• Keine Ergebnisse gefunden

6.3. Experimental

6.3.5. Antifungal bioassay

Crude extracts and pure compounds were tested in 96-well microtiter plate assays against the phytopathogenic ascomycetes Botrytis cinerea Pers. and Septoria tritici Desm. according to the fungicide resistance action committee (FRAC) with the following modifications (FRAC, 2015a, 2015b, 2015c). Briefly, crude extracts were examined at 1250 and 416.7 µ g/ml, while pure compounds were tested at 250, 83.3 and 27.8 µM. The solvent DMSO was used as negative control (max. concentration 2.5%), while the commercial fungicide pyraclostrobin (Sigma Aldrich, Germany) served as positive control (100% inhibition at 83.3 µM). Five to seven days after inoculation, pathogen growth was evaluated by measurement of the optical density (OD) at λ 405 nm with a TecanGENios Pro microplate reader (5 measurements per well using multiple reads in a 3 × 3 square). Each experiment was carried out in triplicates.

135 6.3.6. Antiviral assay

Antiviral activity of pure compounds and crude extract against herpes simplex virus, type 1 (HSV-1, ATCC, VR-1383) was tested in a plaque assay using Vero monolayer in a 96-well plate (Vero cells, ATCC, CCL-81). Cell viability was determined by the addition of PrestoBlue (Invitrogen) and spectrophotometric reading for fluorescence using Softmax Pro (Molecular Devices, Ca). The methods (unpublished) used for this assay are described in detail in the supplemental material.

Appendix. Supporting Information (this is available online)

Supplemental material (antiviral assays, 1H and 13C NMR spectra of compounds 6.1-6.10, ECD spectrum and chiral HPLC chromatogram of compound 6.2) associated with this chapter is available online at http://www.sciencedirect.com/science/article/pii/S0031942216300206.

References

Ang’edu, C.A., Schmidt, J., Porzel, A., Gitu, P., Midiwo, J.O., Adam, G., 1999. Coumarins from Hypericum keniense (Guttiferae). Pharmazie 54, 235-236.

Athanasas, K., Magiatis, P., Fokialakis, N., Skaltsounis, A.L., Pratsinis, H., Kletsas, D., 2004. Hyperjovinols A and B: Two new phloroglucinol derivatives from Hypericum jovis with antioxidant activity in cell cultures. J. Nat. Prod.

67, 973-977.

Crockett, S.L., Robson, N.K.B., 2011. Taxonomy and Chemotaxonomy of the genus Hypericum. Medicinal Aromatic Plant Sci. Biotech. 5, 1-13.

Crispin, M.C., Hur, M., Park, T., Kim, H.Y., Wurtele, E.S., 2013. Identification and biosynthesis of acylphloroglucinols in Hypericum gentianoides. Physiol. Plant. 148, 354-370.

Decosterd, L.A., Stoeckli-Evans, H., Msonthi, J.D., Hostettmann, K., 1987. New antifungal chromenyl ketones and their pentacyclic dimers from Hypericum revolutum VAHL. Helv. Chim. Act. 70, 1694-1702.

Farag, M.A., Wessjohann, L.A., 2012. Metabolome classification of commercial Hypericum perforatum (St. John’s Wort) preparations via UPLC-qTOF-MS and chemometrics. Planta Med. 78, 488-496.

Fobofou, S.A.T., Franke, K., Arnold, N., Schmidt, J., Wabo, H.K., Tane, P., Wessjohann, L.A., 2014. Rare biscoumarin derivatives and flavonoids from Hypericum riparium. Phytochemistry 105, 171-177.

Fobofou, S.A.T., Franke, K., Schmidt, J., Wessjohann, L., 2015a. Chemical constituents of Psorospermum densipunctatum (Hypericaceae). Biochem. Syst. Ecol. 59, 174-176.

Fobofou, S.A.T., Franke, K. Sanna, G., Porzel, A., Bullita, E., La Colla, P., Wessjohann, L.A., 2015b. Isolation and anticancer, anthelmintic, and antiviral (HIV) activity of acylphloroglucinols, and regioselective synthesis of empetrifranzinans from Hypericum roeperianum. Bioorg. Med. Chem., 23, 6327-6334.

FRAC, 2015a. www.frac.info; approved monitoring method by FRAC: BOTRCI microtiter monitoring method BASF 2009 V2.

