk sediment.

The sediment fraction contents from this study are included as comparison

Locations Sampling

year

PAH Median* Content

range Reference

Asia

Indonesia, Riau Province

2004 - 2006 16 837 164 - 5474 Sand fraction, this study Siak river, estuary and the

coastal areas 16 493 126 - 1314 Mud fraction, this

study

Siak river 16 484 161 - 1055 Bulk, this study

Estuary 16 443 145 - 880 Bulk, this study

Riau Coast 16 577 454 - 1234 Bulk, this study

Malaysia 1998, 1999 15 Zakaria et al., 2002

Rivers 75 20 - 924

Estuaries 257 19 - 431

Coastal areas 24 9 - 39

Malacca Straits 8.5 4 - 73

Thailand, Chao Praya River and the

estuary 2003, 2004 17 Boonyatumanond et al.,

2006

River 251 33 - 594

Estuary 88 30 - 724

Whole Thai Coast 36 6 - 228

China

Minjiang River estuary,

China 1999 16 433** 112 – 877 Zhang et al, 2004 Tonghui River, Beijing,

China 2002 16 540** 127 – 928 Zhang et al, 2004 Pearl River and Estuary,

China 2002 18 279 189 - 637 Luo et al., 2006 Middle and lower Yellow

River, China

2004

13 91 31 - 133 Li et al., 2006 Daya Bay, China 1999 16 481** 115 – 1134 Zhou & Maskaoui, 2003 Jiulong River Estuary, China 1999 16 238 59 - 1177 Maskaoui et al. 2002 Korea

Mouth of Han river,

Kyeonngi Bay, Korea 1995 18 83* 29 – 230 Kim et al, 1999 Masan Bay, Korea 1997 18 680** 207 – 2670 Yim, et al, 2005 India, Yamuna River, Delhi, (river

bank sediment) 2003 16 9490 4500 -

23530 Agarwal et al., 2006 Europe

Italy, Porto Torres harbor, Northern

Sardinia 1999 16 740 70 – 1210 De Luca et al, 2004 Olbia harbor, Northern

Sardinia, Italy n.a 16 315 160 - 770 De Luca et al., 2005 Lagoon of Venice, Italy 1987 13 136 20 – 502 Secco et al, 2005

1993 13 177 23 – 570 1998 13 131 23 - 532

The UK, Brighton marina 1999 16 631 24 – 4710 King et al, 2004 Coastal areas of the Adriactic Sea 1996 15 Magi et al., 2002

Chioggia 367 24 – 501

Ancona 192 34 - 307

Coastal areas of the Black Sea 1995 18 61 7 - 638 Readman et al., 2002

*) own calculation from the literature data

**) mean value (unavailable data from given literatures for median calculation)

134 Appendix 5. Tables for the Manuscript in the Chapter V Table 1. Concentration of PAHs (ng L-1 ) in the water from the Siak River, the estuary and the coastal areas of Riau Province River Estuary Coast S 291 S 370 S 305 S 301 S 307 S 312 S 314 S 316 S 324 S 317 S 318 Latitude 00° 33,53100° 35.85700° 42, 68400° 45, 76000° 49, 77101° 07, 60801° 11, 57601° 14, 506 01° 37, 549 01° 53, 576 01° 53, 906 Longitude 10 23,712101° 35.410101° 40, 122101° 47, 685102° 03, 566102° 08, 508102° 09, 866102° 10, 245101° 53, 988102° 00, 410102° 00, 560 Compound Naphthalene 35557.589.1 2128.86 49.9 31.5 57.6 25.218.7 29.8 Acenaphthylene123 ND189313ND76.8 140.176.7NDNDND AcenaphtheneNDNDND 92.9ND 34.4NDNDNDNDND Fluorene 9.26 3.9123.0 72.4 <DL 28.8 13.3 9.37<DL 3.682.38 Phenanthrene66.3 52.3385126264.9 12013855.7 31.042.9 25.2 Anthracene 10.5 4.07 11.4 110 2.618.7 3.99 8.76 1.73 6.97 3.57 Fluoranthene 91.8 58.7275250528.9 ND15680.3 54.939.8 49.4 Pyrene 25.5 22.841.6 40216.2 28.1 33.2 17.4 7.1811.5 11.2 Benzo(a)anthracene 25.9 11.35.33 58.5 1.03 7.86 5.82 4.390.641.801.76 Chrysene 10.8 5.434.43 48.9 2.15 7.86 11.8 5.050.471.671.73 Benzo(b)fluoranthene 45.2 15.14.28 29.0 <DL 6.84 6.65 2.89<DL 1.592.60 Benzo(k)fluoranthene13.5 3.851.32 0.26 <DL 1.60 3.94 0.720.260.320.19 Benzo(a)pyrene16.5 4.712.6610.80.931.47 7.210.73<DL0.220.13 Dibenzo(a,h)anthracene 12.7 5.542.16 22.5 3.71 ND 39.2 NDNDND0.91 Benzo(g,h,i)perylene10.4 2.731.95 1.19 ND2.65 24.5 ND<DL <DL 1.08 Indeno(1,2,3-c,d)pyrene 7.921.68ND ND NDND3.55NDND0.530.37 PAHs 824 250 10355140129 385 619 320 121 130 130 ND = not detected; <DL = below detection limit

