• Keine Ergebnisse gefunden

Cancer and Dendritic Cells

8.2 Bibliography for Chapter 2

[1] S. Pisani, C. Gallinelli, L. Seganti, A. Lukic, F. Nobili, G. Vetrano, M. Imperi, A. M.

Degener, and F. Chiarini. Detection of viral and bacterial infections in women with normal and abnormal colposcopy. Eur J Gynaecol Oncol, 20(1):69–73, 1999.

[2] G. Gatta, M. B. Lasota, and A. Verdecchia. Survival of european women with gynaecological tumours, during the period 1978-1989. eurocare working group.

Eur J Cancer, 34(14 Spec No):2218–2225, Dec 1998.

[3] F. X. Bosch, M. M. Manos, N. Muoz, M. Sherman, A. M. Jansen, J. Peto, M. H.

Schiffman, V. Moreno, R. Kurman, and K. V. Shah. Prevalence of human papillo-mavirus in cervical cancer: a worldwide perspective. international biological study on cervical cancer (ibscc) study group. J Natl Cancer Inst, 87(11):796–802, Jun 1995.

[4] N. Dyson, P. M. Howley, K. Mnger, and E. Harlow. The human papilloma virus-16 e7 oncoprotein is able to bind to the retinoblastoma gene product. Science, 243(4893):934–937, Feb 1989.

[5] K. Mnger, M. Scheffner, J. M. Huibregtse, and P. M. Howley. Interactions of hpv e6 and e7 oncoproteins with tumour suppressor gene products. Cancer Surv, 12:197–

217, 1992.

[6] Peter Ohlschlger, Michaela Pes, Wolfram Osen, Matthias Drst, Achim Schneider, Lutz Gissmann, and Andreas M Kaufmann. An improved rearranged human papillomavirus type 16 e7 dna vaccine candidate (hpv-16 e7sh) induces an e7 wildtype-specific t cell response. Vaccine, 24(15):2880–2893, Apr 2006.

[7] L. A. Babiuk, van Drunen Littel-van den Hurk, and S. L. Babiuk. Immunization of animals: from dna to the dinner plate. Vet Immunol Immunopathol, 72(1-2):189–202, Dec 1999.

[8] M. A. Egan, W. A. Charini, M. J. Kuroda, J. E. Schmitz, P. Racz, K. Tenner-Racz, K. Manson, M. Wyand, M. A. Lifton, C. E. Nickerson, T. Fu, J. W. Shiver, and N. L.

Letvin. Simian immunodeficiency virus (siv) gag dna-vaccinated rhesus monkeys develop secondary cytotoxic t-lymphocyte responses and control viral replication after pathogenic siv infection. J Virol, 74(16):7485–7495, Aug 2000.

[9] R. Wang, D. L. Doolan, T. P. Le, R. C. Hedstrom, K. M. Coonan, Y. Charoenvit, T. R.

Jones, P. Hobart, M. Margalith, J. Ng, W. R. Weiss, M. Sedegah, C. de Taisne, J. A.

Norman, and S. L. Hoffman. Induction of antigen-specific cytotoxic t lymphocytes in humans by a malaria dna vaccine. Science, 282(5388):476–480, Oct 1998.

[10] Sandra A Calarota and David B Weiner. Enhancement of human immunodeficiency virus type 1-dna vaccine potency through incorporation of t-helper 1 molecular adjuvants. Immunol Rev, 199:84–99, Jun 2004.

[11] Wolfgang Jechlinger. Optimization and delivery of plasmid dna for vaccination.

Expert Rev Vaccines, 5(6):803–825, Dec 2006.

[12] Shaw-Wei D Tsen, Augustine H Paik, Chien-Fu Hung, and T-C. Wu. Enhancing dna vaccine potency by modifying the properties of antigen-presenting cells.Expert Rev Vaccines, 6(2):227–239, Apr 2007.