FRAC, 2015b. www.frac.info; approved monitoring method by FRAC: SEPTTR microtiter monitoring method BASF 2009 V1.

136

FRAC, 2015c. www.frac.info; approved monitoring method by FRAC: PHYTIN microtiter method sporangia BASF 2006 V1.

Hegnauer, R., 1989. Chemotaxonomie der Pflanzen, Vol. 8. Birkhäuser Verlag, Basel.

Heinke, R., Franke, K., Porzel, A., Wessjohann, L.A., Ali, N.A., Schmidt, J., 2011. Furanocoumarins from Dorstenia foetida. Phytochemistry 72, 929-934.

Hohmann, C., Schneider, K., Bruntner, C., Brown, R., Jones, A.L., Goodfellow, M., Krämer, M., Imhoff, J.F., Nicholson, G., Friedler, H-.P., Süssmuth, R.D., 2009. J. Antibiot. 62, 75-79.

Kikuchi, T., Kadoka, S., Matsuda, S., Tanaka, K., Namba, T., 1985a. Studies on the constituents of medicinal related plants in Sri Lanka. II. Isolation and structures of new γ-pyrone and related compounds from Hypericum mysorense HEYNE. Chem. Pharm. Bull. 33, 557-564.

Kikuchi, T., Kadota, S., Matsuda, S., Tanaka, K., 1985b. Studies on the constituents of medicinal and related plants in Sri Lanka. IV. Isolation and structure determination of hyperenone-B, mysorenone-B, and Mysorenone-C from Hypericum mysorense HEYNE and synthesis of hyperenone-A and -B. Chem. Pham. Bull. 33, 1969-1974.

Lecerf-Schmidt, F., Haudecoeur, R., Peres, B., Queiroz, M.M.F., Marcourt, L., Challal, S., Queiroz, E.F., Taiwe, G.S., Lomberget, T., Le Borgne, M., Wolfender, J.-L., De Waard, M., Robins, R.J., Boumendjel, A, 2015. Biomimetic synthesis of tramadol. Chem. Commun. 51, 14451-14453.

Li, H., He, Z., Guo, X., Li, W., Zhao, X., Li, Z., 2009. Iron-catalysed selective oxidation of N-methyl amines: Highly efficient synthesis of methylene-bridged bis-1,3-dicarbonyl compounds. Org. Lett. 11, 4176-41-79.

Mabberley, D.J., 1997. The Plant-Book. A portable dictionary of the vascular plants, 2nd ed. Cambridge University Press, Cambridge (UK).

Porzel, A., Farag, M.A., Mülbradt, J., Wessjohann, L.A., 2014. Metabolite profiling and fingerprinting of Hypericum species: A comparison of MS and NMR metabolomics. Metabolomics 10, 574-588.

Robson, N.K.B., 2003. Hypericum botany. Ed. Ernst, E., Hypericum: The genus Hypericum, Taylor and Francis, New York (USA).

Sarris, J., 2007. Herbal medicines in the treatment of psychiatric disorders: a systematic review. Phytother. Res. 21, 703-716.

Schmidt, S., Jürgenliemk, G., Skaltsa, H., Heilmann, J., 2012a. Phloroglucinol derivatives from Hypericum empetrifolium with antiproliferative activity on endothelial cells. Phytochemistry 77, 218-225.

Schmidt, S., Jürgenliemk, G., Schmidt, T. J., Skaltsa, H., Heilmann, J., 2012b. Bi-, tri-, and polycyclic acylphloroglucinols from Hypericum empetrifolium. J. Nat. Prod. 75, 1697-1705.

Scudiero, D.A., Schoemaker, R.H., Monks, A., Tierney, S., Nofziger, T.H., Currens, M.J., Seniff, D., Boyd, M.R., 1988. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827-4833.

Shiu, W. K. P., Gibbons, S., 2009. Dibenzofuran and pyranone metabolites from Hypericum revolutum ssp. revolutum and Hypericum choisianum. Phytochemistry 70, 403-406.

Sun, X., Kong, X., Gao, H., Zhu, T., Wu, G., Gu, Q., Li, D., 2014. Two new meroterpenoids produced by the endophytic fungus Penicillium sp. SXH-65. Arch. Pharm. Res. 37, 978-982.

