• Keine Ergebnisse gefunden

Table of contents

ANNEX ITHERMODYNAMIC PRINCIPLES... 155 I.1 Heat transfer in a shell and tube heat exchanger ... 155 I.2 Approach... 156 I.3 Capacity of a heat exchanger ... 157 I.4 Wet and dry bulb temperatures ... 158 I.5 Relation between heat transfer and heat exchanging surface ... 158 ANNEX IIPRINCIPLE OF ENERGY SAVING THROUGH OPTIMISED COOLING... 161 II.1 Subject... 161 II.2 Summary of conclusions ... 161 II.3 Introduction... 162 II.4 Calculations... 164 II.4.1 Principles ... 164 II.4.2 Quantity of cooling water ... 166 II.4.3 Quantity of cooling air ... 167 II.4.4 Product temperature; gas volume ... 168 II.4.5 Product pressure; cooling compressor ... 169 II.5 Total potential energy conservation per °C colder cooling-water boundary layer ... 170 II.5.1 Efficiency of power generation ... 170 II.5.2 Total water used for cooling in the Dutch industry (excl. power plants)... 171 II.5.3 Total potential energy conservation per °C colder cooling-water boundary layer ... 172 II.6 Examples of calculations for the relative conservation of energy and reduction of the

environmental impact achieved by the use of inhibitors ... 173 II.6.1 The contribution made by oxidation... 173 II.6.1.1 Once-through cooling system ... 173 II.6.1.2 Open recirculating system... 174 II.7 Examples of calculations of the relative savings in energy with colder cooling water ... 176 II.7.1 Coastal water versus cooling towers... 176 II.7.2 River water versus cooling towers... 176 II.7.3 Groundwater versus cooling tower ... 177 II.8 Appendix environmental impacts... 177 ANNEX III SHELL AND TUBE HEAT EXCHANGERS FOR INDUSTRIAL

ONCE-THROUGH COOLING SYSTEMS AND THE OCCURRENCE OF LEAKAGE... 179 III.1 Design of the shell & tube heat exchanger for one through systems... 180 III.2 Leakage in shell & tube heat exchangers ... 182 III.3 Alternatives ... 183 ANNEX IV BEISPIEL FÜR DIE AUSWAHL VON MATERIAL FÜR

KÜHLWASSER-SYSTEME IN INDUSTRIELLEN ANWENDUNGEN (AUSSER KRAFTWERKEN) ... 185 IV.1 Einführung ... 185 IV.2 Direkte Durchlaufsysteme (mit Brackwasser)... 186 IV.3 Durchlaufsysteme mit sekundärem Kühlkreislauf (Brackwasser/entmineralisiertes Wasser) 188 IV.4 Offene rezirkulierende Kühlsysteme... 189 IV.4.1 Anwendung von Süßwasser in offenen Nasskühltürmen ... 189 IV.4.2 Anwendung von Salzwasser in offenen Nasskühltürmen... 189 ANNEX VOVERVIEW OF CHEMICALS FOR THE CONDITIONING OF COOLING

WATER SYSTEMS ... 191 V.1 Corrosion inhibitors ... 191 V.1.1 Corrosion ... 191 V.1.2 Applied corrosion inhibitors... 191 V.2 Scale inhibitors... 192 V.2.1 Scaling ... 192 V.2.2 Applied scale inhibition... 192 V.3 Fouling inhibitors (dispersants)... 193 V.3.1 Fouling... 193 V.3.2 Applied fouling inhibitors ... 194 V.4 Biocides... 194 V.4.1 Biofouling... 194 V.4.2 Applied biocidal treatment ... 197 V.4.3 Oxidising biocides ... 197 V.4.4 Non-oxidising biocides... 199 V.4.5 Factors determining the use of biocides. ... 200

V.4.6 Interactions with other water treatment chemicals...202

V.5 Cycles of concentration and water balance...202

ANNEX VI EXAMPLE OF LEGISLATION IN EUROPEAN MEMBER STATES ...205

ANNEX VIIEXAMPLE OF A SAFETY CONCEPT FOR OPEN WET COOLING SYSTEMS (VCI-CONCEPT)...209

VII.1 Introduction to the concept ...209

VII.2 Requirements of the concept...211

VII.3 Appendix 1 - Automatic analytical monitoring of once-through cooling systems ...213