[13] D. M. Klinman, A. K. Yi, S. L. Beaucage, J. Conover, and A. M. Krieg. Cpg motifs present in bacteria dna rapidly induce lymphocytes to secrete interleukin 6, inter-leukin 12, and interferon gamma. Proc Natl Acad Sci U S A, 93(7):2879–2883, Apr 1996.

[14] T. Jakob, P. S. Walker, A. M. Krieg, M. C. Udey, and J. C. Vogel. Activation of cuta-neous dendritic cells by cpg-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of th1 responses by immunostimulatory dna. J Immunol, 161(6):3042–3049, Sep 1998.

[15] K. J. Stacey, M. J. Sweet, and D. A. Hume. Macrophages ingest and are activated by bacterial dna. J Immunol, 157(5):2116–2122, Sep 1996.

[16] Y. Sato, M. Roman, H. Tighe, D. Lee, M. Corr, M. D. Nguyen, G. J. Silverman, M. Lotz, D. A. Carson, and E. Raz. Immunostimulatory dna sequences necessary for effective intradermal gene immunization. Science, 273(5273):352–354, Jul 1996.

[17] Daniela Tudor, Catherine Dubuquoy, Valrie Gaboriau, Franois Lefvre, Bernard Charley, and Sabine Riffault. Tlr9 pathway is involved in adjuvant effects of plasmid dna-based vaccines. Vaccine, 23(10):1258–1264, Jan 2005.

[18] Eirik Grnevik, Stig Tollefsen, Liv Ingunn Bjoner Sikkeland, Terje Haug, Torunn Elis-abeth Tjelle, and Iacob Mathiesen. Dna transfection of mononuclear cells in muscle tissue. J Gene Med, 5(10):909–917, Oct 2003.

[19] G. Widera, M. Austin, D. Rabussay, C. Goldbeck, S. W. Barnett, M. Chen, L. Leung, G. R. Otten, K. Thudium, M. J. Selby, and J. B. Ulmer. Increased dna vaccine delivery and immunogenicity by electroporation in vivo. J Immunol, 164(9):4635–4640, May 2000.

[20] L. M. Mir, M. F. Bureau, J. Gehl, R. Rangara, D. Rouy, J. M. Caillaud, P. Delaere, D. Branellec, B. Schwartz, and D. Scherman. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci U S A, 96(8):4262–

4267, Apr 1999.

[21] Khursheed Anwer. Formulations for dna delivery via electroporation in vivo.

Methods Mol Biol, 423:77–89, 2008.

[22] T. Hanke, J. Schneider, S. C. Gilbert, A. V. Hill, and A. McMichael. Dna multi-ctl epitope vaccines for hiv and plasmodium falciparum: immunogenicity in mice.

Vaccine, 16(4):426–435, Feb 1998.

[23] H. G. Ljunggren and K. Krre. Host resistance directed selectively against h-2-deficient lymphoma variants. analysis of the mechanism. J Exp Med, 162(6):1745–

1759, Dec 1985.

[24] K. Speidel, W. Osen, S. Faath, I. Hilgert, R. Obst, J. Braspenning, F. Momburg, G. J.

Hmmerling, and H. G. Rammensee. Priming of cytotoxic t lymphocytes by five heat-aggregated antigens in vivo: conditions, efficiency, and relation to antibody responses. Eur J Immunol, 27(9):2391–2399, Sep 1997.

[25] M. C. Feltkamp, H. L. Smits, M. P. Vierboom, R. P. Minnaar, B. M. de Jongh, J. W.

Drijfhout, J. ter Schegget, C. J. Melief, and W. M. Kast. Vaccination with cytotoxic t

lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells.Eur J Immunol, 23(9):2242–2249, Sep 1993.

[26] Dennis M Klinman. Immunotherapeutic uses of cpg oligodeoxynucleotides. Nat Rev Immunol, 4(4):249–258, Apr 2004.

[27] David van Duin, Ruslan Medzhitov, and Albert C Shaw. Triggering tlr signaling in vaccination. Trends Immunol, 27(1):49–55, Jan 2006.