135 Table 2.a. PAHs content (ng g-1 ) in the SPM from Siak River waters. Mar-04Sep-04 Jul-05 Mar-06 Upstream PKUPRW Upstream PKU PRW Upstream PKU PRW PKU PRW StationS17 S10 S9 S102S105S115S205S272S218 S216S291 S301 Latitude00° 36' 40,7'' 00° 32,51600° 42,698 00° 35´ 46,5´´00° 33´ 32,9´´00° 35,846 00° 36, 796 00° 32, 753 00° 32, 770 00° 46, 675 00° 33,53100° 45, 760 Longitude101° 19' 05,5'' 101° 26,118101° 40,105 101° 18´ 34,5´´101° 22´ 59,7´´101° 35,319 101° 18, 990101° 28, 121 101° 28, 161 101° 46, 364101° 23,712101° 47, 685 Compound Naphthalene 10477 11271718835 90.7119313 29.715.2157 2146 788 Acenaphthylene 14770 12935136724 10181100269 125 66.9282 ND ND Acenaphthene 96.778.2NDNDND NDND ND NDND124 ND Fluorene 28422169.147.356.025.212.923.231.544.265.8 30.0 Phenanthrene 6350 806015311335 535683199 333 369584 1012 527 Anthracene 85.979.231.7 22.47.653.95 5.515.005.6111.69.50 12.6 Fluoranthene 654855619048845 3171491998252 261471 732 1498 Pyrene 15017 11076 29153897 25750.8 1053501 217319 927 1715 Benzo(a)anthracene 2138 1851737 768 17.049.11 69.630.126.821.3122 186 Chrysene 2826 240910771062 35.15.69 140 50.543.137.3117 352 Benzo(b)fluoranthene 2309 2353370 137 8.587.54 80.949.116.159.5167 75.2 Benzo(k)fluoranthene 39552117.584.36.37<DL6.1218.06.896.9510.3 6.24 Benzo(a)pyrene 18224629.0 48.31.761.46 5.1619.021.321.212.2 21.7 Dibenzo(a,h)anthracene 3085 1309125512 11112191.0356 271257 545 ND Benzo(g,h,i)perylene 34852843.6 45.839.213.4 6.78278 87.9124 460 74.1 Indeno(1,2,3-c,d)pyrene 32.1 35.6 ND10.5 4.68 1.46 11.5 16.5 36.0 17.1ND ND PAHs 59050 39743 157041837325042330426220861475 24136449 5286 SPM (mg/L) 12.1 17.523.028.840.579.2152 38.942.359.828.336.8 PAHs (ng/L) 715 694 362 529 101185 647 81 62 144 182 195 ND = not detected; <DL = below detection limit; PKU = Pekanbaru; PRW = Perawang