VII.4 Appendix 2 – R-phrases used to calculate VCI-score...214

ANNEX VIII EXAMPLES FOR THE ASSESSMENT OF COOLING WATER CHEMICALS ..217

VIII.1 Benchmark assessment concept for cooling water chemicals...217a VIII.1.1 Introduction...217a VIII.1.1.1Background ...217a VIII.1.1.2Relevant legislative background...218

VIII.1.1.3The water framework directive (WFD) ...218

VIII.1.2 Benchmarking : introduction of the concept ...219

VIII.1.2.1The PNEC 220 VIII.1.2.2The PEC 221 VIII.1.3 Basic cooling towers material balances ...222

VIII.1.3.1Cooling towers basic equations ...222

VIII.1.3.2Water balance...222

VIII.1.3.3Material balance ...222

VIII.1.3.4Concentration ...223

VIII.1.3.5Discussion 223 VIII.1.4 Calculation of PEC and benchmarking ...224

VIII.1.5 Computation methods ...226

VIII.1.5.1Single Substances ...226

VIII.1.5.2Complex multi-substances treatments ...226

VIII.1.6 Appendix I: extract from technical guidance document...228

VIII.2 Concept of a local assessment method for cooling water treatment chemicals, with a particular emphasis on biocides...231

VIII.2.1 Introduction...231

VIII.2.2 Key elements...232

VIII.2.3 Example of proposed local assessment method ...235

ANNEX IXEXAMPLE OF A MODEL FOR ESTIMATING EMISSIONS OF BIOCIDES IN THE BLOWDOWN...239

ANNEX X INVESTMENT COSTS AND OPERATIONAL COSTS OF EQUIPMENT AND ELEMENTS OF COOLING SYSTEMS FOR NON-POWER PLANT APPLICATIONS ....241

ANNEX XI BEISPIELE VON TECHNIKEN, DIE INNERHALB DES PRIMÄREN BVT-ANSATZES FÜR INDUSTRIELLE KÜHLSYSTEME ZU BERÜCKSICHTIGEN SIND ...247

XI.1 Einleitung...247

XI.2 Kühlwasser durch die Wiederverwendung von Wasser einsparen ...247

XI.2.1 Wiederverwendung von (Ab-) Wasser als Zusatzwasser für Kühltürme ...248

XI.2.2 Nullableitungssystem ...249

XI.2.3 Sprühbecken...250

XI.2.4 Lagerung zur Abkühlung ...251

XI.3 Verminderung der Emissionen durch optimierte Kühlwasseraufbereitung ...253

XI.3.1 Seitenstrom-Biofiltrierung in einem offenen rezirkulierenden Kühlwassersystem...253

XI.3.2 Physikalische Methoden...256

XI.3.3 Optimierung der Anwendung von Bioziden ...258

XI.3.3.1 Überwachung...258

XI.3.3.1.1 Überwachung der Makro-Verschmutzung ...258

XI.3.3.1.2 Markierte Biozide zur Bestimmung der Biozid- und mikrobiologischen Aktivität...258

XI.3.3.2 Bioziddosierung...259

XI.3.3.2.1 Verschiedene Betriebsbedingungen für die Aufbereitung, um die optimale jährliche Gesamtanwendung von Oxidationsmitteln in Durchlaufsystemen gegen Makro- und Mikroverschmutzung zu erzielen. ...259

XI.3.3.2.2 Alternierende Impulschlorung in Durchlaufsystemen ...261

XI.3.4 Alternative Kühlwasserbehandlungsverfahren...264

XI.3.4.1 Ozon ...264

XI.3.4.2 UV-Behandlung...266

XI.3.4.4 Chlordioxid ... 267

XI.3.4.5 Wasserreinigung durch Ionen zur Behandlung von Kühlturmwasser... 270

XI.3.4.6 Halogenierte Biozide im Kühlturmwasser stabilisieren... 270

XI.3.4.7 Filmbildende Mittel gegen Verschmutzung, Korrosion und Verkrustung... 271

XI.3.4.8 Stabile organische Korrosionsinhibitoren in offenen Nasskühltürmen... 274

