• Keine Ergebnisse gefunden

Cancer and Dendritic Cells

8.3 Bibliography for Chapter 3

[1] Ahmedin Jemal, Rebecca Siegel, Elizabeth Ward, Yongping Hao, Jiaquan Xu, Taylor Murray, and Michael J Thun. Cancer statistics, 2008. CA Cancer J Clin, 58(2):71–96, 2008.

[2] P. Boyle and J. Ferlay. Cancer incidence and mortality in europe, 2004. Ann Oncol, 16(3):481–488, Mar 2005.

[3] Jason Rice, Christian H Ottensmeier, and Freda K Stevenson. Dna vaccines: preci-sion tools for activating effective immunity against cancer.Nat Rev Cancer, 8(2):108–

120, Feb 2008.

[4] Ana C Cunha, Bernd Weigle, Andrea Kiessling, Michael Bachmann, and E. Peter Rieber. Tissue-specificity of prostate specific antigens: comparative analysis of transcript levels in prostate and non-prostatic tissues. Cancer Lett, 236(2):229–238, May 2006.

[5] Laura E Johnson, Thomas P Frye, Alana R Arnot, Carrie Marquette, Larry A Cou-ture, Annette Gendron-Fitzpatrick, and Douglas G McNeel. Safety and immuno-logical efficacy of a prostate cancer plasmid dna vaccine encoding prostatic acid phosphatase (pap). Vaccine, 24(3):293–303, Jan 2006.

[6] Xiaopeng Zhang, Changming Yu, Jian Zhao, Ling Fu, Shaoqiong Yi, Shuling Liu, Ting Yu, and Wei Chen. Vaccination with a dna vaccine based on human psca and hsp70 adjuvant enhances the antigen-specific cd8+t-cell response and inhibits the psca+tumors growth in mice. J Gene Med, 9(8):715–726, Aug 2007.

[7] Maria de la Luz Garcia-Hernandez, Andrew Gray, Bolyn Hubby, Otto J Klinger, and W. Martin Kast. Prostate stem cell antigen vaccination induces a long-term pro-tective immune response against prostate cancer in the absence of autoimmunity.

Cancer Res, 68(3):861–869, Feb 2008.

[8] Sarfraz Ahmad, Garrett Casey, Paul Sweeney, Mark Tangney, and Gerald C O’Sullivan. Prostate stem cell antigen dna vaccination breaks tolerance to self-antigen and inhibits prostate cancer growth. Mol Ther, 17(6):1101–1108, Jun 2009.

[9] D. B. Lowe, M. H. Shearer, C. A. Jumper, and R. C. Kennedy. Towards progress on dna vaccines for cancer. Cell Mol Life Sci, 64(18):2391–2403, Sep 2007.

[10] H. Hemmi, O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, and S. Akira. A toll-like receptor recognizes bacterial dna. Nature, 408(6813):740–745, Dec 2000.

[11] Yutaro Kumagai, Osamu Takeuchi, and Shizuo Akira. Tlr9 as a key receptor for the recognition of dna. Adv Drug Deliv Rev, 60(7):795–804, Apr 2008.

[12] N. M. Greenberg, F. DeMayo, M. J. Finegold, D. Medina, W. D. Tilley, J. O. Aspinall, G. R. Cunha, A. A. Donjacour, R. J. Matusik, and J. M. Rosen. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A, 92(8):3439–3443, Apr 1995.

[13] J. R. Gingrich, R. J. Barrios, R. A. Morton, B. F. Boyce, F. J. DeMayo, M. J. Finegold, R. Angelopoulou, J. M. Rosen, and N. M. Greenberg. Metastatic prostate cancer in a transgenic mouse. Cancer Res, 56(18):4096–4102, Sep 1996.

[14] G. Widera, M. Austin, D. Rabussay, C. Goldbeck, S. W. Barnett, M. Chen, L. Leung, G. R. Otten, K. Thudium, M. J. Selby, and J. B. Ulmer. Increased dna vaccine delivery and immunogenicity by electroporation in vivo. J Immunol, 164(9):4635–4640, May 2000.

[15] Gustaf Ahln, Jonas Sderholm, Torunn Tjelle, Rune Kjeken, Lars Frelin, Urban Hglund, Pontus Blomberg, Michael Fons, Iacob Mathiesen, and Matti Sllberg. In

vivo electroporation enhances the immunogenicity of hepatitis c virus nonstruc-tural 3/4a dna by increased local dna uptake, protein expression, inflammation, and infiltration of cd3+t cells. J Immunol, 179(7):4741–4753, Oct 2007.

[16] Shawn Babiuk, Maria E Baca-Estrada, Marianna Foldvari, Michael Storms, Deit-mar Rabussay, Georg Widera, and Lorne A Babiuk. Electroporation improves the efficacy of dna vaccines in large animals. Vaccine, 20(27-28):3399–3408, Sep 2002.

