• Keine Ergebnisse gefunden

About the Boundary Conditions and Other Remarks

Identification of Gauge Theories

Lemma 8.49. The G 2 -monopole equations in differential equations form (compare to Re- Re-mark 5.6) are given by

9.2 About the Boundary Conditions and Other Remarks

The boundary conditions we chose in this work were dictated by the fact that we wanted to use the Nahm transform. However it would be interesting to understand how the conditions in [MW13] translate to boundary conditions on the space of Nahm data. In particular it would be interesting to understand how the knot topology can be understood in this framework.

While there is a blank check principal bundle reduction in the case of the Nahm equations in Lemma 8.35, the author is unaware of such a reduction for the case of Bogomolny equations.

It seems interesting to take a closer look at the topology of the involved bundles in the transform defined via Theorem8.66 (and extended by Theorem8.70and8.71). In particular it would be interesting to find an explicit example for which the transformed data consists of multiple (different) bundles.

Another question that arose while working on this is if the Nahm transform can be lifted to dimensions 5and7without the necessity of the intermediate step to gen-eralized Seiberg-Witten. For this note that a 5-dimensional manifold with holonomy inSOp4q (evenOp4q) is spin, as is a 7-dimensional manifold with holonomy inG2. It is possible to copy the definitions to this setting, but many analytic questions would need addressing (the index, positivity, ... of the operators). Also the proof of the trans-form fails because ofcross-termsin the general setting. This could maybe be addressed by requiring certain invariance of the involved data.

For the Examples 8.43 and 8.60 it seems interesting to understand the space of aholomorphic maps from a 4-dimensional quaternionic manifold to the spaces MN

andMB.

It might also be interesting to look at the physical implications of the mentioned transform, even though the author’s knowledge does not suffice to make an informed judgment.

Bibliography

[AFG75] J. Arafune, P. G. O. Freund, and C. J. Goebel. “Topology of Higgs fields”.

In:J. Mathematical Phys.16(1975), pp.433–437.issn:0022-2488.url:https:

//doi.org/10.1063/1.522518.

[AH88] Michael Atiyah and Nigel Hitchin. The geometry and dynamics of magnetic monopoles. M. B. Porter Lectures. Princeton University Press, Princeton, NJ, 1988, pp. viii+134. isbn:0-691-08480-7.doi:10.1515/9781400859306.url: http://dx.doi.org/10.1515/9781400859306.

[Bau09] H. Baum.Eichfeldtheorie: Eine Einf ¨uhrung in die Differentialgeometrie auf Faser-b ¨undeln. Springer Berlin HeidelFaser-berg,2009.

[BC64] Richard L. Bishop and Richard J. Crittenden. Geometry of manifolds. Pure and applied mathematics. UKM. New York, London: Academic Press,1964. isbn:0-12-102450-4.url:http://opac.inria.fr/record=b1079826.

[Bie08] Roger Bielawski. “Curvature of hyperkaehler quotients”. In: Cent. Eur. J.

Math.6(2008), pp.191–203.

[Bry87] Robert L. Bryant. “Metrics with Exceptional Holonomy”. In:Annals of Math-ematics126(3Nov.1987).doi:10.2307/1971360.

[Cal10] Martin Callies. “Dimensional reduction for the generalized Seiberg-Witten equations and the Chern-Simons-Dirac functional”. MA thesis. Universit¨at G ¨ottingen,2010.

[Cal78] Constantine Callias. “Axial anomalies and index theorems on open spaces”.

In:Comm. Math. Phys.62.3(1978), pp.213–234.issn:0010-3616.url:http:

//projecteuclid.org/euclid.cmp/1103904395.

[Don83] S. K. Donaldson. “An application of gauge theory to four-dimensional topology”. In:J. Differential Geom.18.2(1983), pp.279–315.issn:0022-040X.

url:http://projecteuclid.org/euclid.jdg/1214437665.

[Don84] S. K. Donaldson. “Nahm’s equations and the classification of monopoles”.