[28] S. Yamamoto, T. Yamamoto, S. Shimada, E. Kuramoto, O. Yano, T. Kataoka, and T. Tokunaga. Dna from bacteria, but not from vertebrates, induces interferons, ac-tivates natural killer cells and inhibits tumor growth.Microbiol Immunol, 36(9):983–

997, 1992.

[29] M. Bauer, K. Heeg, H. Wagner, and G. B. Lipford. Dna activates human immune cells through a cpg sequence-dependent manner. Immunology, 97(4):699–705, Aug 1999.

[30] G. Hartmann, R. D. Weeratna, Z. K. Ballas, P. Payette, S. Blackwell, I. Suparto, W. L.

Rasmussen, M. Waldschmidt, D. Sajuthi, R. H. Purcell, H. L. Davis, and A. M. Krieg.

Delineation of a cpg phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol, 164(3):1617–1624, Feb 2000.

[31] A. M. Krieg, A. K. Yi, S. Matson, T. J. Waldschmidt, G. A. Bishop, R. Teasdale, G. A. Koretzky, and D. M. Klinman. Cpg motifs in bacterial dna trigger direct b-cell activation. Nature, 374(6522):546–549, Apr 1995.

[32] Y. Kimura, K. Sonehara, E. Kuramoto, T. Makino, S. Yamamoto, T. Yamamoto, T. Kataoka, and T. Tokunaga. Binding of oligoguanylate to scavenger receptors is required for oligonucleotides to augment nk cell activity and induce ifn. J Biochem, 116(5):991–994, Nov 1994.

[33] R. R. MacGregor, J. D. Boyer, K. E. Ugen, K. E. Lacy, S. J. Gluckman, M. L. Bagarazzi, M. A. Chattergoon, Y. Baine, T. J. Higgins, R. B. Ciccarelli, L. R. Coney, R. S. Ginsberg,

and D. B. Weiner. First human trial of a dna-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis, 178(1):92–100, Jul 1998.

[34] H. Wagner. Bacterial cpg dna activates immune cells to signal infectious danger.

Adv Immunol, 73:329–368, 1999.

[35] Arthur M Krieg. Cpg motifs in bacterial dna and their immune effects. Annu Rev Immunol, 20:709–760, 2002.

[36] S. G. Williams, R. M. Cranenburgh, A. M. Weiss, C. J. Wrighton, D. J. Sherratt, and J. A. Hanak. Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids. Nucleic Acids Res, 26(9):2120–2124, May 1998.

[37] Shawn Babiuk, Sylvia van Drunen Littel-van den Hurk, and Lorne A Babiuk.

Delivery of dna vaccines using electroporation. Methods Mol Med, 127:73–82, 2006.

[38] Michela Spadaro, Elena Ambrosino, Manuela Iezzi, Emma Di Carlo, Pamela Sacchetti, Claudia Curcio, Augusto Amici, Wei-Zen Wei, Piero Musiani, Pier-Luigi Lollini, Federica Cavallo, and Guido Forni. Cure of mammary carcinomas in her-2 transgenic mice through sequential stimulation of innate (neoadjuvant interleukin-12) and adaptive (dna vaccine electroporation) immunity. Clin Cancer Res, 11(5):1941–1952, Mar 2005.

[39] Lauren A Hirao, Ling Wu, Amir S Khan, Abhishek Satishchandran, Ruxandra Draghia-Akli, and David B Weiner. Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine, 26(3):440–448, Jan 2008.

[40] Tsan Xiao. Innate immune recognition of nucleic acids.Immunol Res, 43(1-3):98–108, 2009.

[41] Barbara Spies, Hubertus Hochrein, Martin Vabulas, Katharina Huster, Dirk H Busch, Frank Schmitz, Antje Heit, and Hermann Wagner. Vaccination with plas-mid dna activates dendritic cells via toll-like receptor 9 (tlr9) but functions in tlr9-deficient mice. J Immunol, 171(11):5908–5912, Dec 2003.