[17] Peter Ohlschlger, Elmar Spies, Gerardo Alvarez, Michael Quetting, and Marcus Groettrup. The combination of tlr-9 adjuvantation and electroporation-mediated delivery enhances in vivo antitumor responses after vaccination with hpv-16 e7 encoding dna. Int J Cancer, 128(2):473–481, Jan 2011.

[18] O. Rtzschke, K. Falk, S. Stevanovi?, G. Jung, P. Walden, and H. G. Rammensee.

Exact prediction of a natural t cell epitope. Eur J Immunol, 21(11):2891–2894, Nov 1991.

[19] M. C. Feltkamp, M. P. Vierboom, W. M. Kast, and C. J. Melief. Efficient mhc class i-peptide binding is required but does not ensure mhc class i-restricted immuno-genicity. Mol Immunol, 31(18):1391–1401, Dec 1994.

[20] Peter Ohlschlger, Michael Quetting, Gerardo Alvarez, Matthias Drst, Lutz Giss-mann, and Andreas M Kaufmann. Enhancement of immunogenicity of a thera-peutic cervical cancer dna-based vaccine by co-application of sequence-optimized genetic adjuvants. Int J Cancer, 125(1):189–198, Jul 2009.

[21] B. A. Foster, J. R. Gingrich, E. D. Kwon, C. Madias, and N. M. Greenberg. Charac-terization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (tramp) model. Cancer Res, 57(16):3325–3330, Aug 1997.

[22] M. G. Oefelein, N. D. Smith, J. T. Grayhack, A. J. Schaeffer, and K. T. McVary. Long-term results of radical retropubic prostatectomy in men with high grade carcinoma of the prostate. J Urol, 158(4):1460–1465, Oct 1997.

[23] Douglas G McNeel, Edward J Dunphy, James G Davies, Thomas P Frye, Laura E Johnson, Mary Jane Staab, Dorothea L Horvath, Jane Straus, Dona Alberti, Rebecca Marnocha, Glenn Liu, Jens C Eickhoff, and George Wilding. Safety and immuno-logical efficacy of a dna vaccine encoding prostatic acid phosphatase in patients with stage d0 prostate cancer. J Clin Oncol, 27(25):4047–4054, Sep 2009.

[24] Angela M Bodles-Brakhop and Ruxandra Draghia-Akli. Dna vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines, 7(7):1085–1101, Sep 2008.

[25] Michele A Kutzler and David B Weiner. Dna vaccines: ready for prime time? Nat Rev Genet, 9(10):776–788, Oct 2008.

[26] Laura E Johnson, Thomas P Frye, Nachimuthu Chinnasamy, Dhanalakshmi Chin-nasamy, and Douglas G McNeel. Plasmid dna vaccine encoding prostatic acid phosphatase is effective in eliciting autologous antigen-specific cd8+t cells. Cancer Immunol Immunother, 56(6):885–895, Jun 2007.

[27] M. Kozak. At least six nucleotides preceding the aug initiator codon enhance translation in mammalian cells. J Mol Biol, 196(4):947–950, Aug 1987.

[28] Thorsten Steinberg, Peter Ohlschlger, Peter Sehr, Wolfram Osen, and Lutz Giss-mann. Modification of hpv 16 e7 genes: correlation between the level of protein expression and ctl response after immunization of c57bl/6 mice.Vaccine, 23(9):1149–

1157, Jan 2005.

[29] A. G. Wildeman. Regulation of sv40 early gene expression. Biochem Cell Biol, 66(6):567–577, Jun 1988.

[30] D. A. Dean, B. S. Dean, S. Muller, and L. C. Smith. Sequence requirements for plasmid nuclear import. Exp Cell Res, 253(2):713–722, Dec 1999.

[31] G. L. Wilson, B. S. Dean, G. Wang, and D. A. Dean. Nuclear import of plasmid dna in digitonin-permeabilized cells requires both cytoplasmic factors and specific dna sequences. J Biol Chem, 274(31):22025–22032, Jul 1999.

[32] F. Labat-Moleur, A. M. Steffan, C. Brisson, H. Perron, O. Feugeas, P. Furstenberger, F. Oberling, E. Brambilla, and J. P. Behr. An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther, 3(11):1010–1017, Nov 1996.

[33] R. Tachibana, H. Harashima, Y. Shinohara, and H. Kiwada. Quantitative studies on the nuclear transport of plasmid dna and gene expression employing nonviral vectors. Adv Drug Deliv Rev, 52(3):219–226, Nov 2001.

[34] J. K. Utvik, A. Njå, and K. Gundersen. Dna injection into single cells of intact mice.

Hum Gene Ther, 10(2):291–300, Jan 1999.

[35] S. Li, F. C. MacLaughlin, J. G. Fewell, M. Gondo, J. Wang, F. Nicol, D. A. Dean, and L. C. Smith. Muscle-specific enhancement of gene expression by incorporation of sv40 enhancer in the expression plasmid. Gene Ther, 8(6):494–497, Mar 2001.