136 Table 2.b. PAHs content (ng g-1 ) in the SPM from estuarine waters Low(0 – 10 psu) Medium(10 – 25 psu) High ( > 25 psu) S 139 S 140 S 137S 134 S 130 S 126 S 132S 124S 133S 125S 128 Latitude01° 04,61601° 07,72401° 07,84501° 07,91501° 15,59101° 15,57801° 14,47401° 15,539 01° 13,354 01° 14,03301° 13,999 Longitude 10 07,958102° 07,793102° 09,150 10 09,633102° 10,212102° 10,25610 10,166 102° 10,022102° 10,072102° 11,98110 11,992 Salinity (psu)1.33.0 5.0 10.9 20.8 25.3 26.2 26a 26.327.427.6 Compound Naphthalene 16910.125.3120371.742.527115.3218 337 75.1 Acenaphthylene ND33.6ND 2532NDND 463124 2760ND 28.9 Acenaphthene NDNDND ND<DL 2.63NDND ND ND <DL Fluorene22.85.955.7931.35.78 3.59 18.26.0818.9ND15.3 Phenanthrene21340.847.3 814 77.026.616475.9202 144 179 Anthracene 5.711.321.8418.3 1.70 0.73 3.27 2.033.652.743.12 Fluoranthene21440.111.3 813 71.422.123158.0152141156 Pyrene 84138.635.2139450.1 20.4 61.376.659.2198107 Benzo(a)anthracene 7.732.551.42 300 2.504.209.04 7.205.1823.612.5 Chrysene 76.39.1211.4 412 8.575.691.827.018.6522.414.4 Benzo(b)fluoranthene 18.512.715.574.847.3 17.4 11.731.711.732.629.6 Benzo(k)fluoranthene10.211.711.614.0 0.45 0.79 0.79 2.93<DL 17.73.71 Benzo(a)pyrene 9.725.245.1911.05.97 5.06 11.77.8920.13.735.48 Dibenzo(a,h)anthracene 199254 26552.3 16.5 1.82 30.1 84.917.4137 86.2 Benzo(g,h,i)perylene17.513.016.9ND6.49 2.21 4.49 6.426.40ND 31.3 Indeno(1,2,3-c,d)pyrene3.723.182.72ND 1.95 ND 1.63 10.0ND ND 10.0 PAHs 1808482 457 7669 367156 1282516 34831059758 SPM (mg/L) 129 262 280 38.269.2 625 74.2135 51.348.3141 PAHs (ng/L) 233 127 128293 25.4 97.3 95.269.7179 51.2107 a = estimated value; ND = not detected; <DL = below detection limit

137 Table 2.c. PAHs content (ng g-1 ) in SPM from coastal waters. The stations are labelled from the north part of the Riau coastline starting at the industrial city of Dumai and continuing down to the south path of Selat Panjang Station S 225S 226 S 227 S 228 S 229a S 267 S 266 S 233 S 251S 230 S 231 S 232 Latitude01° 41, 74501° 39, 970 01° 41' 020''01° 38, 070 01° 53, 49701° 37, 380 01° 31, 240 01° 26, 59001° 16, 35001° 20, 675 01° 12, 65001° 03, 835 Longitude 101° 27, 859 101° 34, 150101° 43' 410'' 101° 51' 110''102° 00, 395 101° 53, 990101° 59, 930 102° 06, 140 102° 09, 118 102° 11, 405102° 13, 930 102° 13, 748 Compound Naphthalene 658 318 342 241 271 2611 804 638 215 105 279 38.7 Acenaphthylene ND 462 337 87.5283 ND 3105 ND 530 65.0ND ND Acenaphthene ND<DL<DL22.5 ND137 86.7 25.7 NDND <DL ND Fluorene15.8 <DLND 7.08 <DLND ND15.16.74 4.20 13.0 1.61 Phenanthrene250 168 70.998.678.9 855 342 943 98.149.7 172 26.1 Anthracene 2.285.32 3.55 4.42 2.45 39.2 7.541.892.23 1.40 7.50 0.87 Fluoranthene122 255 138 206 166 1870 335 106 134 77.0279 37.2 Pyrene 343 318 321 209 185 2054 897 263 163 77.4724 45.0 Benzo(a)anthracene 40.548.5 24.5 50.2 23.7401 76.120.419.5 17.6 24.9 6.46 Chrysene 46.745.0 28.5 38.5 21.3207 79.438.917.0 13.3 86.0 8.17 Benzo(b)fluoranthene 76.583.1 82.3 23.3 59.2842 183.340.377.3 25.1156 19.7 Benzo(k)fluoranthene 5.194.68 0.96 4.52 3.62 36.0 4.252.784.19 5.55 3.53 3.79 Benzo(a)pyrene 14.121.0 11.2 5.92 8.04239 32.79.0611.9 2.88 11.3 2.84 Dibenzo(a,h)anthracene 109 167 83.4 89.4 70.0764 578 144 77.6 51.8359 116 Benzo(g,h,i)perylene4.35185 6.33 94.1 81.4179 25.914.494.9 43.0 31.2 17.2 Indeno(1,2,3-c,d)pyreneND NDND ND7.25 ND ND ND5.09 NDND1.90 PAHs 16872082 14491182 1262102346559 2263 14575392146326 SPM (mg/L) 16.612.5 22.9 13.4 9.25 14.4 12.515.658.3 58.5 22.7125.5 PAHs (ng/L) 28.026.1 33.1 15.8 11.7147 82.335.484.9 31.5 48.7 40.8 a = stations adjacent to the Malacca Strait; ND = not detected; <DL = below detection limit

138 Table 3. Comparison of dissolved and particulate PAHs (ng L-1; ng g-1 d.w. respectively) from various rivers, estuaries and coasts in several Asian and European countries.