Tala, M.F. Talontsi, F. M., Zeng, G.-Z., Wabo, H.K., Tan, N.-H., Spiteller, M., Tane, P., 2015. Antimicrobial and cytotoxic constituents from native Cameroonian medicinal plant Hypericum riparium. Fitoterapia, 102, 149-55.

Tala, M.F., Tchakam, P.D., Wabo, H.K., Talontsi, F.M., Tane, P., Kuiate, J.R., Tapondjou, L.A., Laatsch, H., 2013.

Chemical constituents, antimicrobial and cytotoxic activities of Hypericum riparium (Guttiferae). Rec. Nat. Prod. 7, 65-68.

Tanaka, N., Kashiwada, Y., Kim, S.-Y., Sekiya, M., Ikeshiro, Y., Takaishi, Y., 2009. Xanthones from Hypericum chinense and their cytotoxicity activity evaluation. Phytochemistry 70, 1456-1461.

137 Tanaka, N., Otani, M., Kashiwada, Y., Takaishi, Y., Shibazaki, A., Gonoi, T., Shiro, M., Kobayashi, J., 2010. Petiolins J-M, prenylated acylphloroglucinols from Hypericum pseudopetiolatum var. kiusianum. Bioorg. Med. Chem. Lett. 20, 4451-4455.

Vishwakarma, R.A., Kapil, R.S., Popli, S.P., 1983. Studies in medicinal plants: Part X-Chemical constituents of Hypericum mysorense. Ind. J. Chem. 222, 612-613.

Wabo, H. K., Kowa, T.K., Lonfouo, A.H.N., Tchinda, A.T., Tane, P., Kikuchi, H., Frederich, M., Oshima, Y., 2012.

Phenolic compounds and terpenoids from Hypericum lanceolatum. Rec. Nat. Prod. 6, 94-100.

Wirz, A., Simmen, U., Heilmann, J., Calis, I., Meier, B., Sticher, O., 2000. Bisanthraquinone glycosides of Hypericum perforatum with binding inhibition to CRH-1 receptors. Phytochemistry 55, 941-947.

Wu, Q.-L., Wang, S.-P., Du, L.-J., Xiao, P.-G., 1998. Xanthones from Hypericum japonicum and H. henryi.

Phytochemistry 49, 1395-1402.

Xu, W.-J., Zhu, M.-D., Wang, X.-B.; Yang; M.-H., Luo, J., Kong, L.Y., 2015. Hypermongones A-J, rare methylated polycyclic polyprenylated acylphloroglucinols from the flowers of Hypericum monogynum. J. Nat. Prod. 78, 1093-1100.

Yang, Y.-L., Liao, W.-Y., Liu, W.-Y., Liaw, C.-C., Shen, C.-N., Huang, Z.-Y., Wu, S.-H., 2009. Discovery of new natural products by intact-cell mass spectrometry and LC-SPE-NMR: Malbranpyrroles, novel polyketides from thermophilic fungus Malbranchea sulfurea. Chem. Eur. J. 15, 11573-11580.

138

Chapter 7

New source report: chemical constituents of Psorospermum densipunctatum (Hypericaceae)

Graphical abstract*

Highlights

• Characterization of three prenylated anthraquinones and five proanthocyanidins from the chemically unexplored P. densipunctatum

• First report on proanthocyanidins from the genus Psorospermum

• Discussion on the chemotaxonomic significance of the isolated compounds

*This part (with slight modifications) was published: Fobofou, S.A.T., Franke, K., Schmidt, J., Wessjohann, L., 2015. Biochem. Syst. Ecol. 59C, 174-176. Reprinted (adapted) with permission from the Copyright Clearance Center (confirmation number: 11472956).

P. densipunctatum

139 Abstract

The present work describes the chemistry of the phytochemically unexplored Psorospermum densipunctatum, which (like Hypericum species) belongs to the family Hypericaceae. Eight natural products, including three prenylated anthraquinones (7.1-7.3) and five proanthocyanidins (7.5-7.8) were isolated from P. psorospermum for the first time. The occurrence of prenyltated compounds in this plant is of high chemotaxonomic significance since they can be markers of the family Hypericaceae. Also, this is the first report of proanthocyanidins (7.5-7.8) from the genus Psorospermum.

Keywords: Prenylated anthraquinones; Proanthocyanidins; Psorospermum densipunctatum;

Hypericaceae.

140