• Keine Ergebnisse gefunden

5.3. Experimental

5.3.6. Computational methods

The three dimensional structure of compound 5.5 was constructed using MOE 2013.0801. A conformational search by rotating the bond 8-8´ and the C7-OMe group with energy optimization was carried out with the Merck molecular force field (MMFF) (Halgren, 1996). Subsequently, all quantum mechanical calculations were performed with TURBOMOLE 6.5 using the graphical interface TmoleX. The force field minimum-energy structures were optimized with DFT-B3LYP (TZVPP) (Stephens et al., 1994). The CD spectra were calculated with the same method and basis set using Time-dependent density functional theory (TD-DFT) in TURBOMOLE. Visualization and comparison of the calculated spectra with the experimental one was performed with SpecDis Version 1.61 (Bruhn et al., 2013).

Appendix. Supporting Information (this is available online)

A supplemental data associated with this chapter can be found in the online and published part at http://www.sciencedirect.com/science/article/pii/S003194221400199X.

References

Ang’edu, C.A., Schmidt, J., Porzel, A., Gitu, P., Midiwo, J.O., Adam, G., 1999. Coumarins from Hypericum keniense (Guttiferae). Pharmazie 54, 235-236.

Baba, K., Taniguti, M., Yoneda, Y., Kozawa, M., 1990. Coumarin glycosides from Edgeworthia chrysantha.

Phytochemistry 29, 247-249.

Basa, S.C., 1988. Natural biscoumarins. Phytochemistry 27, 1933-1941.

Budzianowski, J., Morozowska, M., Wesolowska, M., 2005. Lipophilic flavones of Primula veris L. from field cultivation and in vitro cultures. Phytochemistry 66, 1033-1039.

Bruhn, T., Schaumlöffel, A., Hemberger, Y., Bringmann, G., 2013. SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 25, 243-249.

Crockett, S.L., Robson, N.K.B., 2011. Taxonomy and chemotaxonomy of the genus Hypericum. Medicinal Aromatic Plant Sci. Biotech. 5, 1-13.

Crispin, M.C., Hur, M., Park, T., Kim, H.Y., Wurtele, E. S., 2013. Identification and biosynthesis of acylphloroglucinols in Hypericum gentianoides. Physiol. Plant.148, 354-370.

Chorot, V., Ropletal, L., Jahodar, L., Patel, A.V., Dacke, C.G., Blunden, G., 1997. Ergosta-4,6,8,22-tetraen-3-one from the edible fungus, Pleurotus ostreatus (oysterfungus). Phytochemistry 48, 1669-1671.

120

Farag, M.A., Wessjohann, L.A., 2012. Metabolome classification of commercial Hypericum perforatum (St. John’s Wort) preparations via UPLC-qTOF-MS and chemometrics. Planta Med. 78, 488-496.

Farag, M.A., Weigend, M., Luebert, F., Brokamp, G., Wessjohann, L.A., 2013. Phytochemical, phylogenetic, and anti-inflammatory evaluation of 43 Urtica accessions (stinging nettle) based on UPLC–Q-TOF-MS metabolomic profiles. Phytochemistry 96, 170–183.

Franke, K., Porzel, A., Schmidt, J., 2002. Flavone-coumarin hybrids from Gnidia socotrana. Phytochemistry 61, 873-878.

Halgren, T.A., 1996. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comp. Chem. 17, 490-519,

Heinke, R., Franke, K. Michels, K., Ali, N.A.A., Wessjohann, L., Schmidt, J., 2012. Analysis of Furanocoumarins from Yemenite Dorstenia Species by Liquid Chromatography/Electrospray Tandem Mass Spectrometry. J. Mass Spectrom. 47, 7-22.

Hou, W.-R., Su, Z.-Q., Pi, H.-F., Yao, G.-M., Zhang, P., Luo, X., Xie, S.-N., Xiang, M., 2010. Immunosuppressive constituents from Urtica dentata Hand. J. Asian Nat. Prod. Res. 12, 707-713.

Ioset, J.-R., Marston, A., Gupta, M.P., Hostettmann, K., 2000. Antifungal and larvicidal compounds from the root bark of Cordia alliodora. J. Nat. Prod. 63, 424-426.

Kang, J., Zhou, L., Sun, J., Han, J., Guo, D.-A., 2008. Chromatographic fingerprint analysis and characterization of furocoumarins in the roots of Angelica dahurica by HPLC/DAD/ESI-MSn technique. J. Pharm. Biomed. Anal. 47, 778-785.

Klingauf, P., Beuerle, T., Mellenthin, A., El-Moghazy, S.A.M., Boubakir, Z., Beerhues, L., 2005. Biosynthesis of the hyperforin skeleton in Hypericum calycinum cell cultures. Phytochemistry 66, 139-145.

Kostova, L., 2006. Coumarins as inhibitors of HIV reverse transcriptase. Curr. HIV. Res. 4, 347-363.

Li, W.-S., Wu, S.-Li., 1997. Xanthones and triterpenoids from Hypericum geminiflorum. Chin. Pharmaceut. J.

(Taipei) 49, 145-156.

Mabberley, D.J., 1997. The Plant-Book. A portable dictionary of the vascular plants, 2nd ed. Cambridge University Press, Cambridge (UK).

Marumoto, M., Miyazawa, M., 2001. Microbial reduction of coumarin, psoralen, and xanthyletin by Glomerella cingulata. Tetrahedron 67, 495-500.