Locations Sampling

year

PAHs

Median* Content

range Reference Dissolved PAHs (ng L-1)

Indonesia, Riau Province

Siak river 2006 16 824 129 – 5140 This study

Siak estuary 16 385 320 – 619 This study

Riau coastal areas 16 130 121 – 130 This study

China

Rivers in Tianjin 16 119** 45.8 – 1272 Shi et al., 2005

Daya Bay 1999 16 10984*** 4228 – 29325 Zhou & Maskaoui,

2003 Minjiang River estuary 1999 16 72400*** 9900 – 474000 Zhang et al., 2004

Qiantang River 2005 15 283*** 70.3 – 1844 Chen et al., 2007

Daliao River 2005 16 5648 946 – 13145 Guo et al., 2007

Europe

Seine River, France 1993 10 2 4 – 36 Fernandes et al.,

1997

Baltic Sea 1992 - 1998 15 5.3** < 20 Witt, 2002

Coastal & Estuarine waters around

England & Wales 1993 - 1995 15 139 n.d. – 10724 Law et al., 1997

Oil Spill

The Prestige, NW & northern

Spanish coast, 2002 16 270*** 60 – 2090 Gonzáles et al.,

2006 The North Cape, Point Judith Pond,

NY, * 4 days after n.a 13700 – 497000 Reddy & Quinn,

2001

32 days after n.a ~ 300

Forest Fire

The Llobregat river, Catalonia,

northern Spain 1994 12 70 2 – 336 Olivella et al., 2006

Mediterranean creek, Catalonia,

Spain 2003 16 2.29 0.34 – 4.29 Vila-Escalé et al.,

2007

Particulate PAHs (ng g-1 d.w.)

Indonesia, Riau Province 2004-2006

Siak river 16 5286 1475 – 59050 This study

Siak estuary 16 758 156 – 7669 This study

Riau coastal areas 16 1572 326 – 10234 This study

China

Rivers in Tianjin 16 1325** 938 – 64200 Shi et al., 2005

Pearl River and Estuary 2002 15 536 298 – 1337 Luo et al., 2006

Daliao River 2005 16 1759 305 – 237050 Guo et al., 2007

Europe

Seine River, France 1993 10 + 1

alkyl 5000 1000 – 14000 Fernandes et al., 1997 Elbe River, Germany

At Hamburg 1994 - 1995 18 + 4

alkyl 4150 2540 – 8980 Heemken et al., 2000

At Dessau 11850 6300 – 16570 Heemken et al.,

2000

*) own calculation from the literature data

**) median of the mean values of the sum PAHs

***) mean value

n.a = unavailable data from the given literature for median calculation

139 Appendix 6. Tables for the Manuscript in the Chapter VI

Table 1. Sampling stations and properties of the sediment fractions

Station Coarse Fine

Percentage*) of total sediment

Organic Carbon

(%)

Total Nitrogen

(%)

C/N (mol/mol)

Percentage*) of total sediment

Organic Carbon

(%)

Total Nitrogen

(%)

C/N (mol/mol) Siak Sumatra

S 143 33.0 4.04 0.36 12.9 60.4 2.25 0.13 20.4

S 138 12.3 9.07 0.64 16.5 70.3 1.46 0.19 8.85

S 134 16.3 4.78 0.45 12.4 72.3 1.61 0.11 17.6

S 250 20.8 7.29 0.55 15.5 55.4 3.31 0.35 10.9

S 253 24.1 0.28 0.01 32.9 69.5 1.44 0.09 18.7

S 230 3.75 0.05 0.004 17.4 65.5 1.29 0.09 16.2

S 231 7.25 1.13 0.04 30.6 69.2 2.18 0.14 18.8

S 232 4.58 6.72 0.11 47.9 83.0 1.71 0.11 18.6

Wenchang and Wanquan Hainan

WR-B/06 41.2 0.52 0.04 17.2 58.8 1.21 0.12 12.1

K/06 60.4 0.46 0.02 22.9 39.6 2.84 0.24 14.0

H/06 68.8 1.24 0.02 81.3 31.2 1.91 0.19 11.6

BB4/07 19.3 0.13 0.01 10.1 80.7 1.98 0.18 12.6

WW8/07 32.6 0.39 0.01 33.8 67.4 2.14 0.15 16.7

WW10/07 40.6 0.37 0.02 18.4 59.4 1.80 0.16 13.5

CC02-1/07 85.7 3.87 0.05 88.2 14.3 4.11 0.09 52.3

*) The sum of the percentage of total sediment was not 100% due to the existence of particles bigger than 2 mm.