In:Communications in Mathematical Physics96(3 1984).

[DS11a] Simon Donaldson and Ed Segal. “Gauge theory in higher dimensions, II”.

In:Surveys in differential geometry. Volume XVI. Geometry of special holonomy and related topics. Vol. 16. Surv. Differ. Geom. Int. Press, Somerville, MA, 2011, pp.1–41.url:https://doi.org/10.4310/SDG.2011.v16.n1.a1.

[DS11b] Simon Donaldson and Ed Segal. “Gauge theory in higher dimensions, II”.

In:Surveys in differential geometry. Volume XVI. Geometry of special holonomy and related topics. Vol. 16. Surv. Differ. Geom. Int. Press, Somerville, MA, 2011, pp.1–41. doi:10.4310/SDG.2011.v16.n1.a1.url: http://dx.doi.

org/10.4310/SDG.2011.v16.n1.a1.

[Gai99] Ana Rita Pires Gaio. “J-Holomorphic Curves and Moment Maps”. PhD thesis. University of Warwick,1999.

[GN92] Toru GOCHO and Hiraku NAKAJIMA. “Einstein-Hermitian connections on Hyper-K¨ahler quotients”. In: Journal of the Mathematical Society of Japan 44.1(Jan.1992), pp.43–51.doi:10.2969/jmsj/04410043.url:http://dx.

doi.org/10.2969/jmsj/04410043.

[Hal03] Brian C. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. 1st ed. Graduate Texts in Mathematics 222. Springer-Verlag New York,2003.

[Hay12] Andriy Haydys. “Gauge theory, calibrated geometry and harmonic spinors”.

In: J. Lond. Math. Soc. (2) 86.2 (2012), pp. 482–498. issn: 0024-6107. url: https://doi.org/10.1112/jlms/jds008.

[Hay15a] Andriy Haydys. “Dirac operators in gauge theory”. In:New ideas in low di-mensional topology. Vol.56. Ser. Knots Everything. World Sci. Publ., Hacken-sack, NJ,2015, pp.161–188.url:https://doi.org/10.1142/9789814630627_

0005.

[Hay15b] Andriy Haydys. “Fukaya-Seidel category and gauge theory”. In:J. Symplec-tic Geom.13.1(2015), pp.151–207.issn:1527-5256.url:https://doi.org/

10.4310/JSG.2015.v13.n1.a5.

[Hit83] N. J. Hitchin. “On the construction of monopoles”. In:Comm. Math. Phys.

89.2 (1983), pp. 145–190. issn: 0010-3616. url: http : / / projecteuclid . org/euclid.cmp/1103922679.

[Hit+87] N. J. Hitchin et al. “Hyper-K¨ahler metrics and supersymmetry”. In: Com-munications in Mathematical Physics 108.4 (1987), pp. 535–589. url: http : //projecteuclid.org/euclid.cmp/1104116624.

[Jar04] Marcos Jardim. “A survey on Nahm transform”. In: J. Geom. Phys. 52.3 (2004), pp. 313–327. issn:0393-0440. url: https://doi.org/10.1016/j.

geomphys.2004.03.006.

[JT80] Arthur Jaffe and Clifford Taubes.Vortices and monopoles. Vol.2. Progress in Physics. Structure of static gauge theories. Birkh¨auser, Boston, Mass.,1980, pp. v+287.isbn:3-7643-3025-2.

[KM97] Andreas Kriegl and Peter W. Michor.The convenient setting of global analysis.

Vol. 53. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI,1997, pp. x+618.isbn:0-8218-0780-3.doi:10.1090/

surv/053.url:http://dx.doi.org/10.1090/surv/053.

[KN69] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry: Vol.: 2.

Interscience Tracts in Pure and Applied Mathematics. Interscience Publish-ers,1969.

[Max65] J. C. Maxwell. “A dynamical theory of the electromagnetic field”. In: Phil.

Trans. R. Soc. (London) 155 (Jan. 1865), pp. 459–512. doi: 10 . 1098 / rstl . 1865.0008.