XI.3.5 Behandlung von abgeleitetem Kühlwasser... 275

XI.4 Variable Frequenz-Steuerungen zur Verminderung des Energieverbrauchs... 276

ANNEX XIISPECIAL APPLICATION: POWER INDUSTRY ... 277

Synthesis ... 277

XII.1 Introduction... 277

XII.2 Power plant cooling systems - principles and reminders ... 278

XII.3 Possible environmental impacts of cooling systems ... 279

XII.3.1 Heat discharges to the atmosphere ... 279

XII.3.2 Heating of receiving aquatic-environments... 281

XII.3.3 Suction of organisms into water intakes ... 282

XII.3.4 Alteration of the receiving environment by chemical discharges... 283

XII.3.5 Other possible harmful effects resulting from the choice of some cooling systems... 286

XII.4 Prior study of the sites: indispensable tool for the evaluation of their receiving capacity, impact control and prevention of harmful effects ... 287

XII.4.1 Analysis of the situation ... 287

XII.4.2 Mathematical modellings, simulations on models and tests on pilot loops, first indispensable tools... 287

XII.5 Design of components and choice of materials... 288

XII.5.1 Wet cooling ... 288

XII.5.2 Hybrid cooling... 289

XII.5.3 Dry cooling... 290

XII.5.3.1 Forced draught air-cooled condenser ... 290

XII.5.3.2 Natural draught air-cooled condenser ... 290

XII.5.3.3 Closed recirculating dry cooling towers ... 291

XII.5.4 Cooling towers with discharge of cleaned flue gas ... 291

XII.6 Cost comparison between the various types of cooling towers... 292

XII.7 Choice of the treatment of circulating water alternative methods - monitoring ... 295

XII.7.1 Anti-scale treatment... 295

XII.7.2 Anti-fouling treatments (biocides)... 296

XII.7.3 Monitoring... 296

XII.8 Design of the cooling system ... 297

XII.8.1 Design and energy recovery ... 297

XII.8.2 Design and noise reduction measures... 297

XII.8.3 Implementation of physical methods... 297

XII.8.4 Modelling and pilot tests ... 298

XII.8.5 Choice of the cooling system... 298

XII.9 Conclusions... 298

XII.10 Literature... 300

XII.11 Illustrations... 306

List of tables

Table I.1: Fouling factors for shell and tube heat exchangers, indicative values [Van der Schaaf, 1995]155

Table I.2: Specific heat capacities of air and water ...157

Table I.3: Heat transfer coefficients and estimated surface areas A (m2) per MW and at 20K mean temperature difference for different industrial applications...158

Table I.4: Effects of the cooling principle on the capacity, approach and cooling surface of a cooling system ...159

Table II.1: Energy consumption in kWe, electricity consumption / MWth, cooling with clean heat exchangers...163

Table II.2: Mean attainable lowest cooling water inlet temperatures for the various cooling systems during the months of July and August in the Netherlands. ...163

Table II.3: Conservation ratios for once-through and recirculating cooling system...177

Table II.4: Energy conservation with potential colder cooling water source...177

Tabelle IV.1: Geschwindigkeit des Kühlwassers und Materialart...185

Tabelle IV.2 Für Pumpen in Brackwasser angewendete Materialien ...186

Tabelle IV.3: Für Gehäuse- und Rohr-Wärmetauscher in Brackwasser angewendete Materialien...187

Table V.1: Survey of fouling and clogging organisms, and degree of fouling in marine, brackish and fresh water. In the last column mitigation is presented...195

Table V.2: Estimated consumption levels of some commonly used oxidising biocides in a few European Member States ...198

Table V.3: Estimated consumption levels in some of European Member States of some commonly used non-oxidising biocides in kg/yr ...200

Table VII.1: Score for a number of R-phrases to calculate the total score for process substances...210

Table VII.2: Requirements of VCI safety concept for cooling technology ...211

Table VII.3: Description of R-phrases used to calculate VCI-score for cooling systems selection ...214

Table VIII.1: Calculation of PEC and Benchmarking ...225

Table VIII.2: Assessment factors to derive a PNEC...229

Table VIII.3: Predicted concentrations of DBNPA in different surface waters for this example...237