Nedialkov, P.T., Dimitrova, D.-Z., Girreser, U., Kitanov, G.M., 2007. A new isocoumarin from Hypericum annulatum. Nat. Prod. Res. 21, 1056-1060.

Porzel, A., Farag, M.A., Mülbradt, J., Wessjohann, L.A., 2014. Metabolite profiling and fingerprinting of Hypericum species: A comparison of MS and NMR metabolomics. Metabolomics 10, 574-588.

Rahmani, M., Taufiq-Yap, Y.H., Ismail, H.B.M., Sukari, A., Waterman, P.G., 1994. New coumarin and dihydrocinnamic acid derivatives from two Malaysian populations of Micromelum minutum. Phytochemistry 32, 561-564.

Sarris, J., 2007. Herbal medicines in the treatment of psychiatric disorders: a systematic review. Phytother. Res. 21, 703-716.

Schmidt, S., Jürgenliemk, G., Skaltsa, H., Heilmann, J., 2012. Phloroglucinol derivatives from Hypericum empetrifolium with antiproliferative activity on endothelial cells. Phytochemistry 77, 218-225.

Scudiero, D.A., Schoemaker, R.H., Monks, A., Tierney, S., Nofziger, T.H., Currens, M.J., Seniff, D., Boyd, M.R., 1988. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827-4833.

Shiu, W.K.P., Gibbons, S., 2009. Dibenzofuran and pyranone metabolites from Hypericum revolutum ssp. revolutum and Hypericum choisianum. Phytochemistry 70, 403-406.

121 Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.J., 1994. Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. Phys. Chem. 98, 11623-11627.

Tala, M.F., Tchakam, P.D., Wabo, H.K., Talontsi, F.M., Tane, P., Kuiate, J.R., Tapondjou, L.A., Laatsch, H., 2013.

Chemical constituents, antimicrobial and cytotoxic activities of Hypericum riparium (Guttiferae). Rec. Nat. Prod. 7, 65-68.

Tanaka, N., Kashiwada, Y., Kim, S.-Y., Sekiya, M., Ikeshiro, Y., Takaishi, Y., 2009. Xanthones from Hypericum chinense and their cytotoxicity activity evaluation. Phytochemistry 70, 1456-1461.

Vicini, P., Matteo I., La Colla, P., Loddo, R., 2009. Anti-HIV evaluation of benzo[d]isothiazole hydrazones. Eur. J.

Med.Chem. 44, 1801-1809.

Wabo, H.K., Kowa, T.K., Lonfouo, A.H.N., Tchinda, A.T., Tane, P., Kikuchi, H., Frederich, M., Oshima, Y., 2012.

Phenolic compounds and terpenoids from Hypericum lanceolatum. Rec. Nat. Prod. 6, 94-100.

Wirz, A., Simmen, U., Heilmann, J., Calis, I., Meier, B., Sticher, O., 2000. Bisanthraquinone glycosides of Hypericum perforatum with binding inhibition to CRH-1 receptors. Phytochemistry 55, 941-947.

Wu, Q.-L., Wang, S.-P., Du, L.-J., Xiao, P.-G., 1998. Xanthones from Hypericum japonicum and H. henryi.

Phytochemistry 49, 1395-1402.

Yang, W., Ye, M., Liu, M., Kong, D., Shi, R., Shi, X., Zhang, K., Wang, Q., Lantong, Z., 2010. A practical strategy for the characterization of coumarins in Radix Glehniae by liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry. J. Chromatogr. A 1217, 4587-4600.

122

Chapter 6

Prenylated phenyl polyketides and acylphloroglucinols from Hypericum peplidifolium

Graphical abstract*

Ten acetophenone derivatives including new pyranones and furans, along with known acylphloroglucinol type-compounds were isolated from the chemically unexplored Hypericum peplidifolium.

O O

OH

O

O O

unusual prenylated furan antifungal pyranone

OH O O

prenylated phenyl polyketide

Highlights

• First report on constituents and biological activity of Hypericum peplidifolium

• Detection of an unusual prenylated furan ring from the genus Hypericum

• Isolation, characterization, and bioactivity evaluation of phenyl polyketides and acylphloroglucinols

• Complete structural elucidation by HR-MS, 1D- and 2D-NMR

• Occurrence of rare methylated acylphloroglucinols

*This chapter (with slight modifications) was published: Fobofou, S.A.T., Harmon, C.R., Lonfouo, A.H., Franke, K., Wright, S.T., Wessjohann, A.L., 2016. Phytochemistry 124, 108-113. Reprinted (adapted) with permission from the Copyright Clearance Center (confirmation number: 11552515).

123 Abstract

In search for new or chemo-taxonomically relevant bioactive compounds from chemically unexplored Hypericum species, four previously undescribed natural products, named peplidiforones A-D were isolated and characterized from Hypericum peplidifolium A. Rich., together with six known compounds. The structures of all compounds were elucidated by extensive 1D- and 2D-NMR experiments, high resolution mass spectrometric analyses (HR-MS), and by comparison with data reported in the literature. Seven of these compounds are phenyl polyketides while three are acylphloroglucinol type compounds. Peplidiforone C, which possesses an unusual carbon skeleton consisting of a furan ring substituted by a 2,2-dimethylbut-3-enoyl moiety, is the first example of a prenylated furan derivative isolated from the genus Hypericum. The cytotoxicity, antifungal, and anti-herpes simplex virus type 1 (HSV-1) activities of extracts and compounds are described.

Keywords: Hypericum peplidifolium; Hypericaceae; polyketide derivatives; furans; pyranones;

prenylated natural products.

124