[36] Robert Kammerer, Detlef Stober, Petra Riedl, Claude Oehninger, Reinhold Schirm-beck, and Jrg Reimann. Noncovalent association with stress protein facilitates cross-priming of cd8+t cells to tumor cell antigens by dendritic cells. J Immunol, 168(1):108–117, Jan 2002.

[37] Paul F McKay, Dan H Barouch, Sampa Santra, Shawn M Sumida, Shawn S Jackson, Darci A Gorgone, Michelle A Lifton, and Norman L Letvin. Recruitment of different subsets of antigen-presenting cells selectively modulates dna vaccine-elicited cd4+

and cd8+t lymphocyte responses. Eur J Immunol, 34(4):1011–1020, Apr 2004.

[38] Y. H. Chow, B. L. Chiang, Y. L. Lee, W. K. Chi, W. C. Lin, Y. T. Chen, and M. H. Tao.

Development of th1 and th2 populations and the nature of immune responses to

hepatitis b virus dna vaccines can be modulated by codelivery of various cytokine genes. J Immunol, 160(3):1320–1329, Feb 1998.

[39] D. H. Barouch, S. Santra, T. D. Steenbeke, X. X. Zheng, H. C. Perry, M. E. Davies, D. C. Freed, A. Craiu, T. B. Strom, J. W. Shiver, and N. L. Letvin. Augmentation and suppression of immune responses to an hiv-1 dna vaccine by plasmid cytokine/ig administration. J Immunol, 161(4):1875–1882, Aug 1998.

[40] O. Seksek, J. Biwersi, and A. S. Verkman. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol, 138(1):131–142, Jul 1997.

[41] Reinhold Schirmbeck, Petra Riedl, Mark Kupferschmitt, Ursula Wegenka, Hansjrg Hauser, Jason Rice, Andrea Krger, and Jrg Reimann. Priming protective cd8 t cell immunity by dna vaccines encoding chimeric, stress protein-capturing tumor-associated antigen. J Immunol, 177(3):1534–1542, Aug 2006.

[42] Holly McDonough and Cam Patterson. Chip: a link between the chaperone and proteasome systems. Cell Stress Chaperones, 8(4):303–308, 2003.

[43] Helena Dzojic, Angelica Loskog, Thomas H Ttterman, and Magnus Essand.

Adenovirus-mediated cd40 ligand therapy induces tumor cell apoptosis and sys-temic immunity in the tramp-c2 mouse prostate cancer model. Prostate, 66(8):831–

838, Jun 2006.

[44] Shanrong Liu, Barbara A Foster, Tie Chen, Guoxing Zheng, and Aoshuang Chen.

Modifying dendritic cells via protein transfer for antitumor therapeutics. Clin Cancer Res, 13(1):283–291, Jan 2007.

[45] Jennifer D Lewis, Laura A Sullivan, Jennifer A Byrne, Werner de Riese, and Robert K Bright. Memory and cellular immunity induced by a dna vaccine encoding self antigen tpd52 administered with soluble gm-csf. Cancer Immunol Immunother, 58(8):1337–1349, Aug 2009.

[46] Sol Kim, Jee-Boong Lee, Geon Kook Lee, and Jun Chang. Vaccination with re-combinant adenoviruses and dendritic cells expressing prostate-specific antigens is effective in eliciting ctl and suppresses tumor growth in the experimental prostate cancer. Prostate, 69(9):938–948, Jun 2009.

[47] Jeffrey A Medin, Sheng-Ben Liang, Jeannie Whit-Shan Hou, Leslie S Kelley, David J Peace, and Daniel H Fowler. Efficient transfer of psa and psma cdnas into dcs gener-ates antibody and t cell antitumor responses in vivo.Cancer Gene Ther, 12(6):540–551, Jun 2005.

[48] Elena Degl’Innocenti, Matteo Grioni, Andrea Boni, Annalisa Camporeale, Maria T S Bertilaccio, Massimo Freschi, Antonella Monno, Cinzia Arcelloni, Norman M Greenberg, and Matteo Bellone. Peripheral t cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization. Eur J Immunol, 35(1):66–75, Jan 2005.

[49] M. V. Peshwa, J. D. Shi, C. Ruegg, R. Laus, and W. C. van Schooten. Induction of prostate tumor-specific cd8+ cytotoxic t-lymphocytes in vitro using antigen-presenting cells pulsed with prostatic acid phosphatase peptide.Prostate, 36(2):129–

138, Jul 1998.

[50] Brian M Olson, Thomas P Frye, Laura E Johnson, Lawrence Fong, Keith L Knutson, Mary L Disis, and Douglas G McNeel. Hla-a2-restricted t-cell epitopes specific for prostatic acid phosphatase. Cancer Immunol Immunother, 59(6):943–953, Jun 2010.