[MV81] P. K. Mitter and C.-M. Viallet. “On the bundle of connections and the gauge orbit manifold in Yang-Mills theory”. In: Comm. Math. Phys. 79.4 (1981), pp. 457–472. issn: 0010-3616. url: http://projecteuclid.org/euclid.

cmp/1103909137.

[MW13] Rafe Mazzeo and Edward Witten.The Nahm Pole Boundary Condition.2013. eprint:arXiv:1311.3167.

[Nak91] Hiraku Nakajima. Monopoles and Nahm’s Equations. Einstein Metrics and Yang-Mills Connections. Marcel Dekker, New York,1991.

[Oli14] Goncalo Oliveira. “Monopoles on the Bryant-Salamon G2-manifolds”. In:

J. Geom. Phys. 86 (2014), pp. 599–632. issn:0393-0440. url: https://doi.

org/10.1016/j.geomphys.2014.10.005.

[Oni04] Arkady L. Onishchik. Lectures on real semisimple Lie algebras and their rep-resentations. ESI Lectures in Mathematics and Physics. European Mathe-matical Society (EMS), Z ¨urich, 2004, pp. x+86. isbn: 3-03719-002-7. doi: 10.4171/002.url:http://dx.doi.org/10.4171/002.

[O’N66] Barrett O’Neill. “The fundamental equations of a submersion.” In: The Michigan Mathematical Journal13.4 (Dec.1966), pp.459–469.doi:10.1307/

mmj/1028999604.url:http://dx.doi.org/10.1307/mmj/1028999604.

[Pid04] Victor Pidstrygach. “Hyperk¨ahler Manifolds and Seiberg–Witten Equations”.

In:Proceedings of the Steklov Institute of Mathematics246(2004), pp.249–262. [Pid17] Victor Pidstrygach. personal communication. Nov.27,2017.

[Pra75] Charles M. Prasad M. K.; Sommerfield. “Exact Classical Solution for the ’t Hooft Monopole and the Julia-Zee Dyon”. In:Physical Review Letters35(12 Sept.1975).doi:10.1103/PhysRevLett.35.760.

[Sal89] Simon Salamon. Riemannian Geometry and Holonomy Groups. Subsequent.

Research Notes in Mathematics Series. Longman Sc & Tech,1989.

[SW94a] N. Seiberg and E. Witten. “Electric-magnetic duality, monopole conden-sation, and confinement in N “ 2 supersymmetric Yang-Mills theory”.

In: Nuclear Phys. B 426.1 (1994), pp. 19–52. issn: 0550-3213. url: https : //doi.org/10.1016/0550-3213(94)90124-4.

[SW94b] N. Seiberg and E. Witten. “Erratum: “Electric-magnetic duality, monopole condensation, and confinement inN “2supersymmetric Yang-Mills the-ory””. In: Nuclear Phys. B 430.2 (1994), pp. 485–486. issn: 0550-3213. url: https://doi.org/10.1016/0550-3213(94)00449-8.

[Tau99] Clifford Henry Taubes. “Nonlinear generalizations of a3-manifold’s Dirac operator”. In: Trends in mathematical physics (Knoxville, TN, 1998). Vol. 13. AMS/IP Stud. Adv. Math. Amer. Math. Soc., Providence, RI,1999, pp.475– 486.

[Var01] V. S. Varadarajan. “Spinp7q-subgroups of SOp8q and Spinp8q”. In: Expo.

Math. 19.2 (2001), pp. 163–177. issn: 0723-0869. doi: 10 . 1016 / S0723 -0869(01)80027- X. url: http://dx.doi.org/10.1016/S0723- 0869(01) 80027-X.

[Xu08] Feng Xu. “Geometry of SU(3) Manifolds”. PhD thesis. Duke University, 2008.

[Yok09] I. Yokota. “Exceptional Lie groups”. In: ArXiv e-prints (Feb. 2009). arXiv:

0902.0431 [math.DG].