Table VIII.4: Ecological data of DBNPA...237

Table VIII.5: Consequences of closing the discharge ...238

Table X.1: Cost elements for water and air cooling systems...243

Table X.2: Cost indications for water and air cooling systems for industrial applications with the exception of power plants (1993-1995) ...244

Tabelle XI.1: Investitions- und Energiekosten pro MWth für Sprühbecken und Kühlturm ...251

Tabelle XI.2: Physikalische Techniken zur Minderung der Biozidanwendung...257

Tabelle XI.3: Wirkung der Anwendung eines optimierten Dosierungssystems auf die Anzahl der durch Muscheln verursachten Leckagen...262

Tabelle XI.4: Typische Dosierung von Chlordioxid für Durchlauf- und rezirkulierende Systeme in Europa ...268

Tabelle XI.5: Wirkung von Chlordioxid, angewendet im Durchlaufsystem gegen Larvenablagerung ....269

Table XII.1: Example of simplified balance of a thermal cycle for conventional new design ...278

Table XII.2: Relationship between the installed capacity and cooling parameters ...278

Table XII.3: Comparison of different types of recirculating cooling systems with a lifetime of 25 years and an actualisation ratio of 8% (study on EDF units of 1300 MWe) ...293

Table XII.4: Comparison of wet cooling towers and aircooled condenser with a life-time of 20 years and an actualisation ratio of 8% for a combined cycle unit 290 MWth ...293

Table XII.5: Relationship between the concentration factor, the withdrawn water flowrate and the energy discharged into the receiving waterway (individual example) ...295

List of figures

Figure II.1: Illustration of areas of potential energy saving by reduction of the temperature gradient

through a fouling layer as well as by using colder cooling water influent ... 162

Figure II.2: Graphic representation of pollution factors responsible for extra temperature gradient over the pipe wall ... 164

Figure II.3: Schematic representation of driving force over the length of a heat exchanger... 166

Figure II.4: Number of cooling water pumps and change of cooling water low due to fouling... 167

Figure II.5: Change of temperature gradient of product gas (moles) in a counter flow heat exchanger due to fouling ... 168

Figure II.6: Representation of increase of process pressure to compensate temperature increase due to fouling ... 169

Figure II.7: Efficiency power generation for pumps, fans and compressors... 170

Figure III.1: Major components of shell & tube heat exchanger... 179

Figure III.2: Heat exchanger nomenclature (Standards of the tubular Exchanger Manufacturers Association)... 181

Figure V.1: Tower and solids balances for an evaporative cooling system using a cooling tower ... 203

Figure V.2: Reduction of the make-up flow by concentration in an evaporative cooling system... 203

Figure VIII.1: Cooling tower material balance ... 222

Figure VIII.2: Combined approach for the assessment of cooling water biocides for existing installations ... 234

Figure VIII.3: Schematic representation of a recirculating cooling system with the data for the example of a local selection method of cooling systems chemicals... 236

Abbildung XI.1: Optimierte Hypochlorid-Dosierung (alternierende Impulschlorung) unter Berücksichtigung der Verschmutzung und der Charakteristika des Kühlsystems ... 263

Figure XII.1: Once-through system ... 306

Figure XII.2: Wet cooling tower... 306

Figure XII.3: Once - through cooling with cooling tower... 307

Figure XII.4: Recirculating cooling ... 307

Figure XII.5: Mechanical draught cooling tower (pressure fans) ... 308

Figure XII.6: Mechanical draught cooling tower (suction fans, cell construction) ... 308

Figure XII.7: Mechanical draught cooling tower (pressure fans, cell construction) ... 309

Figure XII.8: Hybrid cooling tower ... 309

Figure XII.9: Forced draught air-cooled condenser ... 310

Figure XII.10: Natural draught air-cooled condenser ... 310

Figure XII.11: Closed recirculating indirect dry cooling tower ... 311

Figure XII.12: Cooling tower with discharge of cleaned flue gas... 311

Figure XII.13: Cooling system with fixed concentration factor... 312

Figure XII.14: Cooling system with sliding concentration factor ... 312

Figure XII.15: Decision-making logic diagram for the choice of the cooling system ... 313